《利用仰俯角解直角三角形》教案

合集下载

人教版九年级数学下册28.2.2 第2课时 利用仰俯角解直角三角形 导学案

人教版九年级数学下册28.2.2 第2课时 利用仰俯角解直角三角形 导学案

的邻边的对边A A ∠∠28.2.2 应用举例第2课时 利用仰俯角解直角三角形【学习目标】⑴ 使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题. ⑵ 逐步培养学生分析问题、解决问题的能力.⑶ 渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识【学习重点】将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.【学习难点】实际问题转化成数学模型【导学过程】一、自学提纲:1.解直角三角形指什么?2.解直角三角形主要依据什么?(1)勾股定理:(2)锐角之间的关系:(3)边角之间的关系:tanA=二、合作交流:仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.三、教师点拨:例3 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km 的圆形轨道上运行.如图,当飞船运行到地球表面上P 点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P 点的距离是多少?(地球半径约为6 400 km ,结果精确到0. 1 km)斜边的邻边A A ∠=cos 斜边的对边A A ∠=sin例4热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)?四、学生展示:一、课本76页练习第1 、2题五、课堂小结:六、作业设置:课本第78页习题28.2复习巩固第3、4题七、自我反思:本节课我的收获:。

人教版数学九年级下册28.2解直角三角形-仰角、俯角问题教案

人教版数学九年级下册28.2解直角三角形-仰角、俯角问题教案
其次,正切函数的应用是一个教学难点。尽管我在课堂上进行了详细的解释和示例,但仍有学生在计算时感到困惑。这可能是因为他们对正切函数的记忆不够牢固,或者是对角度与正切值之间的关系理解不深。我考虑在下一节课前,设计一些复习活动,如小测验或游戏,来帮助学生巩固这部分知识。
另外,小组讨论和实践活动环节,学生的参与度很高,他们积极讨论,热烈交流,这让我很欣慰。但我也观察到,有些小组在分享成果时表达不够清晰,这可能是他们在整理思路和语言表达上还存在不足。在以后的教学中,我需要加强对学生表达能力的训练,鼓励他们更加自信、条理清晰地表达自己的观点。
(1)通过实际情境引入仰角、俯角的概念;
(2)掌握正切函数的定义,并应用于仰角、俯角问题的求解;
(3)通过例题讲解和练习,让学生熟练运用解直角三角形的方法解决实际生活中的仰角、俯角问题。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,提高数学建模素养;
2.通过对正切函数的运用,增强学生的数学运算和数据分析能力;
五、教学反思
在今天的课程中,我们探讨了解直角三角形中的仰角、俯角问题。我发现学生们在理解仰角、俯角概念上并没有太大困难,他们对于这些新知识充满了好奇。但在实际应用上,特别是在构建直角三角形模型和运用正切函数时,部分学生遇到了一些挑战。
首先,我注意到在案例分析环节,有些学生在确定直角三角形的边长和角度时显得犹豫不决。这说明他们对于如何将实际问题转化为数学模型还不够熟练。在未来的教学中,我需要提供更多的实际例子,让学生有更多的机会去练习和体会这一过程。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解仰角与俯角的基本概念。仰角是我们从水平线向上看时,视线与水平线所形成的角;俯角则是我们从水平线向下看时,视线与水平线所形成的角。它们在测量、建筑等领域有着广泛的应用。

