2013全国大学生数学建模比赛B题-答案

合集下载

全国大学生数学建模竞赛题目B题

全国大学生数学建模竞赛题目B题

B题公交车调度
公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。

运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

2013全国数学建模竞赛B题优秀论文

2013全国数学建模竞赛B题优秀论文

基于最小二乘法的碎纸片拼接复原数学模型摘要首先对图片进行灰度化处理,然后转化为0-1二值矩阵,利用矩阵行(列)偏差函数,建立了基于最小二乘法的碎纸片拼接数学模型,并利用模型对图片进行拼接复原。

针对问题一,当两个数字矩阵列向量的偏差函数最小时,对应两张图片可以左右拼接。

经计算,得到附件1的拼接结果为:08,14,12,15,03,10,02,16,01,04,05,09,13,18,11,07,17,00,06。

附件2的拼接结果为:03,06,02,07,15,18,11,00,05,01 ,09,13, 10,08,12,14,17,16,04。

针对问题二,首先根据每张纸片内容的不同特性,对图片进行聚类分析,将209张图片分为11类;对于每一类图片,按照问题一的模型与算法,即列偏差函数最小则进行左右拼接,对于没有拼接到组合里的碎纸片进行人工干预,我们得到了11组碎纸片拼接而成的图片;对于拼接好的11张图片,按照问题一的模型与算法,即行偏差函数最小则进行上下拼接,对于没有拼接到组合里的碎纸片进行人工干预。

我们最终经计算,附件3的拼接结果见表9,附件4的拼接结果见表10。

针对问题三,由于图片区分正反两面,在问题二的基础上,增加图片从下到上的裁截距信息,然后进行两次聚类,从而将所有图片进行分类,利用计算机自动拼接与人工干预相结合,对所有图片进行拼接复原。

经计算,附件5的拼接结果见表14和表15该模型的优点是将图片分为具体的几类,大大的减少了工作量,缺点是针对英文文章的误差比较大。

关键字:灰度处理,图像二值化,最小二乘法,聚类分析,碎纸片拼接一、问题重述碎纸片的拼接复原技术在司法鉴定、历史文献修复与研究、军事情报获取以及故障分析等领域都有着广泛的应用。

近年来,随着德国“斯塔西”文件的恢复工程的公布,碎纸文件复原技术的研究引起了人们的广泛关注。

传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

2013年数学建模试卷及答案

2013年数学建模试卷及答案

葡萄酒的评价摘要葡萄酒的评价结果反映了葡萄酒的优劣程度,而葡萄酒的质量是由多种因素综合决定的。

本文综合考虑了评酒员对葡萄酒的品尝评分、酿酒葡萄及葡萄酒的理化指标等因素,建立了相应的数学模型,利用excel软件,C++编程,变量的相关分析及统计学相关知识等对模型求解,并对所得结果分析比较,对葡萄酒进行评价。

针对问题一,根据附件1中两组品酒员对红、白葡萄酒的品尝评分,分别计算出两组品酒员对红、白葡萄酒各酒样品的评分总值及均值,确定出各酒样品的质量。

通过欧式距离公式,计算出两组品酒员的评价结果差异性数据,得出两组品酒员的评价结果都存在显著性差异。

然后通过计算两组品酒员对两种酒的评价总分的方差均值,判断评价结果的稳定性,从而得出第二组的评价结果更可信。

针对问题二,根据附件2中酿酒葡萄和葡萄酒的理化指标,通过聚类算法对红、白两种葡萄进行聚类划分,将酒样品分为4类。

然后根据葡萄酒质量,划分出样品的等级。

再由葡萄酒样品等级,对聚类后的酿酒葡萄进行分级。

针对问题三,根据附件2,可以得出葡萄酒中的一些物质含量相对于葡萄中的一些物质含量有所减少或增加。

在葡萄酒的制作过程中,由于陈酿条件和发酵工艺及条件可能会造成物质的流失,导致酒中物质含量的减少,而葡萄酒中含量相对增加的物质可能是由葡萄中与其不相关的物质转化而形成的。

