钢构焊缝计算(受力)
焊缝抗剪强度计算

5.7 焊缝连接计算
5.7.1一般高耸结构不承受疲劳动力荷载,按等强设计工厂焊缝宜采用熔透的二级对接焊缝。
二级及以上对接焊缝按国家现行标准《建筑钢结构焊接技术规程》JGJ81要求做无损探伤,三级对接焊缝和角焊缝做外观检查。
对于安全等级为一级的高耸结构或承受疲劳动力荷载的高耸结构,其焊缝等级应提高一级。
5.7.2承受轴心拉力或压力的对接焊缝强度应按下式计算:
式中N――作用在连接处的轴心拉力或压力;
ιw――焊缝计算长度(mm),未用引弧板施焊时,每条焊缝取实际长度减去2t(mm);
5.7.3承受剪力的对接焊缝剪应力应按下式验算:
5.7.4承受弯矩和剪力的对接焊缝,应分别计算其正应力σ和剪应力τ,并在同时受有较大正应力和剪应力处,按下式计算折算应力:
5.7.5角焊缝在轴心力(拉力、压力或剪力)作用下的强度应按下式计算:
5.7.6角焊缝在非轴心力或各种力共同作用下的强度应按下式计算:
式中σf――按焊缝有效截面计算、垂直于焊缝长度方向的应力(N/mm2) ――按焊缝有效截面计算、沿焊缝长度方向的应力(N/mm2)。
5.7.7圆钢与钢板(或型钢)、圆钢与圆钢的连接焊缝抗剪强度应按下式计算:
5.8 螺栓连接计算
5.9 法兰盘连接计算。
钢结构工程焊缝厚度计算方法

钢结构工程焊缝厚度计算方法一、全焊透的对接焊缝及对接与角接组合焊缝全焊透的对接焊缝及对接与角接组合焊缝,采用双面焊时,反面应清根后焊接,其焊缝计算厚度h e,对于对接焊缝,应为焊接部位较薄的板厚;对于对接与角接组合焊缝(见图3-7),其焊缝计算厚度h e应为坡口根部至焊缝两侧表面(不计余高)的最短距离之和;采用加衬垫单面焊,其焊缝计算厚度he应为坡口根部至焊缝表面(不计余高)的最短距离。
图3-7全焊透的对接与角接组合焊缝计算厚度he二、部分焊透对接焊缝及对接与角接组合焊缝部分焊透对接焊缝及对接与角接组合焊缝,其焊缝计算厚度he(见图3-8)应根据不同的焊接方法、坡口形式及尺寸、焊接位置对坡口深度h进行折减,并应符合表3-11的规定。
图3-8部分焊透的对接焊缝及对接与角接组合焊缝计算厚度表3-11部分焊透的对接焊缝及对接与角接组合焊缝计算厚度续表3-11V形坡口α≥60°及U形、J形坡口,焊缝计算厚度he应为坡口深度h。
三、搭接角焊缝及直角角焊缝计算厚度搭接角焊缝及直角角焊缝计算厚度he(见图3-9)应按下列公式计算(塞焊和槽焊焊缝计算厚度he可按角焊缝的计算方法确定):(1)当间隙b≤1.5时:(2)当间隙1.5<b≤5时:图3-9直角角焊缝及搭接角焊缝计算厚度四、斜角角焊缝计算厚度斜角角焊缝计算厚度he,应根据两面角Ψ按下列公式计算:(1)Ψ=60°~135°[见图3-10(a)、(b)、(c)]:当间隙b、b1或b2≤1.5时:当间隙1.5<b、b1或b2≤5时:式中:Ψ——两面角;hf——焊脚尺寸(mm);b、b1或b2——焊缝坡口根部间隙(mm)。
(2)30°≤Ψ<60°[图3-10(d)]:将公式(3-3)和公式(3-4)所计算的焊缝计算厚度he减去折减值z,不同焊接条件的折减值z应符合表3-12的规定。
图3-10斜角角焊缝计算厚度Ψ—两面角;b、b1或b2—根部间隙;hf—焊脚尺寸;he—焊缝计算厚度;z—焊缝计算厚度折减值表3-1230°≤Ψ<60°时的焊缝计算厚度折减值z(3)Ψ<30°:必须进行焊接工艺评定,确定焊缝计算厚度。
钢结构角焊缝强度计算与匹配分析

N w
=
βf
f
w f
he
lw
。
母材可承受拉力为 :
NB
=
f
B u
lB
t
式中
f
B u
———母材屈服抗拉强度设计值 ;
t ———母材承力截面厚度较小值 ;
lB ———母材承力截面宽度 。
采用等强度设计时 ,焊缝承受载荷能力与母材
相等 N w = NB , 可得
钢结构角焊缝强度计算与匹配分析 ———王 庆 ,等