利用仰(俯)角解直角三角形-课件

利用仰(俯)角解直角三角形-课件

4.如图,在一次测量活动中,小华站在离旗杆底部(B 处)6 米 的 D 处,仰望旗杆顶端 A,测得仰角为 60°,眼睛离地面的距离 ED 为 1.5 米.则旗杆 AB 的高度(结果精确到 0.1 米, 3≈1.732) 为_1_1_._9_米__.
5.如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为 45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5 m, 求大树的高度.
A.1200 m
B.1200 2 m
C.1200 3 m D.2400 m
2.(复习题 15 变式)如图,为了测得电视塔的高度 AB,在 D 处
用高为 1 米的测角仪 CD,测得电视塔顶端 A 的仰角为 30°,再向电
视塔方向前进 100 米到达 F 处,又测得电视塔顶端 A 的仰角 60°,
则这个电视塔的高度 AB(单位:米)为( C )
(1)求两建筑物底部之间水平距离 BD 的长度; (2)求建筑物 CD 的高度.(结果保留根号)
解:(1)BD=60 米 (2)CD=(60-20 3)米
11.(2015·天津)如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在 同一条直线上.小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部 B的仰角为42°.已知点D到地面的距离DE为1.56 m,EC=21 m,求旗杆 AB的高度和建筑物BC的高度.(结果保留小数点后一位,参考数据: tan47°≈1.07,tan42°≈0.90)
解:如图,过点 A 作 AE⊥CD 于点 E,过点 B 作 BF⊥CD,交 CD 的延长线于点 F,则四边形 ABFE 为矩形,所以 AB=EF,AE= BF.由题意可知 AE=BF=1100-200=900,CD=19900,在 Rt△AEC 中,∠C=45°,AE=900,∴CE=tanA∠E C=tan94050°=900,在 Rt△ BFD 中,∠BDF=60°,BF=900,∴DF=tan∠BFBDF=tan96000°= 300 3,∴AB=EF=CD+DF-CE=19900+300 3-900=(19000+ 300 3)(米).答:两海岛之间的距离 AB 是(19000+300 3)米

人教版数学九年级下册28.2解直角三角形第二课时利用仰角和俯角解直角三角形说课稿

人教版数学九年级下册28.2解直角三角形第二课时利用仰角和俯角解直角三角形说课稿
课后,我将通过学生的课堂表现、作业完成情况和课后反馈评估教学效果。具体的反思和改进措施包括:根据学生的反馈调整教学方法和内容,针对学生的弱点设计补充练习,以及定期进行自我反思,持续优化教学设计和教学策略。
2.引导发现法:引导学生通过观察、分析、归纳,自主发现直角三角形中边角关系的规律,培养学生的探究能力。
3.互动讨论法:组织学生进行小组讨论,通过生生互动,促进学生之间的交流与合作,共同解决问题。
4.实践应用法:通过设计实际测量问题,让学生在实践中运用所学知识,提高学生的应用能力。
选择这些方法的理论依据是,情境创设法能够激发学生的学习兴趣,引导发现法能够培养学生的探究能力和思维能力,互动讨论法能够促进学生之间的交流与合作,实践应用法则能够将理论知识与实际相结合,提高学生的实际应用能力。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.通过引入生活中的实际例子,如测量高楼的高度、观察物体的俯仰角度等,让学生感受到数学知识的实用性和趣味性。
2.设计互动性强的小组讨论和实践活动,让学生在合作中学习,通过解决问题来体验成功的喜悦。
3.创设竞争性的学习环,如课堂小测验、解题比赛等,激发学生的好胜心,提高学习积极性。
3.教师反馈:对学生的表现和作业进行点评,指出优点和需要改进的地方,并提供具体的建议。
(五)作业布置
课后作业的布置情况如下:
1.布置一些与仰角和俯角相关的练习题,要求学生在规定时间内完成,以巩固课堂所学知识。
2.设计一个实际测量项目,让学生在课后进行实际操作,测量某个物体的高度,并将过程和结果写成报告。
1.创设情境:通过展示一张城市天际线的图片,引导学生观察并提问:“你们注意到建筑物的角度了吗?我们如何测量这些高度?”

人教九年级下册数学- 利用仰俯角解直角三角形导学案

人教九年级下册数学- 利用仰俯角解直角三角形导学案

的邻边的对边A A ∠∠28.2.2 应用举例杭信一中 何逸冬第2课时 利用仰俯角解直角三角形【学习目标】⑴ 使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题. ⑵ 逐步培养学生分析问题、解决问题的能力.⑶ 渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识【学习重点】将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.【学习难点】实际问题转化成数学模型【导学过程】一、自学提纲:1.解直角三角形指什么?2.解直角三角形主要依据什么?(1)勾股定理:(2)锐角之间的关系:(3)边角之间的关系:tanA=二、合作交流:斜边的邻边A A ∠=cos 斜边的对边A A ∠=sin仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.三、教师点拨:例3 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P 点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6 400 km,结果精确到0. 1 km)例4热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)?四、学生展示:一、课本76页练习第1 、2题五、课堂小结:六、作业设置:课本第78页习题28.2复习巩固第3、4题七、自我反思:本节课我的收获:【素材积累】1、2019年,文野1岁那年,买房后第二年,完成了人生中最重要的一次转变。

