初三下学期数学好题难题集锦含答案
【常考题】初三数学下期末试题(带答案)

【常考题】初三数学下期末试题(带答案)一、选择题1.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4)B.(6,2)C.(4,4)D.(8,4)2.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=kx(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12B.4C.3D.63.如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥4.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A .B .C .D .5.下列命题正确的是( ) A .有一个角是直角的平行四边形是矩形 B .四条边相等的四边形是矩形 C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形6.下表是某学习小组一次数学测验的成绩统计表: 分数/分 70 80 90100 人数/人13x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( ) A .80分B .85分C .90分D .80分和90分7.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为() A .()11362x x -= B .()11362x x += C .()136x x -= D .()136x x +=8.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A.23π﹣23B.13π﹣3C.43π﹣23D.43π﹣39.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠10.cos45°的值等于( )A.2B.1C.32D.2211.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()A.3B.154C.5D.15212.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.14.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.15.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.16.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000出芽种子数961654919841965A发芽率0.960.830.980.980.98出芽种子数961924869771946B发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).17.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.18.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .19.如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_____.20.如图,在平面直角坐标系xOy中,函数y=kx(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.三、解答题21.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.22.如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E . (1)求证:直线CD 是⊙O 的切线. (2)求证:CD BE AD DE ⋅=⋅.23.解不等式组3415122x x x x ≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来24.如图,某地修建高速公路,要从A 地向B 地修一座隧道(A 、B 在同一水平面上),为了测量A 、B 两地之间的距离,某工程师乘坐热气球从B 地出发,垂直上升100米到达C 处,在C 处观察A 地的俯角为39°,求A 、B 两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)25.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G . (1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sinB =513,求DG 的长,26.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE. (1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】直接利用位似图形的性质结合相似比得出AD 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案. 【详解】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴13AD BG =, ∵BG =12, ∴AD =BC =4, ∵AD ∥BG , ∴△OAD ∽△OBG ,∴13 OA OB=∴0A1 4OA3= +解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选A.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.2.D解析:D【解析】分析:设点A的坐标为(m,km),则根据矩形的面积与性质得出矩形中心的纵坐标为2km,求出中心的横坐标为m+6mk,根据中心在反比例函数y=kx上,可得出结果.详解:设点A的坐标为(m,km),∵矩形ABCD的面积为12,∴121212m BCkAB km===,∴矩形ABCD的对称中心的坐标为(m+6mk,2km),∵对称中心在反比例函数上,∴(m+6mk)×2km=k,解方程得k=6,故选D.点睛:本题考查了反比例函数图象上点的坐标特点,熟知反比例函数中k=xy位定值是解答本题的关键.3.A解析:A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.考点:由三视图判定几何体.4.B解析:B【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【详解】①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ABDE=APADAB APDE AD=,即34xy=,∴y=12x,纵观各选项,只有B选项图形符合,故选B.5.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.6.D【解析】【分析】先通过加权平均数求出x的值,再根据众数的定义就可以求解.【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1),x=3∴该组数据的众数是80分或90分.故选D.【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.7.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:1x(x﹣1)=36,2故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 8.C解析:C【解析】分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC 的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB ⊥AC ,OD=12OB=1,在Rt △COD 中利用勾股定理可知:=,∵sin ∠COD= CD OC = ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =12B×AC=12×2× S 扇形AOC =2120243603ππ⨯⨯=,则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =43π- 故选C .点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π,有一定的难度. 9.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.10.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:cos45°故选D.【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.11.C解析:C【解析】【分析】【详解】解:根据题意易证BE=DE,设ED=x,则AE=8﹣x,在△ABE中根据勾股定理得到关于线段AB、AE、BE的方程x2=42+(8﹣x)2,解方程得x=5,即ED=5故选C.【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.12.无二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c的取值范围再根据c是奇数求出c的值【详解】∵ab满足|a﹣7|+(b﹣1)2=0∴a﹣7解析:7【解析】【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【详解】∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上∴AC=A′C∴△A′AC 是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上,∴AC=A′C ,∴△A′AC 是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°. 15.2【解析】由D 是AC 的中点且S △ABC=12可得;同理EC=2BE 即EC=可得又等量代换可知S △ADF -S △BEF=2解析:2【解析】由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆==⨯=;同理EC=2BE 即EC=13BC ,可得11243ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =216.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确 解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 17.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间解析:5.【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴AE=22+=.125考点:1.轴对称-最短路线问题;2.正方形的性质.18.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.19.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.20.