通过分析葡萄酒中含量增加的指标与葡萄的各理化指标的相关性系数,判断出酿酒葡萄与葡萄酒的理化指标之间的联系。

针对问题四,对葡萄的理化指标与葡萄酒的评价指标进行相关性分析,结合问题三的结论,得出酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响。

根据附件1,可知评价葡萄酒要综合考虑香气、口感等方面,而葡萄和葡萄酒的理化指标主要与口感相关,但并不能决定葡萄酒的质量。

芳香物质与香气有关,在一定程度上也可能会影响葡萄酒的质量。

分别对葡萄和葡萄酒的芳香物质进行聚类分析,将聚类结果与葡萄酒质量等级比较,从而得出结论。

最后,我们就模型存在的不足之处提出了改进方案,并对优缺点进行了分析。

最新高教社杯全国大学生数学建模竞赛b题汇总

最新高教社杯全国大学生数学建模竞赛b题汇总

2013高教社杯全国大学生数学建模竞赛B题车道被占用对城市道路通行能力的影响摘要车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵。

对于问题一,本文提高结果的精准度,结合两种方法进行研究,且两种方法的结果十分吻合。

由于实际通行能力是建立在基本通行能力和可能通行能力之上的,所以在求解实际通行能力之前,需要算出基本通行能力和可能通行能力,针对问题一创建了一张流程图,并借助软件加以拟合。

对实际通行能力计算,得出实际通行能力的变化过程,根据GREENSHIELD K-V线性算法得出道路越堵,车速越慢,则实际通行能力就越差,反之就会较好。

对于问题二,因为所占的车道不同,并且给的条件中有说明左转车流比例和右转车流比例不同,那只需验证两者是否存在显著性差异,运用配对样本t检验的方法就是要先满足这一方法的两个前提条件,首先必须验证是否满足正态分布,经过SPSS软件的验证可以得出符合正态分布。

然后再进行配对,从配对的结果中可以看出存在显著性差异,再结合左右转的车流量比例,更加可以看出存在显著性差异。

对于问题三,主要是对所推出来的回归方程的判断和分析因变量和各因子之间的关系,在本问中要先求出排队长度,排队长度是根据堵塞密度,进出车辆数之间的差值来求解,再根据最小二乘法来判断所假设的这一模型是否符合多元线性回归关系,本问中得出符合多元线性回归关系。

再在排队长度和最小二乘法的基础之上,运用SPSS软件,在进行结果分析时得出实际通行能力对于排队长度没有影响,所以可以剔除,而事故持续时间和上游车流量对排队长度都有明显的影响,然后得出他们的相关系数,求出最后的相关方程式。

对于问题四,题目中给出了事故发生点到上游路口的距离为140米,并且上游车流量为1500pcu/h,结合视频1中多次出现的120米这一个顶点,推算出120米内大概最大的堵塞车流量,然后按比例分配推算出140米的最大堵塞车流量,视频1中的可以通过加权平均来求出平均的实际通行能力,则事故持续时间就是要靠140米的最大堵塞车流量和平均实际通行能力来计算,最后得出事故持续时间为2.37min。

(完整word版)2013年数学建模b题

(完整word版)2013年数学建模b题

精心整理碎纸片的拼接复原【摘要】:碎纸片拼接技术是数字图像处理领域的一个重要研究方向,把计算机视觉和程序识别应用于碎纸片的复原,在考古、司法、古生物学等方面具有广泛的应用,具有重要的现实意义。