这一年,他摘心里对自己的定位,从穷人变成了有钱人。

一些人哪怕有钱了,心里也永远甩不脱穷的影子。

2、10月19 日下战书,草埠湖镇核心学校组织全镇小学老师收看了江苏省泰安市洋思中学校长秦培元摘宜昌所作的教训呈文录象。

28.2.2解直角三角形的应用之仰角俯角教案2021-2022学年人教版九年级数学下册

28.2.2解直角三角形的应用之仰角俯角教案2021-2022学年人教版九年级数学下册
学生小组讨论的部分,我感到很欣慰,因为大多数学生都能够积极参与,提出自己的观点。但在引导讨论的过程中,我发现有些问题可能设置得过于开放,导致学生的思考方向过于分散。在未来的教学中,我应该更加精炼问题,使之更具有针对性,帮助学生集中思考。
总的来说,今天的课程达到了预期的教学目标,但我也清楚地看到了改进的空间。我将在接下来的教学中,针对学生的具体情况,调整教学策略,提供更多的辅导和支持,确保每个学生都能真正理解和掌握解直角三角形的应用之仰角与俯角这一章节的内容。
2.解直角三角形在仰角与俯角中的应用:利用锐角三角函数,解决实际生活中与仰角和俯角相关的问题。具体内容包括:
-利用正切函数求解仰角和俯角;
-通过实际案例,让学生学会如何建立直角三角形模型,进而求解仰角和俯角;
-结合图形,让学生直观地理解仰角和俯角与直角三角形各边的关系。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
28.2.2解直角三角形的应用之仰角俯角教案2021-2022学年人教版九年级数学下册
一、教学内容
本节课选自人教版九年级数学下册第28章第2节,主题为“解直角三角形的应用之仰角与俯角”。教学内容主要包括以下两个方面:
1.仰角与俯角的概念:通过实际情境引入仰角与俯角的概念,让学生理解仰角和俯角是如何形成的,以及它们在实际生活中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“仰角与俯角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

28.2.2解直角三角形应用举例教案及反思

四、归纳小结
五、中考链接
1.如图1,一次课外活动中,小李同学在离旗杆AB底部10m远的C处,用测角仪测得旗杆顶部A的仰角为60°,已知CD=1m,则AB=__________m
2.如图2,孔明同学背着一桶水,从山脚A出发,沿与地面成42.4°角的山坡向上走,送水到山上因今年春季受旱缺水的王奶奶家B处,AB=40m,则孔明从A到B上升的高度为__________m. (sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.91)
3.如图3,在△ABC中,∠A=45°,∠B=30°,BC=8,则AB=_____
二、理解定义
引导学生认识仰角、俯角的概念
三、探究新知
例:如图,一架直升飞机驾驶员在一栋高楼AB左侧P点处观测到该楼顶部的仰角为45°,底部俯角为37°,飞机与高楼之间的水平距离200m,这栋楼大约有多高?(sin37°≈cos37°≈,tan37°≈)
3. 如图3,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE,而当光线与地面夹角为45°时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B,F,C在一条直线上)
(1)求教学楼AB的高度;(2)学校要在A,E之间挂一些彩旗,求AE (结果保留整数,参考数据:sin22°≈ ,cos22°≈ ,tan22°≈)
28.2.2解直角三角形应用举例(仰角和俯角)教学设计
陈店中学张媛媛
一、教学目标
(1)知识与技能目标
了解仰角、俯角的概念,能根据直角三角形的知识解决与之有关的测量问题;
(2)过程与方法目标
通过借助辅助线解决实际问题的过程,让学生掌握数形结合、方程、转化等数学思想;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 4 页
28.2.2 应用举例
第2课时 利用仰俯角解直角三角形

1.使学生掌握仰角、俯角的意义,并学会正确地判断;(重点)
2.初步掌握将实际问题转化为解直角三角形问题的能力.(难点)

一、情境导入

在实际生活中,解直角三角形有着广泛的应用,例如我们通常遇到的视线、水平线、铅
垂线就构成了直角三角形.当我们测量时,在视线与水平线所成的角中,视线在水平线上方
的角叫做仰角,在水平线下方的角叫做俯角.今天我们就学习和仰角、俯角有关的应用性问
题.
二、合作探究
探究点:利用仰(俯)角解决实际问题
【类型一】 利用仰角求高度
星期天,身高均为1.6米的小红、小涛来到一个公园,用他们所学的知识测算一
座塔的高度.如图,小红站在A处测得她看塔顶C的仰角α为45°,小涛站在B处测得塔
顶C的仰角β为30°,他们又测出A、B两点的距离为41.5m,假设他们的眼睛离头顶都是
10cm,求塔高(结果保留根号).