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x 轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q解析:25【解析】【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D 点的坐标为(a ,b ),则C 点的坐标为(a+3,b ),∵E 为AC 的中点,∴EF=12CM=12b ,AF=12AM=12OQ=12a , E 点的坐标为(3+12a ,12b ), 把D 、E 的坐标代入y=k x得:k=ab=(3+12a )12b , 解得:a=2, 在Rt △DQO 中,由勾股定理得:a 2+b 2=32,即22+b 2=9,解得:5∴5故答案为5【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a 、b 的方程是解此题的关键.三、解答题21.(1)证明见解析;(22【解析】【分析】(1)在△CAD 中,由中位线定理得到MN ∥AD ,且MN=12AD ,在Rt △ABC 中,因为M 是AC 的中点,故BM=12AC ,即可得到结论; (2)由∠BAD=60°且AC 平分∠BAD ,得到∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到222BN BM MN =+,再由MN=BM=1,得到BN 的长.【详解】(1)在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,且MN=12AD ,在Rt △ABC 中,∵M 是AC 的中点,∴BM=12AC ,又∵AC=AD ,∴MN=BM ; (2)∵∠BAD=60°且AC 平分∠BAD ,∴∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN ∥AD ,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴222BN BM MN =+,而由(1)知,MN=BM=12AC=12×2=1,∴. 考点:三角形的中位线定理,勾股定理.22.(1)证明见解析;(2)证明见解析.【解析】【分析】 (1)连接OD ,由角平分线的定义得到∠CAD=∠BAD ,根据等腰三角形的性质得到∠BAD=∠ADO ,求得∠CAD=∠ADO ,根据平行线的性质得到CD ⊥OD ,于是得到结论;(2)连接BD ,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【详解】解:证明:(1)连接OD ,∵AD 平分BAC ∠,∴CAD BAD ∠=∠,∵OA OD =,∴BAD ADO =∠∠,∴CAD ADO ∠=∠,∴AC OD ∥,∵CD AC ⊥,∴CD OD ⊥,∴直线CD 是⊙O 的切线;(2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径,∴90ABE BDE ︒∠=∠=,∵CD AC ⊥,∴90C BDE ︒∠=∠=,∵CAD BAE DBE ∠=∠=∠,∴ACD BDE ∆∆∽, ∴CD AD DE BE=,∴CD BE AD DE ⋅=⋅.【点睛】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.23.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】 解:341{5122x x x x ≥--->①② 解不等式①可得x≤1,解不等式②可得x >-1 在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.24.123米.【解析】【分析】在Rt △ABC 中,利用tan BC CAB AB∠=即可求解. 【详解】解:∵CD ∥AB ,∴∠CAB=∠DCA=39°.在Rt △ABC 中,∠ABC=90°, tan BC CAB AB∠=.∴100123tan 0.81BC AB CAB ==≈∠. 答:A 、B 两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.25.(1)证明见解析; 【解析】【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证; (2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.【详解】(1)如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF,在Rt△BOD中,sinB=513 ODOB=,设圆的半径为r,可得5813 rr=+,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=513 AFAE=,∴AF=AE•sin∠AEF=10×513=50 13,∵AF∥OD,∴501013513AG AFDG OD===,即DG=1323AD,∴AD=503013·181313AB AF=⨯=,则DG=133033013 23⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.26.(1)详见解析;(2)存在,3;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.。
初三下册数学练习题含答案

初三下册数学练习题含答案一、选择题1. 下列哪组分数中,与1/2 最相近的是()A. 4/7 与 7/14B. 7/12 与 7/14C. 15/22 与 29/63D. 19/88 与 19/38答案:B2. 计算正方形ABCD的面积,若边长是9 cm ,则面积是()A. 81cm²B. 36cm²C. 18cm²D. 27cm²答案:A3. 将一个长方形(2.5cm × 1.5cm × 1cm)放大成相似图形,则相似比是()A. 160B. 1/160C. 16D. 1/16答案:C4. 下面推理不成立的是()A. 任一直角三角形的两直角边的边长之和大于斜边的边长。
B. 三个正数成等比数列,则这三个数成等差数列。
C. 大于一数的平方根是唯一的正数。
D. 不等式两边同乘或除以相同的正数,不等关系不变。
答案:B5. 七年级共有10个班级,每个班级35个学生,每个学生平均每天有1小时60分钟的自习时间。
若名单上登记的学生信息全对,则全年所有学生平均自习时间是()A. 2100小时B. 210分钟C. 2100分钟D. 210小时答案:D二、填空题1. 已知 a:b = 3:2, b:c = 5:4,则 a:c = ________。
答案:3: (2 × 5) ÷ (3 × 4) = 1.25 → 5 ÷ 4 = 1.252. 若一条长方形的长是12 cm,宽是3 cm,则它的面积是 _______ cm²。
答案:长 ×宽 = 12 × 3 = 36cm²3. 若(a × 5) ÷ 10 = 3,则 a = _______。
答案: (3 × 10) ÷ 5 = 64. 某球员投篮120次,命中96次,则他的投篮命中率是 _______。
【压轴题】初三数学下期末试题(含答案)

【压轴题】初三数学下期末试题(含答案)一、选择题1.下列计算正确的是( )A .2a +3b =5abB .( a -b )2=a 2-b 2C .( 2x 2 )3=6x 6D .x 8÷x 3=x 5 2.如图是某个几何体的三视图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥 3.下列各式中能用完全平方公式进行因式分解的是( ) A .x 2+x+1B .x 2+2x ﹣1C .x 2﹣1D .x 2﹣6x+9 4.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab = 5.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁 6.2-的相反数是( )A .2-B .2C .12D .12- 7.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55° 8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .14cmB .4cmC .15cmD .3cm9.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =;②当0<x <3时,12y y <;③如图,当x=3时,EF=83; ④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小.其中正确结论的个数是( )A .1B .2C .3D .4 10.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32 C .m >﹣94 D .m >﹣94且m≠﹣34 11.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( )A .8%B .9%C .10%D .11%12.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.二、填空题13.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.14.如果a是不为1的有理数,我们把11a-称为a的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a=,2a是1a的差倒数,3a是2a的差倒数,4a是3a的差倒数,…,依此类推,则2019a=___________.15.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.16.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.17.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.18.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.19.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.20.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.三、解答题21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y1与y2的函数解析式.(2)求每天的销售利润W与x的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?22.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.(1)原来每小时处理污水量是多少m2?(2)若用新设备处理污水960m3,需要多长时间?23.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?24.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?25.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h 的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h ,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB ,GH 的交点B 的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他几点钟遇见小慧?26.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:A .原式不能合并,错误;B .原式利用完全平方公式展开得到结果,即可做出判断;C .原式利用积的乘方运算法则计算得到结果,即可做出判断;D .原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A .不是同类项,不能合并,故A 错误;B .(a ﹣b )2=a 2﹣2ab +b 2,故B 错误;C .( 2x 2 )3=8x 6,故C 错误;D .x 8÷x 3=x 5,故D 正确.故选D .