2013全国数学建模

合集下载

2013年全国大学生数学建模竞赛B题全国一等奖论文

2013年全国大学生数学建模竞赛B题全国一等奖论文

碎纸片的拼接复原【摘要】破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

本文主要解决碎纸机切割后的碎纸片拼接复原问题。

针对第一问,附件1、2分别为沿纵向切割后的19张中英文碎纸片,本文在考虑破碎纸片携带信息量较大的基础上,利用MATLAB对附件1、2的碎纸片图像分别读入,以数字矩阵的方式进行存储。

利用数字矩阵中包含图像边缘灰度这一特征,本文采用贪心算法的思想,在首先确定原文件左右边界的基础上,以Manhattan距离来度量两两碎纸片边界差异度,利用计算机搜索依次从左往右搜寻最匹配的碎纸片进行横向配对并达成排序目的。

最终,本文在没有进行人工干预,成功地将附件1、2碎纸片分别拼接复原,得到复原图片见附录2.1、2.2,纵切中文及英文结果表分别如下:为先对本文3、第4行及第9Spearman拼接复原1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果以图片形式及表格形式表达。

2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果表达要求同上。

3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。

附件5给出的是一页英文印刷文字双面打印文件的碎片数据。

请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。

二、模型假设1. 假设原题附件给出的破碎纸片图像是完好无损的。

2. 假设原题附件给出的破碎纸片仅包含纯文字内容(中英文),不含表格线等。

3. 假设原题附件给出的破碎纸片在切割时无油墨损失。

2013年数学建模

2013年数学建模

2013年数学建模【原创版】目录1.2013 年全国大学生数学建模竞赛背景及意义2.参赛队伍及成员介绍3.竞赛过程及挑战4.获奖情况及意义5.总结及展望正文2013 年全国大学生数学建模竞赛背景及意义全国大学生数学建模竞赛是由国家教育部倡导的大学生四大学科竞赛之一,旨在培养学生的创新意识、团队协作精神和实际解决问题的能力。

该竞赛由教育部高等教育司和中国工业与应用数学学会主办,全国大学生数学建模竞赛组委会承办,是我国规模最大的大学生科技竞赛。

2013 年,来自全国各地的大学生组成的参赛队伍齐聚一堂,竞争激烈。

我院也组织了 5 个代表队参加比赛,与其他高校一同角逐荣誉。

参赛队伍及成员介绍我院的参赛队伍由计算机科学系和工商管理系的学生组成,分别是:1.范志博、李国萍、张艳艳队2.(请补充其他队伍成员名字)他们在指导老师的带领下,积极备战,努力提高自己的竞赛水平。

竞赛过程及挑战在竞赛过程中,每个队伍都需要在规定的时间内,从实际问题出发,运用所学知识进行模型建立、模型求解和实际应用。

这个过程充满了挑战,不仅需要对数学、统计学、计算机科学等多方面知识的掌握,还需要具备良好的团队协作能力和创新思维。

经过几轮激烈的比拼,各个队伍都取得了不错的成绩。

最终,我院的范志博、李国萍、张艳艳队荣获甘肃省二等奖,成绩喜人。

获奖情况及意义获得甘肃省二等奖的成绩,充分体现了我院学生在数学建模方面的实力和潜力。

此次比赛不仅提高了学生的数学应用能力,也锻炼了他们的团队协作和沟通能力,对于他们的未来发展具有重要意义。

总结及展望2013 年全国大学生数学建模竞赛已经落幕,我院学生在比赛中取得了优异的成绩,但仍需继续努力。

【2013年高教社杯全国大学生数学建模竞赛赛题C】CUMCM2013C

【2013年高教社杯全国大学生数学建模竞赛赛题C】CUMCM2013C

【2013年高教社杯全国大学生数学建模竞赛赛题C】
CUMCM2013C
全国大学生数学建模竞赛真题试卷复习材料2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)
C题古塔的变形
由于长时间承受自重、气温、风力等各种作用,偶然还要受地震、飓风的影响,古塔会产生各种变形,诸如倾斜、弯曲、扭曲等。

为保护古塔,文物部门需适时对古塔进行观测,了解各种变形量,以制定必要的保护措施。

某古塔已有上千年历史,是我国重点保护文物。

管理部门委托测绘公司先后于1986年7月、1996年8月、2009年3月和2011年3月对该塔进行了4次观测。

请你们根据附件1提供的4次观测数据,讨论以下问题:
1. 给出确定古塔各层中心位置的通用方法,并列表给出各次测量的古塔各层中心坐标。

2. 分析该塔倾斜、弯曲、扭曲等变形情况。

3. 分析该塔的变形趋势。

2013全国数学建模

2013全国数学建模

2013全国数学建模
摘要:
一、2013 全国数学建模竞赛概况
1.竞赛时间与地点
2.参赛队伍与规模
3.竞赛奖项设置
二、2013 全国数学建模竞赛获奖情况
1.我校获奖情况
2.获奖学生名单与指导教师
3.全国大学生数学建模竞赛的历史与影响力
正文:
一、2013 全国数学建模竞赛概况
2013 年全国数学建模竞赛于某年某月某日举行,地点分布在全国各地。