Abstract :The strengt h of fillet welding joint is related not only to t he fillet weld size ,but also depends on t he base metal strengt h matching1 The influences of strengt h matching on fillet weld were analyzed1 The relationships among fillet weld size ,t hickness of base metal and matching coefficient of strengt h were established1 The results may be a references for design strengt h and calculation of steel structures1 Keywords :fillet weld strengt h design matching
图 2 角焊缝受力分析
σ2⊥+ 3 (τ2⊥+ τ2∥)
≤
3
钢结构计算题(焊接、螺栓连接、稳定性)

Q235用。
由于翼缘处的剪应力很小,假定剪力全部由腹板的竖向焊缝均匀承受,而弯矩由整个T 形焊缝截面承受。
分别计算a 点与b 点的弯矩应力、腹板焊缝的剪应力及b 点的折算应力,按照各自应满足的强度条件,可以得到相应情况下焊缝能承受的力F i ,最后,取其最小的F 值即为所求。
1.确定对接焊缝计算截面的几何特性 (1)确定中和轴的位置()()()()8010102401020160)10115(1010240510201601≈⨯-+⨯-+⨯⨯-+⨯⨯-=ymm160802402=-=y mm(2)焊缝计算截面的几何特性()623231068.22)160115(230101014012151602301014023010121mm I x ⨯=-⨯⨯+⨯⨯++-⨯⨯+⨯⨯=腹板焊缝计算截面的面积:230010230=⨯=w A mm 22.确定焊缝所能承受的最大荷载设计值F 。
将力F 向焊缝截面形心简化得:F Fe M 160==(KN·mm) F V =(KN )查表得:215=w c f N/mm 2,185=w t f N/mm 2,125=wv f N/mm 2点a 的拉应力M a σ,且要求M a σ≤wt f 18552.01022688010160431===⨯⨯⨯==w t x M af F F I My σ N/mm 2 解得:278≈F KN点b 的压应力Mb σ,且要求Mb σ≤wc f 215129.110226816010160432===⨯⨯⨯==wc x Mbf F F I My σ N/mm 2 解得:5.190≈F KN由F V =产生的剪应力V τ,且要求V τ≤wV f125435.010231023===⨯⨯=wV V f F F τ N/mm 2 解得:7.290≈F KN点b 的折算应力,且要求起步大于1.1wt f ()()()w t V M bf F F 1.1435.03129.132222=⨯+=+τσ解得:168≈F KN缝的距离不相等,肢尖焊缝的受力小于肢背焊缝的受力,又题中给出了肢背、肢尖焊缝相同的长度和焊脚尺寸,所以,只要验算肢背焊缝的强度,若能满足,肢尖焊缝的强度就能肯定满足。
第八章(焊缝、螺栓连接)--钢结构习题参考解答

8.4 有一工字形钢梁,采用I50a (Q235钢),承受荷载如图8-83所示。
F=125kN ,因长度不够而用对接坡口焊缝连接。
焊条采用E43型,手工焊,焊缝质量属Ⅱ级,对接焊缝抗拉强度设计值2205/w t f N mm =,抗剪强度设计值2120/w v f N mm =。
验算此焊缝受力时是否安全。