点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.2.A解析:A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A .考点:由三视图判定几何体.3.D解析:D【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A 、x 2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B 、x 2+2x ﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C 、x 2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D 、x 2﹣6x+9=(x ﹣3)2,故选项正确.故选D .4.C解析:C【解析】【分析】分别计算出各项的结果,再进行判断即可.【详解】A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误.故选C【点睛】本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.5.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 6.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .7.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C .【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.8.A解析:A【解析】运用直角三角形的勾股定理,设正方形D 的边长为x ,则22222(65)(5)10x +++=,14x cm =(负值已舍),故选A9.C解析:C【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x =,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.10.B解析:B【解析】【分析】【详解】解:去分母得:x+m ﹣3m=3x ﹣9,整理得:2x=﹣2m+9,解得:x=292m -+, 已知关于x 的方程333x m m x x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.11.C解析:C【解析】【分析】设月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设该商店的每月盈利的平均增长率为x,根据题意得:240000(1+x)2=290400,解得:x1=0.1=10%,x2=-0.21(舍去),故选C.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-.12.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c的取值范围再根据c是奇数求出c的值【详解】∵ab满足|a﹣7|+(b﹣1)2=0∴a﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.14.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a2019 解析:34. 【解析】【分析】 利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673,∴a2019=a3=34,故答案为:3 4 .【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律. 15.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB ∵AE垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角解析:【解析】试题解析:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD==【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.16.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x 轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.17.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,∴BE+BD-DE=12,②∵BE=CE,BD=DC,∴①-②得,DE=6.考点:线段垂直平分线的性质.18.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.19.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】Q共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.20.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n分别表示xy得到解析:28【解析】【分析】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为及格的人数为n人,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.【详解】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人,根据题意得,解得,所以x+y=n,而15<n<30,n 为正整数,n为整数,所以n=5,所以x+y=28,即该班共有28位学生.故答案为28.【点睛】本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.三、解答题21.(1)y2与x的函数关系式为y2=-2x+200(1≤x<90);(2)W=22x180x2?000(1x50),120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y1=kx+b,将(1,41),(50,90)代入,得k b41,50k b90,+=⎧⎨+=⎩解得k1,b40,=⎧⎨=⎩∴y1=x+40,当50≤x<90时,y1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩ (3)当1≤x<50时,∵W=-2x 2+180x+2000=-2(x-45)2+6050,∴当x=45时,W 取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W 随x 的增大而减小,∴当x=50时,W 取得最大值,最大值为6000元;综上,当x=45时,W 取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.22.(1)原来每小时处理污水量是40m 2;(2)需要16小时.【解析】试题分析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据原来处理1200m 3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可. ()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2, 根据题意得:1200120010,1.5x x-= 去分母得:1800120015x ,-= 解得:40x =,经检验40x = 是分式方程的解,且符合题意,则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时),则需要16小时.23.20元/束.【解析】【分析】设第一批花每束的进价是x 元/束,则第一批进的数量是:4000x,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程. 【详解】设第一批花每束的进价是x 元/束, 依题意得:4000x ×1.5=45005x -, 解得x =20. 经检验x =20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.24.(1)y=26(2040)24(40)x xx x⎧⎨>⎩剟;(2)该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.【解析】【分析】【详解】(1)批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式y=26(2040) 24(40)x xx x⎧⎨>⎩剟;(2)设该经销商购进乌鱼x千克,则购进草鱼(75﹣x)千克,所需进货费用为w元.由题意得:4089%(75)95%93%75 xx x>⎧⎨⨯-+⨯⎩…解得x≥50.由题意得w=8(75﹣x)+24x=16x+600.∵16>0,∴w的值随x的增大而增大.∴当x=50时,75﹣x=25,W最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.25.(1)小聪上午7:30从飞瀑出发;(2)点B的实际意义是当小慧出发1.5 h时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH的解析式,当s=30时,求出t的值,即可确定点B的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x小时后两人相遇,根据题意得:30x+30(x﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B 点的坐标为(1.5,30),点B 的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km ;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103, ∴当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣13)=50,解得:x=1, 10+1=11=11点,∴小聪到达宾馆后,立即以30km/h 的速度按原路返回,那么返回途中他11点遇见小慧. 26.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.。
【好题】九年级数学下期末试题带答案

【好题】九年级数学下期末试题带答案 一、选择题 1.下列四个实数中,比1小的数是( )
A.2 B.0 C.1 D.2 2.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为( )
A.x>32 B.x<32 C.x>3 D.x<
3
3.下列运算正确的是( ) A.224aaa B.3412aaa C.3412()aa D.
22()abab
4.阅读理解:已知两点1122,,()(),MxyNxy,则线段MN的中点,Kxy的坐标公式
为:122xxx,122yyy.如图,已知点O为坐标原点,点30A,,Oe经过点A,点B为弦PA的中点.若点,Pab,则有,ab满足等式:229ab.设
,Bmn,则,mn满足的等式是( )
A.229mn B.
223922mn
C.222323mn D.
222349mn
5.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( ) A.7分 B.8分 C.9分 D.10分
6.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )
A. B. C. D.
7.如图,AB,AC分别是⊙O的直径和弦,ODAC于点D,连接BD,BC,且10AB,8AC,则BD的长为( )
A.25 B.4 C.213 D.