本文主要结合各种实际应用背景,针对碎纸机绞碎的碎纸片,基于计算机辅助对碎纸片进行自动拼接复原研究。

针对问题1,依据图像预处理理论,通过matlab程序处理图像,将图像转化成适合于计算机处理的数字图像,进行灰度分析,提取灰度矩阵。

对于仅纵切的碎纸片,根据矩阵的行提取理论,将。

建中的任一列与矩阵值,序列号。

将程序进行循环操作,得到最终的碎片自动拼接结果。

、;分别作为新生成的矩阵、。

,将矩阵中的任一列分别与矩阵中每一列代入模型,所得p值对应的值即为横排序;将矩阵中的任一行分别于矩阵中的任一行代入模型,所得q值对应的值即为列排序。

循环进行此程序,得计算机的最终运行结果。

所得结果有少许误差,需人工调制,更正排列顺序,得最终拼接结果。

针对问题3,基于碎纸片的文字行列特征,采用遗传算法,将所有的可能性拼接进行比较,进行择优性选择。

反面的排序结果用于对正面排序的检验,发现结果有误差,此时,进行人工干预,调换碎纸片的排序。

【关键词】:灰度矩阵欧式距离图像匹配自动拼接人工干预一、问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,大量的纸质物证复原工作都是以人工的方式完成的,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接不但耗费大量的人力、物力,而且还可能对物证造成一定的损坏。

随着计算机技术的发展,人们试图把计算机视觉和模式识别应用于碎纸片复原,开展对碎纸片自动拼接技术的研究,以提高拼接复原效率。

试讨论一下问题,并根据题目要求建立相应的模型和算法:、附件4(1)(2)(3)(4)纸片的自动拼接。

问题1:根据图像预处理理论,通过程序语言将图像导入matlab程序,对图像进行预处理,将碎纸片转换成适合于计算机处理的数字图像形式,并对数字图像进行灰度分析,提取灰度矩阵。

2013年数学建模题目

2013年数学建模题目

2013年数学建模题目
以下是2013年数学建模竞赛题目:
A题:最佳巧克力蛋糕烤盘
题目要求建立一个模型,描述在不同形状烤盘表面热量的分布情况,以及每个烤盘的面积A。

B题:水,水,无处不在
题目要求建立一个数学模型,来确定满足某国未来用水需求的有效的、可行的、低成本的2013年用水计划,并确定最优的淡水分配计划。

模型必须包括储存、运输、淡化和节水等环节。

C题:地球健康的网络建模
题目要求研究与应用模型来预测地球的生物和环境的健康状况。

D题:变循环发动机部件法建模及优化
题目涉及到变循环发动机的基本构造、工作原理、两种工作模式(涡喷模式和涡扇模式),以及变循环发动机部件建模法的燃气涡轮发动机的特性(可以用实验方法和计算方法获得)。

2013全国大学生数学建模竞赛B题


将008代表的矩阵C8的第二列元素与其它矩 阵的第一列元素进行两两匹配。记录元素相 同的个数,个数除以1980为C8矩阵第二列对 其它矩阵第一列的边缘匹配度,记为:
比较这18个数据,最大的即为与008匹配的 碎纸片。然后以所找到的碎纸片的第二列开 始,求出它与其它矩阵第一列的边缘匹配度, 找出最大的,以此类推把19张碎纸片拼接完 成。
三.问题2的分析
英文碎纸片的分析 通过观察可以发现英文字母的主要的 部分拥有同一上界和同一下界,例如:
将图片中每一行中黑色像素数少于13的及 字母的次要部分转变为二值化矩阵中的0, 将每一行中黑色像素大于等于13的及字母 的主要部分转化为二值化矩阵中的1,这样 得到的新的二值化矩阵 。例如图像转变为 如下图的方式:
二.问题1的分析
步骤一:使用matlab中的imread函数 可以做出图片的灰度矩阵 ,读取每 张图片文件的数据,其目的是将附件 中给的 bmp 格式的碎纸片图以灰度 值矩阵的形式存储。再将灰度值矩阵 转化为 0-1 矩阵,来得到模型的数 据基础;
由于该像素图片转换后为
的矩阵,ቤተ መጻሕፍቲ ባይዱ
论文中无法放置,所以仅简单举例说明:
以纸片000与001为例,匹配方式可能为:
将①②的边缘匹配度相加得到边缘匹配度 之和,将③④的边缘匹配度相加得边缘匹 配度之和,两者的和做出比较。若仅有一 个大于等于1.9,则计算机输出该匹配度, 人工判断是否碎纸片是否匹配;若两者均 大于等于1.9,计算机把两个匹配度之和输 出,人工选择判断碎纸片应是否匹配与如 何匹配;若两者均小于1.9,则计算输出最 大者,人工判断碎纸片是否匹配。这样可 以得到一些在同一横行的碎纸片的拼接。
总体思路
三步走:分行,行内排序,行间排序