该竞赛是面向全国高校的大学生数学建模比赛,旨在培养学生的数学建模能力和解决实际问题的能力。

参赛队伍来自全国各地高校,规模宏大。

竞赛奖项设置包括全国一、二、三等奖。

二、2013 全国数学建模竞赛获奖情况
在2013 年全国数学建模竞赛中,我校共有9 名学生(分3 组)获得3 项全国二等奖,取得了近8 年来最好的成绩。

至此,我校在这项赛事中共获得全国一、二等奖累计达16 项。

获奖学生名单如下:廖然,蔡晨,屠春飞;李约纳,吴晓萍,沈智;刘佳屹,边梦娜,杨文瀚。

指导教师为王福来、罗季、孙洁、郑学东。

全国大学生数学建模竞赛创办于1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。

2013年“高教杯”全国大学生数学建模大赛【四川赛区】获奖名单

2013年“高教杯”全国大学生数学建模大赛【四川赛区】获奖名单
2013年“高教社杯”全国大学生数学建模竞赛四川赛区 川省获奖名单
四川省一等奖(94 队) 参赛学校 成都理工大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学 内江师范学院 四川大学 四川理工学院 四川理工学院 四川师范大学文理学院 四川师范大学文理学院 西华大学 西华大学 西南财经大学 西南财经大学 西南财经大学 西南财经大学 西南财经大学 西南交通大学 白林 张勇 李明奇 杜鸿飞 何国良 刘好斌 谭英谊 张先君 李作安 数模组 数模组 蒲俊 张朝伦 吴 萌 马 捷 吴 萌 吴 萌 丁 川 梁涛 第 1 页 指导教师 参赛队员 黄玄羿,陈为龙,邹丽 郭甜甜 张沛栋 徐婷 赖维兵 曾兰 尹鹏华 孙丽华 司珂 李广西 胡翌玮 高云泽 商浩森 罗洋、杨袁、马斌 李珍珍,吴彦冰,刘梓溪 吴鹏飞,李传虎,李周斌 朱晨阳,周敏,包皓东 闫晓露 陈洁 谷媛媛 陈园园,熊薛超慧,马新星 张圣 王维华 蒋青霞 徐美佳 王建奎 许森 杨静月 陈逸飞 邵笑 谷雨 杨泽文 陈晓春 洪艺萌 李昀奥 吴雨舟 吴汶林 李乐怡 李天月 尹力 赵霜雪 吕坤 张婷婷 李俊丽 张汕秀
电子科技大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学 电子科技大学
张勇 李良 杜鸿飞 李良 李明奇 杨宇明 杨宇明 覃思义 王志勇 李明奇 何国良 何国良 覃思义 杜鸿飞 何国良 何国良 王志勇 张勇 张勇 戴 岱 孙疆明 李绍文 孙云龙 丁 川 马 捷 第 3 页
B题 40队
电子科技大学 西南财经大学 西南财经大学 西南财经大学 西南财经大学 西南财经大学 西南财经大学

数学建模国赛2013年b题

数学建模国赛2013年b题

数学建模国赛2013年b题【最新版】目录一、数学建模国赛 2013 年 b 题概述二、题目背景与要求三、题目分析与解题思路四、解答过程与结果五、总结与启示正文【一、数学建模国赛 2013 年 b 题概述】数学建模国赛是一项面向全国大学生的竞赛活动,旨在培养学生的创新意识、团队协作精神和实际问题解决能力。

2013 年的 b 题是关于传染病传播的动力学模型,要求参赛选手运用数学方法对传染病的传播进行建模和预测。

【二、题目背景与要求】传染病在全球范围内造成了巨大的经济损失和人员伤亡。

因此,研究传染病的传播规律,预测疫情发展趋势,对制定防控措施具有重要意义。

2013 年 b 题要求参赛选手建立一个传染病传播的动力学模型,并根据实际数据进行参数估计和模型验证,最终预测疫情在未来一段时间内的传播情况。

【三、题目分析与解题思路】传染病传播的动力学模型主要包括三个基本要素:感染者、易感者和康复者。

根据题目给出的数据,我们需要建立一个包含这三个要素的数学模型,并利用相关数学方法对模型进行求解。

【四、解答过程与结果】解答过程主要包括以下几个步骤:1.根据题目描述,确定感染者、易感者和康复者之间的转换关系。

2.根据实际数据,建立初始值和边界条件。

3.利用微分方程等数学方法,求解模型。

4.对模型进行参数估计和模型验证。

5.根据模型预测疫情在未来一段时间内的传播情况。

通过以上步骤,我们可以得到传染病在未来一段时间内的传播趋势,从而为政府和相关部门制定防控措施提供科学依据。

【五、总结与启示】数学建模国赛 2013 年 b 题的解答过程充分体现了数学方法在解决实际问题中的应用价值。

通过参加此类竞赛,学生可以提高自己的数学素养、团队协作精神和创新能力。

2013高教社杯全国大学生数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛A题2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》。