4.8
8.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,
OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩
形OABC面积的14,那么点B′的坐标是( )
A.(-2,3) B.(2,-3) C.(3,-2)或(-2,3) D.(-2,
3)或(2,-3)
9.估计10+1的值应在( ) A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间
【好题】初三数学下期末一模试卷含答案(1)

【好题】初三数学下期末一模试卷含答案(1)一、选择题1.下列计算正确的是( ) A .2a +3b =5abB .( a -b )2=a 2-b 2C .( 2x 2 )3=6x 6D .x 8÷x 3=x 5 2.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数 B .方差C .平均数D .中位数3.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =-B .24y x =+C .22y x =+D .22y x =-4.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件. A .1B .2C .3D .45.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac <6.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解7.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q8.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα9.如图,在半径为13的O e 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6,1AB AE ==,则CD 的长是( )A .26B .210C .211D .4310.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .23π﹣23 B .13π﹣3 C .43π﹣23 D .43π﹣3 11.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )A .B .C .D .12.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠二、填空题13.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.14.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx的图象上,则k 的值为________.15.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .16.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____. 17.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .18.正六边形的边长为8cm ,则它的面积为____cm 2.19.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.20.3x +x 的取值范围是_____.三、解答题21.如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线(0)my x x=>经过点B . (1)求直线10y kx =-和双曲线my x=的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,①当点C在双曲线上时,求t的值;②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;③当136112DC 时,请直接写出t的值.22.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?23.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.活动一如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.数学思考(1)设,点到的距离.①用含的代数式表示:的长是_________,的长是________;②与的函数关系式是_____________,自变量的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格.654 3.53 2.5210.5000.55 1.2 1.58 1.0 2.473 4.29 5.08②描点:根据表中数值,描出①中剩余的两个点.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.24.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).25.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题:(1)写出A,C两点的坐标;(2)画出△ABC关于原点O的中心对称图形△A1B1C1;(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.26.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:A.原式不能合并,错误;B.原式利用完全平方公式展开得到结果,即可做出判断;C.原式利用积的乘方运算法则计算得到结果,即可做出判断;D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A.不是同类项,不能合并,故A错误;B.(a﹣b)2=a2﹣2ab+b2,故B错误;C.(2x2)3=8x6,故C错误;D.x8÷x3=x5,故D正确.故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.2.D解析:D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键. 3.A解析:A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.4.C解析:C【解析】【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题;③折线统计图反映一组数据的变化趋势,正确,是真命题;④水中捞月是随机事件,故错误,是假命题,真命题有3个,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.5.A解析:A 【解析】 【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】 解:a b =Q ,∴原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=, 故选项A 错误, 故选A . 【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.6.D解析:D 【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.详解:去分母得:x 2+2x ﹣x 2﹣x +2=3,解得:x =1,经检验x =1是增根,分式方程无解. 故选D .点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.7.C解析:C 【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.8.B解析:B 【解析】 【分析】在两个直角三角形中,分别求出AB 、AD 即可解决问题; 【详解】在Rt △ABC 中,AB=ACsin α, 在Rt △ACD 中,AD=ACsin β, ∴AB :AD=ACsin α:AC sin β=sin sin βα,故选B . 【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.9.C解析:C 【解析】 【分析】过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,由垂径定理得出1,32DF CF AG BG AB ====,得出2EG AG AE =-=,由勾股定理得出2OG ==,证出EOG ∆是等腰直角三角形,得出45,OEG OE ∠=︒==30OEF ∠=︒,由直角三角形的性质得出12OF OE ==DF =【详解】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,如图所示: 则1,32DF CF AG BG AB ====, ∴2EG AG AE =-=,在Rt BOG ∆中,2OG ==, ∴EG OG =,∴EOG ∆是等腰直角三角形,∴45OEG ∠=︒,OE ==∵75DEB ∠=︒, ∴30OEF ∠=︒,∴12OF OE ==在Rt ODF ∆中,DF ===∴2CD DF == 故选:C .【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.10.C解析:C【解析】分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC 的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=12OB=1,在Rt△COD中利用勾股定理可知:22213-=,3∵sin∠COD=3 CDOC=∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=12B×AC=12×2×33S扇形AOC=2120243603ππ⨯⨯=,则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=423 3π-故选C.