图8-83 习题8.4解:依题意知焊缝截面特性:A=119.25cm 2,Wx =1858.9cm 3,Ix=46472cm 4,Sx=1084.1cm 3,截面高度h=50cm ,截面宽度b=158mm ,翼缘厚t=20mm ,腹板厚tw=12.0mm 。
假定忽略腹板与翼缘的圆角,计算得到翼缘与腹板交点处的面积矩S 1=20×158×(250-10)=7.584×105mm 3。
对接焊缝受力:125V F kN ==;2250M F kN m =⨯=⋅ 焊缝应力验算:最大正应力:622325010134.5/205/1858.910w t x M N mm f N mm W σ⨯===<=⨯ 最大剪应力:33224125101084.11024.3/120/464721012w x v x w VS N mm f N mm I t τ⨯⨯⨯===<=⨯⨯ 折算应力:22127.2/205/w zs t N mm f N mm σ=<= 故焊缝满足要求。
8.5 图8-84所示的牛腿用角焊缝与柱连接。
钢材为Q235钢,焊条用E43型,手工焊,角焊缝强度设计值2f 160/w f N mm =。
T=350kN ,验算焊缝的受力。
图8-84 习题8.5 图8-84-1 焊缝截面计算简图解:(注:焊缝上下翼缘长度114mm 有些问题,应取2130210110l tmm -=-⨯=,黄钜枝06年6月19日)如图8-84-1,截面特性计算如下:2(11425242882)0.75667.2f A h mm =⨯+⨯+⨯⨯= 228820.73225.6w f A h mm =⨯⨯=32741288288[2882114(16)252()4]0.77.913101222f f I h mm =⨯⨯+⨯+⨯+⨯⨯⨯=⨯焊缝受力:247.52N kN ==;247.52V kN ==; 49.5M V e kN m =⋅=⋅ 应力验算:危险点为a 、b 两点,下面分别验算: 对a 点: 32247.51043.67/5667.2N aN N mm A σ⨯===62749.510160100.09/7.91310M a af My N mm I σ⨯⨯===⨯ 2243.67100.09143.76/195.2/N Mw a a f f N mm f N mm σσβ+=+=<=对b 点:32247.51076.73/3225.6V bw V N mm A τ⨯=== 243.67/N Nb a N mm σσ==62749.51014490.16/7.91310M b bf My N mm I σ⨯⨯===⨯22133.87/160/w f N mm f N mm =<=故焊缝强度满足要求。
钢结构的计算公式

钢结构的计算公式钢结构的计算公式一、引言钢结构是一种常用的建筑结构,其计算公式的准确性对于结构的安全性至关重要。
本文将详细介绍钢结构计算公式的相关知识,包括受力分析、强度计算、刚度计算等方面。
二、受力分析1. 桁架结构受力分析在桁架结构中,每个节点上受力平衡是关键,根据受力平衡可以得到节点处的受力方程。
常用的计算公式有:- 节点受力平衡方程- 钢材弹性变形计算公式2. 悬挑梁结构受力分析在悬挑梁结构中,梁的自重、外部荷载等都需要考虑在内,可以通过以下公式计算受力情况:- 悬挑梁的自重计算公式- 外部荷载引起的受力计算公式三、强度计算1. 杆件强度计算钢结构中的杆件需要满足一定的强度要求,常用的强度计算公式有:- 杆件抗弯强度计算公式- 杆件抗压强度计算公式- 杆件抗剪强度计算公式2. 连接件强度计算连接件承担着钢结构中的力传递任务,常用的强度计算公式有:- 螺栓连接的强度计算公式- 焊缝连接的强度计算公式四、刚度计算1. 杆件刚度计算杆件的刚度对于结构的整体性能起到重要作用,在计算杆件刚度时,可以使用以下公式:- 杆件弹性模量的计算公式- 杆件截面惯性矩的计算公式2. 连接件刚度计算连接件的刚度影响着结构的整体刚度,常用的刚度计算公式有:- 螺栓连接的刚度计算公式- 焊缝连接的刚度计算公式五、结论以上是钢结构计算公式的详细介绍,通过对受力分析、强度计算和刚度计算等方面的公式应用,可以准确计算钢结构的力学性能。