解析:设塔高为xm,利用锐角三角函数关系得出PM的长,再利用CPPN=tan30°,求出
x的值即可.

解:设塔底面中心为O,塔高xm,MN∥AB与塔中轴线相交于点P,得到△CPM、△CPN
是直角三角形,则x-(1.6-0.1)PM=tan45°,∵tan45°=1,∴PM=CP=x-1.5.在Rt△CPN
第 2 页 共 4 页

中,CPPN=tan30°,即x-1.5x-1.5+41.5=33,解得x=833+894.
答:塔高为833+894m.
方法总结:解决此类问题要了解角与角之间的关系,找到与已知和未知相关联的直角三
角形.当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
变式训练:见《学练优》本课时练习“课堂达标训练” 第7题
【类型二】 利用俯角求高度
如图,在两建筑物之间有一旗杆EG,高15米,从A点经过旗杆顶部E点恰好看
到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°.若旗杆底
部G点为BC的中点,求矮建筑物的高CD.

解析:根据点G是BC的中点,可判断EG是△ABC的中位线,求出AB.在Rt△ABC和
Rt△AFD中,利用特殊角的三角函数值分别求出BC、DF,继而可求出CD的长度.

解:过点D作DF⊥AF于点F,∵点G是BC的中点,EG∥AB,∴EG是△ABC的中
位线,∴AB=2EG=30m.在Rt△ABC中,∵∠CAB=30°,∴BC=ABtan∠BAC=30×33=

103m.在Rt△AFD中,∵AF=BC=103m,∴FD=AF·tanβ=103×33=10m,∴CD=
AB-FD=30-10=20m.
答:矮建筑物的高为20m.
方法总结:本题考查了利用俯角求高度,解答本题的关键是构造直角三角形,利用三角
函数的知识求解相关线段的长度.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
【类型三】 利用俯角求不可到达的两点之间的距离
如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得
河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河
的宽度AB约是多少m(精确到0.1m,参考数据:2≈1.41,3≈1.73)?

解析:在Rt△ACD中,根据已知条件求出AC的值,再在Rt△BCD中,根据∠EDB=
第 3 页 共 4 页

45°,求出BC=CD=21m,最后根据AB=AC-BC,代值计算即可.
解:∵在Rt△ACD中,CD=21m,∠DAC=30°,∴AC=CDtan30°=2133=213m.∵在

Rt△BCD中,∠EDB=45°,∴∠DBC=45°,∴BC=CD=21m,∴AB=AC-BC=213
-21≈15.3(m).则河的宽度AB约是15.3m.
方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,
把实际问题化归为直角三角形中边角关系问题加以解决.
变式训练:见《学练优》本课时练习“课后巩固提升” 第3题
【类型四】 仰角和俯角的综合
某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB的高,他们来
到与建筑物AB在同一平地且相距12m的建筑物CD上的C处观察,测得此建筑物顶部A
的仰角为30°、底部B的俯角为45°.求建筑物AB的高(精确到1m,可供选用的数据:2
≈1.4,3≈1.7).

解析:过点C作AB的垂线CE,垂足为E,根据题意可得出四边形CDBE是正方形,
再由BD=12m可知BE=CE=12m,由AE=CE·tan30°得出AE的长,进而可得出结论.

解:过点C作AB的垂线,垂足为E,∵CD⊥BD,AB⊥BD,∠ECB=45°,∴四边形
CDBE是正方形.∵BD=12m,∴BE=CE=12m,∴AE=CE·tan30°=12×33=43(m),
∴AB=43+12≈19(m).
答:建筑物AB的高为19m.
方法总结:本题考查的是解直角三角形的应用中仰角、俯角问题,根据题意作出辅助线,
构造出直角三角形是解答此题的关键.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
三、板书设计
1.仰角和俯角的概念;
2.利用仰角和俯角求高度;
3.利用仰角和俯角求不可到达两点之间的距离;
4.仰角和俯角的综合.

备课时尽可能站在学生的角度上思考问题,设计好教学过程中的每一个细节.上课前多
揣摩,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和
第 4 页 共 4 页

失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角.使课堂更加鲜活,
充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步.只有这样,才能
真正提高课堂教学效率.

相关文档
最新文档