点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12 a•b(a、b是两条对角线的长度);扇形的面积=2360n rπ,有一定的难度.解析:D【解析】【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D 几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.12.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.二、填空题13.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半 解析:2分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可. 详解:扇形的圆心角是120°,半径为6, 则扇形的弧长是:1206180π⋅=4π, 所以圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r ,则2πr =4π,解得:r =2.所以圆锥的底面半径是2.故答案为2.点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.14.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 15.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD 交于点E 连接DFFMMNDN∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣【解析】【分析】【详解】试题分析:如图所示:连接AC ,BD 交于点E ,连接DF ,FM ,MN ,DN ,∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC ⊥BD ,四边形DNMF 是正方形,∠AOC=90°,BD=2,∴∠AOE=45°,ED=1,∴AE=EO=3,DO=3﹣1,∴S正方形DNMF=2(3﹣1)×2(3﹣1)×12=8﹣43,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.16.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根解析:-2【解析】【分析】若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根,∴△=4-4(a+1)×3≥0,且a+1≠0,解得a≤-23,且a≠-1,则a的最大整数值是-2.故答案为:-2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.17.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间5【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴22125+考点:1.轴对称-最短路线问题;2.正方形的性质.18.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432=,∴S△OCD=12CD•OE=12×8×332.∴S正六边形=6S△OCD=6×33cm2.考点:正多边形和圆19.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n分别表示xy得到解析:28【解析】【分析】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为及格的人数为n人,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.【详解】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人,根据题意得,解得,所以x+y=n,而15<n<30,n为正整数,n为整数,所以n=5,所以x+y=28,即该班共有28位学生.故答案为28.【点睛】本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.20.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围.【详解】.在实数范围内有意义,则x +3≥0,解得:x ≥﹣3,则x 的取值范围是:x ≥﹣3.故答案为:x ≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.三、解答题21.(1)直线的表达式为5106y x =-,双曲线的表达式为30y x =-;(2)①52;②当06t <<时,BCD ∠的大小不发生变化,tan BCD ∠的值为56;③t 的值为52或152. 【解析】【分析】(1)由点(12,0)A 利用待定系数法可求出直线的表达式;再由直线的表达式求出点B 的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)①先求出点C 的横坐标,再将其代入双曲线的表达式求出点C 的纵坐标,从而即可得出t 的值;②如图1(见解析),设直线AB 交y 轴于M ,则(0,10)M -,取CD 的中点K ,连接AK 、BK .利用直角三角形的性质证明A 、D 、B 、C 四点共圆,再根据圆周角定理可得BCD DAB ∠=∠,从而得出tan tan OM BCD DAB OA∠=∠=,即可解决问题; ③如图2(见解析),过点B 作⊥BM OA 于M ,先求出点D 与点M 重合的临界位置时t 的值,据此分05t <<和512t ≤<两种情况讨论:根据,,A B C 三点坐标求出,,AM BM AC 的长,再利用三角形相似的判定定理与性质求出DM 的长,最后在Rt ACD ∆中,利用勾股定理即可得出答案.【详解】(1)∵直线10y kx =-经过点(12,0)A 和(,5)B a -∴将点(12,0)A 代入得12100k -= 解得56k = 故直线的表达式为5106y x =-将点(,5)B a -代入直线的表达式得51056a -=- 解得6a = (6,5)B ∴- ∵双曲线(0)m y x x=>经过点(6,5)B - 56m ∴=-,解得30m =- 故双曲线的表达式为30y x =-; (2)①//AC y Q 轴,点A 的坐标为(12,0)A∴点C 的横坐标为12 将其代入双曲线的表达式得305122y =-=- ∴C 的纵坐标为52-,即52AC = 由题意得512t AC ⋅==,解得52t = 故当点C 在双曲线上时,t 的值为52; ②当06t <<时,BCD ∠的大小不发生变化,求解过程如下:若点D 与点A 重合由题意知,点C 坐标为(12,)t -由两点距离公式得:222(612)(50)61AB =-+--= 2222(126)(5)36(5)BC t t =-+-+=+-+22AC t =由勾股定理得222AB BC AC +=,即226136(5)t t ++-+=解得12.2t =因此,在06t <<范围内,点D 与点A 不重合,且在点A 左侧如图1,设直线AB 交y 轴于M ,取CD 的中点K ,连接AK 、BK由(1)知,直线AB 的表达式为5106y x =- 令0x =得10y =-,则(0,10)M -,即10OM =Q 点K 为CD 的中点,BD BC ⊥12BK DK CK CD ∴===(直角三角形中,斜边上的中线等于斜边的一半) 同理可得:12AK DK CK CD ===BK DK CK AK ∴===∴A 、D 、B 、C 四点共圆,点K 为圆心BCD DAB ∴∠=∠(圆周角定理) 105tan tan 126OM BCD DAB OA ∴∠=∠===;③过点B 作⊥BM OA 于M由题意和②可知,点D 在点A 左侧,与点M 重合是一个临界位置此时,四边形ACBD 是矩形,则5AC BD ==,即5t =因此,分以下2种情况讨论:如图2,当05t <<时,过点C 作CN BM ⊥于N(6,5(1),2,0),(12,)B A t C --Q12,6,6,5,OA OM AM OA OM BM AC t ∴===-===90CBN DBM BDM DBM ∠+∠=∠+∠=︒QCBN BDM ∴∠=∠又90CNB BMD ∠=∠=︒QCNB BMD ∴∆~∆CN BN BM DM ∴= AM BM AC BM DM -∴=,即655t DM-= 5(5)6DM t ∴=- 56(5)6AD AM DM t ∴=+=+- 由勾股定理得222AD AC CD +=即222513616(5)(6t t ⎡⎤+-+=⎢⎥⎣⎦解得52t =或152t =(不符题设,舍去) 当512t ≤<时,同理可得:222513616(5)()612t t ⎡⎤--+=⎢⎥⎣⎦解得152t =或52t =(不符题设,舍去) 综上所述,t 的值为52或152.【点睛】本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.22.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.23.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是. 【解析】【分析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点,即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意,,,,故答案为:,.②作于.,,,,,,故答案为:,.(2)①当时,,当时,,故答案为2,6.②点,点如图所示.③函数图象如图所示.(3)性质1:函数值的取值范围为.性质2:函数图象在第一象限,随的增大而减小.【点睛】本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24.风筝距地面的高度49.9m.【解析】【分析】作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,利用∠AEH的正切列方程求解即可.【详解】如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°=AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地面的高度49.9 m.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.25.(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)见解析;10.【解析】【分析】(1)利用第二象限点的坐标特征写出A,C两点的坐标;(2)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,然后描点得到△A2B2C2,再利用弧长公式计算点C旋转至C2经过的路径长.【详解】解:(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作,OC=2213+=10,点C旋转至C2经过的路径长=9010180π⋅⋅=102π.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.26.A、C之间的距离为10.3海里.【解析】【分析】【详解】解:作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD3x.又∵BC=20,∴x3x=20,解得:x =31).∴AC2231) 1.4110(1.731)10.29310.3x=≈⨯⨯-=≈ (海里).答:A、C之间的距离为10.3海里.。