2013年全国大学生电工杯数学建模竞赛一等奖论文(B题)


%
(1-2b)
化学不完全燃烧热损失是由于烟气中残留有诸如 CO ,H 2 ,CH 4 等可燃气体成分而 未释放出燃烧热就随烟气排出所造成的热损失。 气体不完全燃烧产物为 CO , H 2 , CH 4 等可燃气体,则其热损失应为烟气中各可燃 气体体积与它们的体积发热量乘积的总和。 题中说明过量空气系数对化学不完全燃烧热损失影响较小,故可视为常数处理。所 以,化学不完全燃烧热损失与过量空气系数没有直接关系,故可以假设化学不完全燃烧 热损失 q3 为一常数,即: q3 K (1-3) 5.1.4 机械不完全燃烧热损失 q4 的计算 机械不完全燃烧热损失是由于进入炉膛的燃料中, 有一部分没有参与燃烧或未燃尽 而被排出炉外引起的热损失。论其实质,是包含在灰渣(包括灰渣、漏煤、烟道灰、 飞 灰以及溢流灰、冷灰渣等)中的未燃尽的碳造成的热量的损失。对层燃炉而言,主要由 灰渣、漏煤、和飞灰三项组成。 在实际中因为漏煤的含量相对较少所以本文不考虑漏煤的量,对于运行中的锅炉, 分别收集它的每小时的灰渣和飞灰的质量 Ghz 和 G fh (kg/h) ,同时分析出它们所含可燃 物质的质量百分数 Chz 和 C fh (%)和可燃烧的发热量 Qhz 和 Q fh (kJ/kg)则灰渣和飞灰损
q2 q3 q4 q5 q6 I py
Qgy Qr H Wy Ghz G fh ahz a fh ahz
y
py hz
Ay (c ) hz
hz gl
5.模型的建立和求解
5.1 问题一:确定锅炉运行的最佳过量空气系数 5.1.1 问题的分析 因为 q 2 q3 q 4 先减少后增加,有一个最小值,与此最小值对应的空气系数称为最 佳过量空气系数。 所以首先要求出 q2 、q3 和 q4 的表达式。 然后求得 q 2 q3 q 4 的表达式, 在对这个表达式进行求导,让导数等于 0 这就是最佳过量空气系数。 5.1.2 排烟热损失 q2 的计算 由于技术经济条件的限制,烟气离开锅炉排入大气时,烟气温度比进入锅炉的空气 温度要高得多,排烟所带走的热量损失简称为排烟热损失。 排烟热损失可按如下公式计算[3]: (1-1) Q2 I py pyVk0 (ct ) amb kJ / kg