在实际工程中,应根据具体情况选择适当的公式进行计算。
【附件】本文档所涉及附件如下:1. 结构荷载计算表2. 钢材强度参数表3. 连接件强度参数表【法律名词及注释】本文档所涉及的法律名词及注释如下:1. 施工安全法:指施工现场的安全管理法规和详细实施细则。
2. 建筑法:指涉及建筑工程规范性文件的法律。
焊缝强度(计算书)
完全焊透的对接焊缝和T形连接焊缝设计计算书Ⅰ.设计依据:《钢结构设计手册上册》(第三版)《钢结构设计规范》 GB 50017-2003Ⅱ.计算公式和相关参数的选取方法一、焊缝质量等级的确定方法:焊缝应根据结构的重要性、荷载特性、焊缝形式、工作环境以及应力状态等情况,按下述原则分别选用不同的质星等级:1在需要进行疲劳计算的构件中,凡对接焊缝均应焊透,其质缝等级为:1)作用力垂直于焊缝长度方向的横向对接焊缝或T形对接与角接组合焊缝,受拉时应为一级,受压时应为二级;2)作用力平行于焊缝长度方向的纵向对接焊缝应为二级。
2不需要计算疲劳的构件中,凡要求与母材等强的对接焊缝应予焊透,其质量等级当受拉时应不低于二级,受压时宜为二级。
3重级工作制和起重量Q≥50t的中级工作制吊车梁的腹板与上翼缘之间以及吊车衔架上弦杆与节点板之间的T形接头焊缝均要求焊透,焊缝形式一般为对接与角接的组合焊缝.其质量等级不应低于二级。
4不要求焊透的T形接头采用的角焊缝或部分焊透的对接与角接组合焊缝,以及搭接连接采用的角焊缝,其质量等级为:1)对直接承受动力荷载且需要验算疲劳的结构和吊车起重量等于或大于50 t的中级工作制吊一车梁,焊缝的外观质量标准应符合二级;2)对其他结构,焊缝的外观质量标准可为三级。
——(GB50017—2003 7.1.1)二、焊缝连接计算公式1、完全焊透的对接接头和T形接头焊缝计算公式1)在对接接头和T形接头中,垂直于轴心拉力或轴心压力的对接焊缝或对接与角接组合焊缝,其强度应按下式计算:拉应力或压应力:c t wf f tl 或≤=σ ( GB 50017-2003 7.1.2 -1) 参数:N ——轴心拉力和轴心压力(N );w l——焊缝计算长度,为设计长度减2t (有引弧板时可不减)(mm ); t ——对接接头中连接件的较小厚度;T 形接头中为腹板的厚度(mm );w c w t f f 、——对接焊缝的抗拉、抗压强度设计值(查表2-5可得)(N/mm 2);2)在对接接头和T 形接头中,承受弯矩和剪力共同作用的对接焊缝或对接与角接组合焊缝,其正应力和剪应力应分别进行计算。
《钢结构设计原理》3-1 钢结构的连接-焊缝连接
8
3.1.3 螺栓连接 普通螺栓连接和高强度螺栓连接两种。 1 普通螺栓连接 普通螺栓分为A、B、C三级。 A与B级为精制螺栓,C级为粗制螺栓。 A级和B级螺栓材料性能等级则为5.6级或8.8级。 C级螺栓材料性能等级为4.6级或4.8级。 小数点前面的数字表示螺栓成品的抗拉强度不 小于400N/mm2,小数点及小数点以后数字表示 其屈强比为0.6或0.8。
焊件常需做成坡口,焊缝金属填充在坡口内。
坡口形式与焊件厚度有关:
焊件厚度很小(小于等于10mm):直边缝。
一般厚度(t=10~20mm) :具有斜坡口的单边V形或V形焊
缝。
斜坡口和离缝b共同组成一个焊条能够运转的施焊空间,
使焊缝易于焊透;钝边p有托住熔化金属的作用。
较厚的焊件(t>20mm),则采用U形、K形和X形坡口。 V形缝和U形缝需对焊缝根部进行补焊。
16
3.2焊缝和焊接连接形式
3.2.2 焊接连接的形式
1.焊接连接形式
被连接板件的相互位置:对接、搭接、T形连接和角部
连接四种。
连接所采用的焊缝主要有坡口焊缝和角焊缝。
对接连接:主要用于厚度相同或接近相同的两构件的