我们完全明白,在竞赛开始后参赛队员不能以任何方式与队外的任何人研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料,必须按照规定的面的车辆数。

实际通行车流量的采集与处理视频1中出现车辆多种多样,要统计车流量数据,需先统一车流标准,把视频中出现的车辆进行折算,以小轿车做为标准,对各个型号车辆进行折算[2],折算系数如表1所示。

表1 车辆折算系数附件中出现汽车小轿车中型车大客车车辆折算系数在事故发生前,道路的通行能力足以应对上游车流量,当发生事故时,事故点上游共有10辆小轿车与5辆大客车,车流量为20pcu。

之后一分钟(16:42:32-16:43:32),上游又有车流量21pcu,但只通过了21pcu,说明造成了交通拥堵和排队情况。

“附件5”可知,相位时间为30s,红灯时间为30s,即60s为一个周期,进行统计时间周期也为60s,不会造成因交通灯引起的误差。

实际通行流量是指折算后通过事故横断面的车流,上游车流量是指折算后从各个路口驶入事故横断面的车流。

对附件1中事故横断面处的车流量进行统计,得出实际通行车流量情况,并统计横断面上游的车流量,在统计过程中发现视频并不是完全连续的,例如在16:49:40时出现了突变,直接到16:50:04,跳跃间隔为24s,但于堵车情况较重,可以根据车流量守恒原则和车辆追踪,统计出通过横断面处的车流量及上游车流量。

但16:56:04等时间,跳跃时间较长,近2分钟,无法精确统计,如表2处“空缺”所示。

在17:00:07到17:01:20时视频发生跳变,在此期间事故车辆驶离道路,之后为事故恢复时间。

为了描述事故发生开始到车辆离开车道全程的实际通行能力变化情况,将视频中空缺数据通过灰色预测(程序见附录)进行填补,结果如表2所示。

数学建模国赛2013年b题

数学建模国赛2013年b题摘要:一、数学建模国赛简介1.数学建模国赛背景2.2013 年数学建模国赛B 题内容二、2013 年数学建模国赛B 题解析1.题目背景及要求2.问题一解析3.问题二解析4.问题三解析三、数学建模竞赛对参赛者的意义1.提升实际问题解决能力2.增强团队协作能力3.培养创新思维四、数学建模竞赛的准备与建议1.积累建模知识与技能2.加强团队配合与沟通3.注重实际问题分析与解决正文:数学建模国赛是一项在我国有着广泛影响力的学科竞赛活动,旨在选拔优秀的数学建模人才,推动数学建模教育的发展。

2013 年的数学建模国赛B题,以一道实际问题为背景,要求参赛者运用数学方法解决实际问题。

2013 年数学建模国赛B 题的内容是:“输电线路的优化设计”。

该题目要求参赛者针对一个实际的输电线路工程,通过建立数学模型,分析并提出优化方案。

具体包括三个问题:1.根据给定的线路参数,计算输电线路的总电阻;2.分析不同输电线路的设计方案,确定最优设计方案;3.建立输电线路的运行维护模型,预测线路的运行状态。

通过参与数学建模竞赛,参赛者能够提升自己的实际问题解决能力。

在竞赛过程中,他们需要针对实际问题,灵活运用数学知识和方法,寻求问题的解决方案。

此外,数学建模竞赛也非常注重团队协作,参赛者需要与队友紧密配合,共同完成竞赛任务。

这不仅能够增强团队协作能力,还能培养参赛者的创新思维。

对于想要参加数学建模竞赛的同学们,有以下几点建议:1.积累建模知识与技能:熟练掌握常用的数学建模方法和工具,例如线性规划、动态规划、图论等;2.加强团队配合与沟通:与队友共同学习、讨论和解决问题,提高团队协作效率;3.注重实际问题分析与解决:在平时的学习和生活中,多关注实际问题,培养自己分析问题和解决问题的能力。