2013全国大学生数学建模竞赛B题参考答案

2013高教社杯全国大学生数学建模竞赛B题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

本题要求对数据提取合适的特征、建立合理有效的碎纸片拼接复原模型。

可以考虑的特征有邻边灰度向量的匹配、按行或按列对灰度求和、行距等。

关于算法模型,必须有具体的算法过程(如流程图、算法描述、伪代码等)及设计原理。

虽然正确的复原结果是唯一的,但不能仅从学生提供的复原效果来评定学生解答的好坏,而应根据所建的数学模型、求解方法和计算结果(如复原率)三方面的内容做出评判。

另一方面,评判中还需要考虑人工干预的多少和干预时间节点的合理性。

问题1. 仅有纵切文本的复原问题由于“仅有纵切”,碎纸片较大,所以信息特征较明显。

一种比较直观的建模方法是:按照某种特征定义两条碎片间的(非对称)距离,采用最优Hamilton路或最优Hamilton圈(即TSP)的思想建立优化模型。

关于TSP的求解方法有很多,学生在求解过程中需要注意到非对称距离矩阵或者是有向图等特点。

还可能有种种优化模型与算法,只要模型合理,复原效果好,都应当认可。

本问题相对简单,复原过程可以不需要人工干预,复原率可以接近或达到100%。

问题2. 有横、纵切文本的复原问题一种较直观的建模方法是:首先利用文本文件的行信息特征,建立同一行碎片的聚类模型。

在得到行聚类结果后,再利用类似于问题1中的方法完成每行碎片的排序工作。

最后对排序后的行,再作纵向排序。

本问题的解法也是多种多样的,应视模型和方法的合理性、创新性及有效性进行评分。

例如,考虑四邻近距离图,碎片逐步增长,也是一种较为自然的想法。

问题3. 正反两面文本的复原问题这个问题是问题2的继续,基本解决方法与问题2方法相同。

但不同的是:这里需要充分利用双面文本的特征信息。

该特征信息利用得好,可以提升复原率。

在阅卷过程中,可以考虑学生对问题的扩展。

例如,在模型的检验中,如果学生能够自行构造碎片,用以检验与评价本队提出的拼接复原模型的复原效果,可考虑适当加分。

【7A版】2013全国大学生数学建模比赛B题-答案

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:20GG 年9 月13 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文研究的是碎纸片的拼接复原问题。

由于人工做残片复原虽然准确度高,但有着效率低的缺点,仅由计算机处理复原,会由于各类条件的限制造成误差与错误,所以为了解决题目中给定的碎纸片复原问题,我们采用人机结合的方法建立碎纸片的计算机复原模型解决残片复原问题,并把计算机通过算法复原的结果优劣情况作为评价复原模型好坏的标准,通过人工后期的处理得到最佳结果。

面对题目中给出的BMP格式的黑白文字图片,我们使用matlab软件的图像处理功能把图像转化为矩阵形式,矩阵中的元素表示图中该位置像素的灰度值,再对元素进行二值化处理得到新的矩阵。

题目每一个附件中的碎纸片均为来自同一页的文件,所以不需考虑残片中含有未知纸张的残片以及残片中不会含有公共部分。

鉴于残片形状分为“长条形”与“小长方形”,残片内容分为中文、英文,纸张的打印类型分为“单面型”、“双面型”,所以我们根据残片的类型对矩阵做不同处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013全国大学生数学建模比赛B 题-答案2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2013 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文研究的是碎纸片的拼接复原问题。

由于人工做残片复原虽然准确度高,但有着效率低的缺点,仅由计算机处理复原,会由于各类条件的限制造成误差与错误,所以为了解决题目中给定的碎纸片复原问题,我们采用人机结合的方法建立碎纸片的计算机复原模型解决残片复原问题,并把计算机通过算法复原的结果优劣情况作为评价复原模型好坏的标准,通过人工后期的处理得到最佳结果。

面对题目中给出的BMP格式的黑白文字图片,我们使用matlab软件的图像处理功能把图像转化为矩阵形式,矩阵中的元素表示图中该位置像素的灰度值,再对元素进行二值化处理得到新的矩阵。

题目每一个附件中的碎纸片均为来自同一页的文件,所以不需考虑残片中含有未知纸张的残片以及残片中不会含有公共部分。

鉴于残片形状分为“长条形”与“小长方形”,残片内容分为中文、英文,纸张的打印类型分为“单面型”、“双面型”,所以我们根据残片的类型对矩阵做不同处理。

针对问题一中给出的“长条形”碎纸片:对图片转化后的矩阵进行边缘检测,发现每一张图片的两短边在一定范围内全是白色,而仅有2张图片的长边在一定范围内全是白色,说明我们需要对长边进行拼接,一边包含全白的长边是原文件纸张的两端。