相互连接。
采用对接焊缝,两构件在同一平面内,传力均匀平缓,
没有明显的应力集中,用料经济,但是焊件边缘需要
围焊缝 正面、侧面、斜焊缝组成的混合焊缝。
2021年8月30日
第六届全国混凝土结构基本理论及 工程应用学术会议
25
侧面角焊缝 主要承受剪 应力,塑性较好,弹性模 量低,强度也较低。
传力线通过时产生弯折, 应力沿焊缝长度方向的分 布不均匀,呈两端大而中 间小的状态。
焊缝越长,应力分布不均 匀性越显著,但在届临塑 性工作阶段时,产生应力 重分布,可使应力分布的 不均匀现象渐趋缓和。
钢结构连接与受力的分析
则有
f z /2 f y /2 2 3 f y /2 f z /2 2 f 2 z 3 ff w
可得角焊缝计算的基本公式为
2(
3
f2x
f2y
fx
fy)f2z ffw
➢仅有平行于焊缝长度方向的轴心力时
fN/(he lw )ffw
钢结构连接与受力的分析
➢仅有垂直于焊缝长度方向的轴心力时
钢结构连接与受力的分析
2 角焊缝计算的基本公式
23( 2/2/) 3ffw
N fxfx A e ,V fyfy A e ,V fzfzA e
A e N f x /2 + N f y /2f x A e/2 f y A e/2
钢结构连接与受力的分析
fx/ 2fy/ 2
fy/ 2fx/ 2, // fz
钢结构连接与受力的分析
3、螺栓群的内力计算
a.螺栓在轴心力作用下的抗剪计算
轴力通过螺栓群的形心,内力均匀分布
➢ 螺栓数目
n
N/
Nb min
➢ 板件净截面强度
N/An f
➢ 净截面面积和受力
并列(图a)
N1=N; N2 =N-(n1/n) N ;N3 = N- (n1+n2)/n N 对被连接板:An=t (b-n1d0) 对拼接板: An =2t1 (b-n3d0)
长度,以便揭示焊缝内部缺陷
➢ 强度折减:
高空安装焊缝,强度设计值乘以0.9
钢结构连接与受力的分析
4 焊缝连接型式及焊缝型式 ➢ 连接型式
平接、搭接、T形连接和角接
钢结构连接与受力的分析
➢ 连接型式
对接焊缝和角焊缝
钢结构连接与受力的分析
正面角焊缝 侧面角焊缝 连续角焊缝 断续角焊缝
3.3.1焊缝计算Ⅰ
0 序言焊接接头静载强度校核的基本理论基础是《材料力学》;构件的基本载荷形式是“拉、压、扭、弯”;焊接接头静载强度校核专业基础是《焊接结构》课程的第三章焊接接头;本课程参考的国际标准是DIN 18800系列标准材料力学强度校核的基本步骤:外力——支反力——内力——应力——许用应力——校核结论求解支反力或内力的基本关系式是建立平衡方程:∑X= 0∑Y= 0∑M= 0求解内力的基本方法是:截面法材料力学校核的基本内容是:承载构件的“强度、刚度、稳定性”。
即,强度条件σMAX≤[σ]τMAX≤[τ]刚度条件λMAX≤[λ] θMAX≤[θ]稳定性条件σMAX≤σc r材料力学中介绍的强度理论:断裂强度理论(1,2)、屈服强度理论(3,4)注意相关术语:焊缝型式≠接头型式例:角焊缝≠角接头对接焊缝≠对接接头四种基本的接头型式:对接接头、T/十字接头、搭接接头、角接接头;接头型式≠坡口型式常见的坡口型式:I V Y U X J K 等。
焊接结构特点与材料力学的对立统一观:焊接结构的特点:①严重的应力集中与几何不连续性材料力学的连续性假设;②较高的残余应力和残余变形;材料力学的各向同性假设;③明显的接头组织和性能不均匀性材料力学的均匀性假设;④较铆接或螺栓连接接头的止裂性差。
从安全性考虑,焊接结构的接头应力求避免:应力集中,几何不连续,性能不均匀,并在低温、冲击载荷条件下,尽量选择韧性好的母材与填充材料。
必要时,应消除残余应力。
1、钢结构设计的相关基础1.1 概述强度校核的基本目的:确定构件的安全性;选择适合的构件形状和截面尺寸;确定载荷大小。
结构的每个受力部件都要进行校核,以保证构件的承载安全、使用的适宜性和位置的安全性。