初三数学一元二次方程组的专项培优易错难题练习题附答案解析

初三数学一元二次方程组的专项培优易错难题练习题附答案解析一、一元二次方程1,已知关于x的方程x2- (2k+1) x+k2+i = 0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.【答案】(1)k> 3 ;(2) A.【解析】【分析】(1)根据关于x的方程x2—(2k+1)x+k2 + 1=0有两个不相等的实数根,得出 ^〉。
,再解不等式即可;(2)当k=2时,原方程x2-5x+5=0,设方程的两根是m、n,则矩形两邻边的长是m、n, 利用根与系数的关系得出m+n=5, mn=5,则矩形的对角线长为J m2n2,利用完全平方公式进行变形即可求得答案 . 【详解】(1) •••方程x2—(2k+1)x+ k2+1 = 0有两个不相等的实数根,A= [-(2k+1)]2-4X 1 x(史1)=4k-3>0, ,3. . k > 一,4(2)当k=2时,原方程为x2- 5x+ 5 = 0, 设方程的两个根为m, n,• - m + n= 5, mn= 5,矩形的对角线长为:Vm2~n2 jm n 2mn J15 .【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1) ^〉。
时,方程有两个不相等的实数根;( 2) 4=0时,方程有两个相等的实数根;(3) 4〈0时,方程没有实数根.2.父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过大众点评”或美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程5中,大众点评网上的购买价格比原有价格上涨一m%,购买数量和原计划一样:美团”网29上的购头价格比原有价格下降了一m元,购买数量在原计划基础上增加15m%,最终,在20【答案】(1) 120; (2) 20. 【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为 x 元,列不等式为 0.8x?80W7680解出即可;解法二:根据单价=总价一数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花 店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,表示在 大众点评120a (1-25%) (1+3m%),在 美团”网上的购买实际消费总额:a[120 (1 - 25%) - -9-m] (1+15m%);根据 在两个网站的实际消费总额比原计划20的预算总额增加了 一 m%'列方程解出即可.2试题解析:(1)解:解法一:设标价为 x 元,列不等式为 0.8x?80W7680 x<120解法二:7680+ 80+0.8=96 + 0.8=12兆), 答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,由题意得:120X0由(1 — 25%) (1 + 5m%) +a[120 X 0.81 — 25%) - -m] (1+15m%) =120 x 0282 20(1 — 25%) X2 (1+ — m%)),即 72a (1+ — m%) +a (72 — — m) ( 1+15m%) =144a 2 220(1+ 15m%),整理得:0, 0675m 2-1.35m=0, m 2- 20m=0,解得:m 1=0 (舍)2m 2=20.答:m 的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出 大众点评”或 美团”实际消费总额是解题关键.3.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、 五两月的水费分别是按哪种方案计算的?并求出 而的值.两个网站的实际消费总额比原计划的预算总额增加了一 m%,求出m 的值.2网上的购买实际消费总额:【答案】4. .. 1.7 X 35=59.5 1.7 X 80=136 151,这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),五月份用水量超过m吨(或水费是按F =1一■工-丽来计算的)w则有151=1.7X80+(80—m) X--100即m2-80m+1500=0解得m〔二30, m2=50.又..•四月份用水量为35吨,m1=30<35,「51=30舍去.m=50【解析】5.观察下列一组方程:①x2 x 0;②x2 3x 2 0;③x2 5x 6 0;④x2 7x 12 0;它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为连根一元二次方程1若x2kx 56 0也是连根一元二次方程”,写出k的值,并解这个一元二次方程;2请写出第n个方程和它的根.【答案】(1) x1 = 7, x2= 8. (2) x1=n—1, x2= n.【解析】【分析】(1)根据十字相乘的方法和连根一元二次方程”的定义,找到56是7与8的乘积,确定k值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k=— 15,则原方程为x2—15x+56=0,则(x—7)(x—8)=0,解得x1=7, x2=8.(2)第n 个方程为x2-(2n- 1)x+ n(n -1)=0, (x- n)(x— n + 1)=0,解得x1 = n_1, x2= n. 【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.2 _ k6.关于x的万程kx k 2 x — 0有两个不相等的实数根.41求实数k的取值范围;2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k的值;若不存在,说明理由.【答案】(1) k 1且k 0; (2)不存在符合条件的实数k,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】1由于方程有两个不相等的实数根,所以它的判别式V 0,由此可以得到关于k的不等式,解不等式即可求出k的取值范围.2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k的等式,解出k值,然后判断k值是否在1中的取值范围内.【详解】解:1依题意得V (k 2)2 4k k 0,k 1 ,又Q k 0,k的取值范围是k 1且k 0;2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,2 k理由是:设万程kx k 2 x - 0的两根分别为x1,X2,4k 2x1 x2由根与系数的关系有:k ,1x1 x24又因为方程的两个实数根之和等于两实数根之积的算术平方根,由1知,k 1,且k 0,4 “人什一k —不符合题意,3因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。
(完整word)九年级下数学相似三角形经典习题(含答案),推荐文档
九年级下数学相似三角形经典习题例1从下面这些三角形中,选出相似的三角形.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似.(2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似.(4)所有的等边三角形都相似.例5如图,D 点是 ABC 的边AC 上的一点,过D 点画线段DE ,使点E 在 ABC 的边上,并且点D 、点E 和 ABC 的一个顶点组成的小三角形与ABC 相似•尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约 30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.已知:如图, 匸ABCD 中,如图,已知 ABD s AE: EB 1:2,求 AEF 与 CDF 的周长的比,如果 S AEF2 、6cm ,求 S CDF •ACE ,求证: ABC s ADE •B初三(下)相似三角形例7如图,小明为了测量一高楼MN的高,在离N点20m的A处放了一个平面镜,小明沿NA后退到C点,正好从镜中看到楼顶M点,若AC 1.5m,小明的眼睛离地面的高度为 1.6m,请你帮助小明计算一下楼房的高度(精确到0.1m).例8格点图中的两个三角形是否是相似三角形,说明理由.例9根据下列各组条件,判定ABC和ABC是否相似,并说明理由:(1)AB 3.5cm, BC 2.5cm, CA 4cm, A B 24.5cm, B C 17.5cm,C A 28cm .(2) A 35 , B 104 , C 44 , A 35 .(3)AB 3, BC 2.6, B 48 , A B 1.5,BC 1.3, B 48 .