由于考虑到模型应用的推广,我们在此问中的模型包含了图片倒置的情况(仅在问题一中考虑倒置情况,鉴于问题二、三中数据量的增多,二三问不再考虑倒置情况),对图片的长边及矩阵中的第一列和最后一列与其他矩阵的第一列和最后一列进行边缘匹配,根据边缘匹配度来确定图片复原,最后若发现拼接效果有偏差,在进行人工操作。

针对问题二中的“小长方形”碎纸片:由于数据量变多,盲目使用问题一中的方法不能保证准确度,所以这里要进一步约束使当前图片与少量图片进行匹配。

观察两种文字的特点,我们可以发现中英文在位置上均有一定的特性,我们利用这种特性将有相同位置特性的碎纸片归类为一组,在问题一方法的基础上做少许修改后代入有相同位置特性的一组碎纸片中,根据边缘匹配度将他们连接、检查并做人工处理可得拼接后的横行纸片,再将横行纸片的长边用同样的方法做边缘匹配可将行与行之间拼接起来,再做人工调整得到最优结果。

通过模型的建立求解过程可以发现中英文在本问题的求解方法中有着一定的不同,英文需要更多地人工判断处理。

针对问题三考虑到双面问题以及问题二中英文碎纸片的情况,我们把碎纸片两面匹配度之和作为判断碎纸片是否连接的评价标准,在问题一方法的基础上,在计算机每一步的匹配结果加以人工选择与判断,这样再次处理得到的结果,可以得到同问题二中一样的横行碎纸片,在根据新的横行碎纸片的两面边缘匹配度之和进行同样的操作处理可以将原纸张拼接复原。

关键词:残片复原 matlab图像处理二值化边缘匹配度倒置情况位置特性人工处理一问题重述B题碎纸片的拼接复原破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。

请讨论以下问题:1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。

2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果表达要求同上。

3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。

附件5给出的是一页英文印刷文字双面打印文件的碎片数据。

请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。

【数据文件说明】(1)每一附件为同一页纸的碎片数据。

(2)附件1、附件2为纵切碎片数据,每页纸被切为19条碎片。

(3)附件3、附件4为纵横切碎片数据,每页纸被切为11×19个碎片。

(4)附件5为纵横切碎片数据,每页纸被切为11×19个碎片,每个碎片有正反两面。

该附件中每一碎片对应两个文件,共有2×11×19个文件,例如,第一个碎片的两面分别对应文件000a、000b。

【结果表达格式说明】复原图片放入附录中,表格表达格式如下:(1)附件1、附件2的结果:将碎片序号按复原后顺序填入1×19的表格;(2)附件3、附件4的结果:将碎片序号按复原后顺序填入11×19的表格;(3)附件5的结果:将碎片序号按复原后顺序填入两个11×19的表格;(4)不能确定复原位置的碎片,可不填入上述表格,单独列表。

二、模型假设①假设题目中的碎纸图片与真实文件纸张大小、颜色、边缘情况相同。

②假设题目中的碎纸照片边缘完整,不存在破损。

③假设所有碎纸片的扫描情况相同。

④假设人工干预后可以得到正确结果。

⑤假设原文件纸张的内容具有意义。

三、符号说明符号符号意义A编号为i的图片的灰度矩阵iB编号为i的图片经二值化处理后的矩阵iC编号为i的图片的二维边缘矩阵iD、'D、''D、'''D边缘匹配度矩阵E编号为i的图片在此处理后的二值化矩阵iF边缘匹配度之和矩阵四、问题分析4.1问题一的分析4.1.1 中文碎纸片的复原分析问题1、2、3附件1、2、3、4、5中的碎纸片均为一份纸张撕裂所得,所以碎纸片中不会存在含有相同信息的公共部分,这里进行强调,下面不再重述。