即强度、刚度和稳定性。
在焊接结构设计时要综合考虑下述问题:——按照种类和质量级别选材;防止冷脆或软化、蠕变现象;——按照静力学计算选择焊缝的尺寸及类型;以保证使用过程的安全性;——按照工艺性确定坡口型式,以获得优良的焊缝质量;——考虑到焊缝检验的可能性;以便进行无损探伤;——考虑防腐方案的实施;以提高构件的使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《钢结构》网上辅导材料二
钢结构的焊接连接
钢结构的连接方法可分为焊缝连接、螺栓连接和铆钉连接三种。
焊接连接是现代钢结构最主要的连接方法。
它的优点是:(1)焊件间可直接相连,构造简单,制作加工方便;(2)不削弱截面,用料经济;(3)连接的密闭性好,结构刚度大;(4)可实现自动化操作,提高焊接结构的质量。
缺点是:(1)在焊缝附近的热影响区内,钢材的材质变脆;(2)焊接残余应力和变形使受压构件承载力降低;(3)焊接结构对裂纹很敏感,低温时冷脆的问题较为突出。
1图1直角角焊缝截面
图2斜角角焊缝截面
角焊缝按其截面形式可分为直角角焊缝和斜角角焊缝。
两焊脚边的夹角为90°的焊缝称为,直角边边长f 称为角焊缝的焊脚尺寸,h e =0.7h f 为直角角焊缝的计算厚度。
斜角角焊缝常用于钢漏斗和钢管结构中。
对于夹角大于135°或小于60°的斜角角焊缝,不宜用作受力焊缝(钢管结构除外)。
2.对接焊缝
对接焊缝的焊件常需加工成坡口,故又叫坡口焊缝。
焊缝金属填充在坡口内,所以对接焊缝是被连接件的组成部分。
坡口形式与焊件厚度有关。
当焊件厚度很小(手工焊≤t 6mm ,埋弧焊≤t 10mm )时,可用直边缝。
对于一般厚度(t=10~20mm )的焊件可采用具有斜坡口的单边V 形或V 形焊缝。
斜坡口和离缝c 共同组成一个焊条能够运转的施焊空间,使焊缝易于焊透;钝边p 有托住熔化金属的作用。
对于较厚的焊件(t >20mm ),则采用U 形、K 形和X 形坡口。
对于V 形缝和U 形缝需对焊缝根部进行补焊。
对接焊缝坡口形式的选用,应根据板厚和施工条件按现行标准《建筑结构焊接规程》的要求进行。
凡T 形,十字形或角接接头的对接焊缝称之为对接与角接组合焊缝。
图3对接焊缝的坡口形式
3
垂直,1(式中t 2计算时,焊脚尺寸取整数。
自动焊熔深较大,可减小1mm ;T 形连接的单面角焊缝,应增加1mm ;当焊件厚度小于或等于4mm 时,则取与焊件厚度相同。
(2)最大焊脚尺寸
1
2.1t h f (2)
式中t 1—较薄焊件的厚度,单位为mm 。
对板件边缘的角焊缝,当板件厚度t >6mm 时,取h f ≤t -(1~2)mm ;当t ≤6mm 时,取h f ≤t 。
图4最大焊角尺寸
(3)角焊缝的最小计算长度
(4(5。
图(6间断角焊缝只能用于一些次要构件的连接或受力很小的连接中。
间断角焊缝的间断距离l 不宜过长,以免连接不紧密。
一般在受压构件中应满足l ≤15t ;在受拉构件中l ≤30t ,t 为较薄焊件的厚度。
图7连续角焊缝和间断角焊缝
(7)减小角焊缝应力集中的措施
杆件端部搭接采用三面围焊时,所有围焊的转角处必须连续施焊。
对于非围焊情况,当角焊缝的端部在构件转角处时,可连续地作长度为2h f 的绕角焊。
2.直角角焊缝强度计算的基本公式
f w f f f f ≤+⎪
⎪⎭
⎫
⎝⎛τβσ22
(3)
式中σf —垂直于焊缝长度方向的应力;
τ
β
f f σ
τf 式中h e l 3(1)承受轴心力作用的角焊缝连接计算 1)采用盖板连接
当轴心力通过连接焊缝中心时,可认为焊缝应力是均匀分布的。
图8承受轴心力的盖板连接
当只有侧面角焊缝时τf =
l h N
w
e f w f
≤ 当只有正面角焊缝时σf =
l h N
w
e f w f
f β≤ 当采用三面围焊时,先计算正面角焊缝所承担的内力∑=11w e w f f l h f N β 式中∑1w l —连接一侧正面角焊缝计算长度的总和。