例10如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11已知:如图,在ABC中,AB AC, A 36 ,BD是角平分线,试利用三角形相似的关系说明AD2 DC AC .初三(下)相似三角形例12已知ABC的三边长分别为5、12、13,与其相似的ABC的最大边长为26,求ABC的面积S.例13在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法•小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E 恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.AGEHB C D例14•如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使AB BC , 然后再选点E,使EC BC,确定BC与AE的交点为D,测得BD 120米,DC 60米,EC 50米,你能求出两岸之间AB的大致距离吗?例15.如图,为了求出海岛上的山峰AB的高度,在D和F处树立标杆DC和FE,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB、CD和EF在同一平面内,从标杆DC退后123步的G处,可看到山峰A和标杆顶端C在一直线上,从标杆FE退后127步的H处,可看到山峰A和标杆顶端E在一直线上.求山峰的高度AB及它和标杆CD 的水平距离BD各是多少?(古代问题)例16 如图,已知△ ABC的边AB = 2.3 , AC= 2, BC边上的高AD = .3 .(1)求BC的长;(2)如果有一个正方形的边在AB上,另外两个顶点分别在AC , BC上,求这个正方形的面积.初三(下)相似三角形AC第4页共6页因此ABC s ABC本题所叙述的内容可以画出如下图那样的几何图形, CE 30 米,求 BC .由于 ADF s AEC ,-DF J AF,又 EC ACACFDF 60厘米DFs ABC,•——EC0.6米,GF 12厘米 ,从而可以求出 解 AE EC, DF // EC ,• ADF AEC,DAF ADF sBCAEC . •匹 jAFEC AC又GFEC,BC EC , • GF // BC, AFGACB, AGFABC ,0.12米,BC 的长.AF• AGF s ABC ,• jAFGF BC ,DF EC GF BC 相似三角形经典习题答案例1. 解①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例 2. 解 ABCD 是平行四边形,••• AB//CD, AB CD ,二 AEF s CDF ,又 AE: EB 1:2 ,• AE:CD 1:3 ,AEF 与 CDF 的周长的比是1: 3.S1又(—)2,S AEF 6(cm 2) ,••• S CDF 54(cm 2).S CDF 3BA CA例3分析 由于 ABD s ACE ,贝U BAD CAE ,因此 BAC DAE ,如果再进一步证明,则AD AE问题得证.证明■/ ABD s ACE , • BAD CAE . 又BA BADDAC ,•DAEDACCAE ,• BACDAE.AB ACABD s ACEAD AE在ABC 和ADE中,BACABADE,- AC • ABC s ADEAD AE例4 .分析 (1) 不正确,因 困为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同 (2 )也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同.(3)正确.设有等腰直角三角形 ABC 和ABC ,其中 C C 90 ,则 A A 45 , B B 45 ,设 ABC 的三边为a 、b 、c , ABC 的边为a 、b 、c , 贝y a b, c , 2a, a b , c , 2a ,ABC s ABC .(4)也正确,如 ABC 与 ABC 都是等边三角形,对应角相等,对应边都成比例,答:(1)、(2)不正确.(3)、(4)正确.画法略. 例6 .分析初三(下)相似三角形 121121初三(下)相似三角形又DF 60厘米 0.6米,GF 12厘米 0.12米,EC 30米,二BC 6米•即电线杆的高为 6米. 例7•分析 根据物理学定律:光线的入射角等于反射角,这样,BCA 与 MNA 的相似关系就明确了.解因为 BC CA,MN AN, BACMAN ,所以 BCA s MNA •所以 MN:BC AN: AC ,即 MN :1.6 20:1.5 •所以 MN 1.6 20 1.5 21.3 (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例&分析 这两个图如果不是画在格点中,那是无法判断的•实际上格点无形中给图形增添了条件一一长度和角度.解 在格点中DE EF, AB BC ,所以 E B 90 , 又EF 1,DE 2, BC 2, AB 4 •所以 史 兰 -•所以AB BC 2说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.ABC 不相似;(3)因为B B , AB BC 2,所以 AB BC 1ABC 相似于ABC例 10.解(1) ADE s ABC 两角相等;(2)ADE s ACB 两角相等;(3)CDE s CAB 两角相等;(4) EAB s ECD 两边成比例夹角相等;(5) ABD s ACB 两边成比例夹角相等;(6)ABD s ACB 两边成比例夹角相等. 例 11 .分析有一个角是65°的等腰三角形,它的底角是72°, 而BD 是底角的平分线,••• CBD 36,则可推出ABC s BCD ,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 A 36 , AB AC , • ABC C 72 .又 BD 平分ABC ,•• ABD CBD 36 .•- AD BDBC ,且 ABC s BCD ,• B C:AB CD:BC , •• BC 2 AB CD , •• AD 2 AC CD说明(1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等 的角的位置,可以确定哪些边是对应边.adha(2)要说明线段的乘积式 ab cd ,或平方式a 2 be ,—般都是证明比例式,,或 ,再根据c b a c比例的基本性质推出乘积式或平方式.例12分析 由 ABC 的三边长可以判断出 ABC 为直角三角形,又因为 ABC s ABC ,所以 ABC 也是直角 三角形,那么由 ABC 的最大边长为26,可以求出相似比,从而求出 AB C 的两条直角边长,再求得 ABC 的 面积. 解设ABC 的三边依次为,BC 5, AC 12, AB13,则 AB 2 BC 2 AC 2, •• C 90BCACAB 13 1又ABC s ABC , •CC 90 .BCACA B 26 2又BC5, AC 12 ,• BC10, AC 24.•- S 1 AC1B C 24 10120 .22例13•分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高•按这种测量方法,过 F作FG AB 于G ,交CE 于H ,可知 AGF s EHF ,且GF 、HF 、EH 可求,这样可求得 AG ,故旗杆AB 可求.解 这种测量方法可行•理由如下:DEF s ABC •例9 .解(1)因为AB AB(2)因为 C 1803.5cm 1 BC 2.5cm 1 CA 24.5cm 7 , BC17.5cmT CAA B 41,两个三角形中只有A 4cm 1,所以 ABC s ABC ;28cm 7A ,另外两个角都不相等,所以ABC 与设旗杆高AB x •过F作FG AB于G,交CE于H (如图)•所以AGF s EHF •因为FD 1.5,GF 27 3 30,HF 3,所以EH 3.5 1.5 2,AG x 1.5 •初三(下)相似三角形121121AG GF x 1.5 由 AGF s EHF ,得,即-EH HF所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行.以厶ABC 是直角三角形.由AEGF 是正方形,设 GF = x ,贝U FC = 2 — x .AC = 2,^ ABC 是等腰三角形,作 CP 丄AB 于P ,「. AP = 1AB 、3 ,2x•/ GH // AB ,「.A CGH CBA , v ——2』3 2 32 3、2―…SiE 方形 GFEH ( _) 1 2,3 1 2、3- 156因此,正方形的面积为 126-.3或15614.解:ADB EDC,ABC ECD 90 ABD sECD, AB翌AB CD BD CDEC15.答案:AB1506米,BD 30750步,(注意:120 5060KC 匹 CD100 (米),答:两岸间AB大致相距100米.AK,KE 岸 AK.) 那么有两种情况存在,即点16.分析:要求 BC 的延长线上,所以求 BC 的长时要分两种情况讨论•求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由 AD 丄BC ,由勾股定理得 BD = 3, DC = 1,所以 如下图,同理可求 BD = 3, DC = 1,所以BC = BD — CD = 3— 1 = 2.BC 的长,需画图来解,因 AB 、AC 都大于高AD ,D 在BC 上或点D 在BC = BD + DC = 3 + 1 = 4.(2)如下图,由题目中的图知 16 , BC 2 16 , ••• AB 2 AC 2 BC 2 •所GF •/ GF // AB ,「.-AB AC ,即 ^3 宁S正方形AEGF12 63 .在Rt △ APC 中,由勾股定理得30,所以 x 1.520,解得 x 21.53(米) 如下图,当BC = 2, 156 48 348. 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 20 数学好题难题精选 分式: 一:如果abc=1,求证11aab+11bbc+11cac=1 解:原式=11aab+aababca+ababcbcaab2 =11aab+aaba1+abaab1 =11aabaab =1
二:已知a1+b1=)(29ba,则ab+ba等于多少?