附件1中所给的图片为[5]扫描原纸张碎片后得到的BMP 格式的图片,图片像素均为198072⨯,使用[1]matlab 中的iamread 函数可以做出图片的灰度矩阵i A ,举例如下(由于该像素图片转换后为198072⨯的矩阵,论文中无法放置,所以仅简单举例说明,论文中若还出现庞大的矩阵,同本说明):255255025522015025500i A ⎛⎫ ⎪= ⎪ ⎪⎝⎭矩阵的中元素表示该位置图片的灰度,255表示为白,0为黑,图片中信息为黑白文字信息,但由于文字信息会存在阴影,所以矩阵中出现了介于0-255的元素。

为了方便应用,并查阅相关资料所得,可以对于本题中的黑白图片做[2]二值化处理,可将上面例子中的i A 转化为如下的矩阵:001011011i B ⎛⎫ ⎪= ⎪ ⎪⎝⎭其中白色用0值表示,非白色用1表示。

将附件1中的19张图片做如上处理得到各自的二值化后的矩阵B i ,矩阵均为198072⨯的矩阵,这里我们分别将每张图片的B i 矩阵第1列和第72列提取出来做一新的二维边缘矩阵C i ,它是19802⨯的矩阵。

通过对所有图片矩阵的分析可以发现C 6、C 8矩阵中均有一列为0,所以可以认为编号为006和008的图片为原完整文件的一端,在做题过程中无需考虑会存在其他白边与白边拼接的情况。

两张图片匹配的原则可以根据下面的图1、图2来表示。

图1.图片未倒置 图2.图片倒置如图1,当图片未出现倒置情况时,即题目中的图片均是正常摆放,将左边矩阵的第二列元素与右边矩阵的第一列元素进行两两匹配。

记录元素相同的个数,个数除以1980为左边矩阵第二列对右边矩阵第一列的边缘匹配度,记为:1980ij D =元素相同的数量 将所有碎纸片的二值化矩阵做如上匹配可依次选取与其匹配的碎纸片。

图1中左边矩阵第一列与右边矩阵第二列匹配的原则与上述相同,不再重述。

如图2,当图片出现倒置情况时,正常情况下应是左边矩阵的第二列元素与右边矩阵的第一列元素进行两两匹配,若倒置后,则应该是左边矩阵的第二列元素与右边矩阵的第二列元素倒置顺序进行比较,同样记录相同元素的个数并计算匹配度。

图2中左边矩阵第一列元素与右边矩阵第一列元素的匹配原则与上述相同,不再重述。

综合图一图二我们可以做出4个边缘匹配度的矩阵,即未倒置时矩阵第一列与其他矩阵第二列的边缘匹配度、未倒置时矩阵第二列与其他矩阵第一列的边缘匹配度、倒置时矩阵第一列与其他矩阵第一列的边缘匹配度、倒置时矩阵第二列与其他矩阵第二列的边缘匹配度。

由于(未)倒置时矩阵第一列与其他矩阵第二列匹配在思想上同(未)倒置时矩阵第二列与其他矩阵第一列匹配相同,所以这里只需考虑其中一种情况即可。

任选其中一例说明,由于碎纸片倒置情况未知,需要考虑未倒置时的情况与倒置式的情况,未倒置时矩阵第一列与其他矩阵第二列的边缘匹配度矩阵第一行最大值与倒置时矩阵第一列与其他矩阵第一列的边缘匹配度第一行的最大值进行比较,选取匹配度大的作为拼接的纸片,即编号为000的碎纸片要与该纸片拼接。

以此类推把19张碎纸片拼接完成后做人工处理。

4.1.2英文碎纸片的复原分析将附件2的19张图片做4.11中处理得到二值化后的矩阵B i ,矩阵均为198072⨯的矩阵,这里我们分别将每张图片的B i 矩阵第1列和第72列提取出来做一新的二维边缘矩阵C i ,它是19802⨯的矩阵。

通过对所有图片矩阵的分析可以发现C 3 、C 4矩阵中均有一列为0,所以可以认为编号为003和004的图片为原完整文件的一端,在做题过程中 无需考虑会存在其他白边与白边拼接的情况。

相关文档
最新文档