式中
∑l
2将代入式(3腹杆受轴心力作用,为了避免焊缝偏心受力,焊缝所传递的合力的作用线应与角钢杆件的轴线重合。
图10角钢与节点板的连接
对于三面围焊,可先假定正面角焊缝的焊脚尺寸3f h ,求出正面角焊缝所分担的轴心力3N 。
当腹杆为双角
钢组成的T 形截面,且肢宽为b 时,
3N =2×0.73f h b f βw f f (6)
由平衡条件(
∑M =0)可得:
1N =
b e b N )(--23
N =1k N-2
3N (7)
2N =b Ne -23
N =2k N-2
3N (8)
式中1N 、2N ——角钢肢背和肢尖的侧面角焊缝所承受的轴力;
对双角钢截面式中1f h f h 角焊缝实际长度等于计算长度(绕角焊缝长度2f h 不进入计算)。
当杆件受力很小时,可采用L 形围焊。
由于只有正面角焊缝和角钢肢背上的侧面角焊缝,令2N =0,得:
3N =22k N (13)
1N =N-3N (14)
角钢端部的正面角焊缝的长度已知,可按下式计算其焊脚尺寸:
3f h =
w
f f w f l N β33
7.02⨯(15)
式中,3w l =b -f h 。
(2)承受弯矩、轴心力或剪力共同作用的角焊连连接计算
图A 点应力
剪力N y 在A 点处产生平行于焊缝长度方向的应力
f
τ
=
e
y A N =
w
e y l h N 2
则焊缝的强度计算式为:
当连接直接承受动力荷载作用时,取f β=1.0。
工字形和H 形截面梁(或牛腿)与钢柱翼缘的角焊缝连接,通常承受弯矩M 和剪力V 的共同作用。
计算时通常假设腹板焊缝承受全部剪力,弯矩则由全部焊缝承受。
图12工字形梁(或牛腿)的脚焊缝连接
翼缘焊缝的最大弯曲应力发生在翼缘焊缝的最外纤维处,此应力满足角焊缝的强度条件
1f σ=
w I M ·2
h
≤f βw f f 式中M ——全部焊缝所承受的弯矩;
I w ——全部焊缝有效截面对中和轴的惯性矩。
腹板焊缝承受两种应力的共同作用,即弯曲应力和剪应力,设计控制点为翼缘焊缝与腹板焊缝的交点处A ,此处的弯曲应力和剪应力分别按下式计算:
式中
(∑(31)式中r p I 2
图 ① ② 正比。
图中T
将T τTx T p I r
Ty τ=T τ·cos θ=
p I r T ⨯·r
r x
(19) 由剪力V 在焊缝群引起的剪应力V τ按均匀分布,则在A 点(或A '点)引起的应力Vy τ为
Vy τ=
∑w
e l h V
则A 点受到垂直于焊缝长度方向的应力为:
f σ=Ty τ+Vy τ
沿焊缝长度方向的应力为Tx τ,则A 点的应力满足的强度条件为 当连接直接承受动态荷载时,取βf =1.0。
三、斜角角焊缝的计算
两焊脚边夹角α为o
o
13560≤≤α的T 形接头的斜角角焊缝采用与直角角焊缝相同的计算公式进行计算。
但不考虑焊缝的方向,一律取f β(或θβf )=1.0。
12(
图14钢板拼接图15引弧板
(2)对接焊缝的计算 对接焊缝分焊透和部分焊透两种 1)焊透的对接焊缝的计算
对接焊缝是焊件截面的组成部分,计算方法与构件的强度计算一样。
轴心力作用的对接焊缝
σ=
t
l N
w ≤w t f 或w c f (20)
式中N ——轴心拉力或压力设计值;
l w ——焊缝的计算长度。
当未采用引弧板时,取实际长度减去2t ;
t ——对接接头中为连接件的较小厚度;T 形接头中为腹板厚度;
w t f 、w c f ——对接焊缝的抗拉、抗压强度设计值。
弯矩和剪力共同作用的对接焊缝
对接接头受到弯矩和剪力的共同作用,正应力与剪应力的最大值应分别满足下列强度条件:
σ=
M =M 6≤w f (21) 式中式中2部分焊透的对接焊缝必须在设计图上注明坡口的形式和尺寸。
其强度计算方法与前述直角角焊缝相同,在垂直于焊缝长度方向的压力作用下,取βf =1.22,其他受力情况取βf =1.0。