解:a1+b1=)(29ba
abba=)(29ba
2(ba)2=9ab 22a+4ab+22b=9ab 2(22ba)=5ab
abba22=25
ab+ba=25
三:一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水。向容器中注满水的全过程共用时间t分。求两根水管各自注水的速度。 解:设小水管进水速度为x,则大水管进水速度为4x。 由题意得:txvxv82 2 / 20
解之得:tvx85 经检验得:tvx85是原方程解。 ∴小口径水管速度为tv85,大口径水管速度为tv25。 五:已知M=222yxxy、N=2222yxyx,用“+”或“-”连结M、N,有三种不同的形式,M+N、M-N、N-M,请你任取其中一种进行计算,并简求值,其中x:y=5:2。
解:选择一:22222222()()()xyxyxyxyMNxyxyxyxyxy,
当x∶y=5∶2时,52xy,原式=572532yyyy. 选择二:22222222()()()xyxyxyyxMNxyxyxyxyxy, 当x∶y=5∶2时,52xy,原式=532572yyyy. 选择三:22222222()()()xyxyxyxyNMxyxyxyxyxy, 当x∶y=5∶2时,52xy,原式=532572yyyy. 反比例函数: 一:一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E”图案如图1所示.小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示: (1)求y与x之间的函数关系式; (2)“E”图案的面积是多少? 3 / 20
(3)如果小矩形的长是6≤x≤12cm,求小矩形宽的范围. 关系式为xky 解:(1)设函数
∵函数图象经过(10,2) ∴102k ∴k=20, ∴xy20 (2)∵xy20 ∴xy=20, ∴2162022162xySSE正 (3)当x=6时,310620y 当x=12时,351220y ∴小矩形的长是6≤x≤12cm,小矩形宽的范围为cmy31035 二:是一个反比例函数图象的一部分,点(110)A,,(101)B,是它的两个端点. (1)求此函数的解析式,并写出自变量x的取值范围; (2)请你举出一个能用本题的函数关系描述的生活实例. 解:(1)设kyx,(110)AQ,在图象上,101k,即11010k, 10yx,其中110x≤≤;
(2)答案不唯一.例如:小明家离学校10km,每天以km/hv的速度去上学,那么小明从家去学校所需的时间10tv. 三:如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数1yx的图象上,则图中阴影部分的面积等于 .
1 1 10
10 A B O x
y 4 / 20
答案:r=1 S=πr²=π
四:如图11,已知正比例函数和反比例函数的图像都经过点M(-2,1-),
且P(1-,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式; (2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说
明理由; (3)如图12,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
解:(1)设正比例函数解析式为ykx,将点M(2,1)坐标代入得12k=,所以正比例函数解析式为12yx= 同样可得,反比例函数解析式为2yx= (2)当点Q在直线DO上运动时, 设点Q的坐标为1()2Qmm,,
于是211112224OBQSOBBQmmm△=?创=,
ABOx
y
图xyBAO
M
Q
P图
x
yBCAO
MP
Q5 / 20
而1(1)(2)12OAPS△=-?=, 所以有,2114m=,解得2m 所以点Q的坐标为1(21)Q,和2(21)Q,-- (3)因为四边形OPCQ是平行四边形,所以OP=CQ,OQ=PC, 而点P(1,2)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值.
因为点Q在第一象限中双曲线上,所以可设点Q的坐标为2()Qnn,,
由勾股定理可得222242()4OQnnnn=+=-+, 所以当22()0nn-=即20nn-=时,2OQ有最小值4, 又因为OQ为正值,所以OQ与2OQ同时取得最小值, 所以OQ有最小值2. 由勾股定理得OP=5,所以平行四边形OPCQ周长的最小值是 2()2(52)254OPOQ+=+=+.
五:如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点8,与反比例函数y一罟在第一象限的图象交于点c(1,6)、点D(3,x).过点C作CE上y轴于E,过点D作DF上X轴于F. (1)求m,n的值; (2)求直线AB的函数解析式;
勾股定理: 一:清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,•西安发现了6 / 20
他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,•设其面积为S,则第一步:6S=m;第二步:m=k;第三步:分别用3、4、5乘以k,得三边长”. (1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长; (2)你能证明“积求勾股法”的正确性吗?请写出证明过程.
解:(1)当S=150时,k=m=1502566S=5, 所以三边长分别为:3×5=15,4×5=20,5×5=25; (2)证明:三边为3、4、5的整数倍, 设为k倍,则三边为3k,4k,5k,• 而三角形为直角三角形且3k、4k为直角边.
其面积S=12(3k)·(4k)=6k2,
所以k2=6S,k=6S(取正值), 即将面积除以6,然后开方,即可得到倍数. 二:一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依
次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( ) A.第4张 B.第5张 C.第6张 D.第7张 答案:C 三:如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A处
目测得点A 与甲、乙楼顶BC、刚好在同一直线上,且A与B相距350米,若小明的身高忽略不计,则乙楼的高度是 米. 7 / 20
答案:40米 四:恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名
的恩施大峡谷()A和世界级自然保护区星斗山()B位于笔直的沪渝高速公路X同侧,50kmABA,、B到直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP与直线X垂直,垂足为P),P到A、B的距离之和
1SPAPB,图(2)是方案二的示意图(点A关于直线X的对称点是A,连接BA
交直线X于点P),P到A、B的距离之和2SPAPB. (1)求1S、2S,并比较它们的大小; (2)请你说明2SPAPB的值为最小; (3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.
解:⑴图10(1)中过B作BC⊥AP,垂足为C,则PC=40,又AP=10, ∴AC=30 在Rt△ABC 中,AB=50 AC=30 ∴BC=40
∴ BP=24022BCCP
S1=10240 ⑵图10(2)中,过B作BC⊥AA′垂足为C,则A′C=50, 又BC=40
∴BA'=4110504022
B A P X 图(1)
Y X B A Q
P O 图(3)
B A P X A
图(2)
20乙 C
B A 甲
10
?
20