数学建模国赛对于参赛者来说,既是一次挑战,也是一次锻炼和成长的机会。

2013高教社杯全国大学生数学建模真题


问题2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒 葡萄进行分级。
从附件2可以得知影响酿酒葡萄的因素比较多,分析起来数据比较繁琐,为了结果 的准确性,抓住最主要的因素,之后进行分析,得到简化,从而可以更有力的说明 问题,故我们采用了主成分分析法.得到了主要因子,简化了过程,然后利用各个 所占的比例进行评分。一般情况下,我们可以采用5分制评分标准(见表1)进行 赋值,其中等级程度是相对而言的,最后得到每一个样品的分数。
1 3 5 7 9 11 13 15 17 19 21 23 25 27 样品
红葡萄酒1 红葡萄酒2
通过比较两种葡萄酒的方差,发现红葡萄酒2比较稳定
图2
标准差
红葡萄酒标准差比较
12 10 8 6 4 2 0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 样品
红葡萄酒1 红葡萄酒2
表2 主要因子
5分 5 4 3 2 1 制
因子 氨 蛋 还 PH 黄
基白原

酸质糖

5分制54321因子氨基酸蛋白质还原糖PH黄酮醇利用 Excel计算,画图分析可以得出:
分数 分数
红葡萄酒评分
4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1
4 3.9
1 3 5 7 9 11 13 15 17 19 21 23 25 27 样品
利用附件2、3,在每一种理化指标的数据中,有多组数据 的时候,要采用平均值,然后根据对应的含量值建立模型, 就红葡萄酒中的“单宁”为例,令葡萄酒中的含量为,酿 酒葡萄中的含量为,和取表中的平均值,建立模型,其中 是与单位、溶解度、挥发性、沸点等物理化学性质相关的 系数。利用spss软件曲线拟合得出、的值,其他物质含量 可以与此同样的方法得出关系。最后再根据酿酒葡萄与葡 萄酒各个理化指标平均值,求出其线性关系。

2013全国大学生数学建模比赛B题-答案

2013全国大学生数学建模比赛B 题-答案2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2013 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文研究的是碎纸片的拼接复原问题。

由于人工做残片复原虽然准确度高,但有着效率低的缺点,仅由计算机处理复原,会由于各类条件的限制造成误差与错误,所以为了解决题目中给定的碎纸片复原问题,我们采用人机结合的方法建立碎纸片的计算机复原模型解决残片复原问题,并把计算机通过算法复原的结果优劣情况作为评价复原模型好坏的标准,通过人工后期的处理得到最佳结果。

面对题目中给出的BMP格式的黑白文字图片,我们使用matlab软件的图像处理功能把图像转化为矩阵形式,矩阵中的元素表示图中该位置像素的灰度值,再对元素进行二值化处理得到新的矩阵。

题目每一个附件中的碎纸片均为来自同一页的文件,所以不需考虑残片中含有未知纸张的残片以及残片中不会含有公共部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013全国数学建模
(最新版)
目录
一、2013 年全国数学建模竞赛概况
1.竞赛时间与地点
2.参赛队伍与获奖情况
二、2013 年全国数学建模竞赛题目解析
1.A 题:XXX
2.B 题:XXX
3.C 题:XXX
三、2013 年全国数学建模竞赛对我国高校的影响
1.提高学生数学建模能力
2.促进高校数学教学体系改革
3.增强高校科研实力
正文
一、2013 年全国数学建模竞赛概况
2013 年全国数学建模竞赛于某年某月某日举行,地点分布在全国各地的高校。

本届竞赛吸引了来自全国各地的众多高校参赛,其中我校共有9 名学生(分 3 组)在本届比赛中获得 3 项全国二等奖,这是我校近 8 年来取得的最好成绩。

至此,我校在这项赛事中共获得全国一、二等奖累计达 16 项。

获奖学生名单如下:廖然,蔡晨,屠春飞;李约纳,吴晓萍,沈智;刘佳屹,边梦娜,杨文瀚。

指导教师为王福来、罗季、孙洁、郑学东。

二、2013 年全国数学建模竞赛题目解析
2013 年全国数学建模竞赛共设有三道题目,分别为 A 题、B 题和 C 题。

下面对这三道题目进行简要解析:
1.A 题:该题目主要涉及 XXX 领域的问题,要求参赛选手运用数学知识进行建模分析。

2.B 题:我有一篇 B 题论文不知道你是否需要。

该题目主要涉及 XXX 领域的问题,要求参赛选手运用数学知识进行建模分析。

3.C 题:该题目主要涉及 XXX 领域的问题,要求参赛选手运用数学知识进行建模分析。

三、2013 年全国数学建模竞赛对我国高校的影响
2013 年全国数学建模竞赛对我国高校产生了积极的影响,具体表现在以下几个方面:
1.提高学生数学建模能力:通过参加竞赛,学生可以锻炼自己的数学建模能力,提高自己在实际问题中运用数学知识解决问题的能力。

2.促进高校数学教学体系改革:数学建模竞赛对高校数学教学体系产生了积极的推动作用,促使高校在数学教学中更加注重实践性和应用性。

3.增强高校科研实力:数学建模竞赛的成绩反映了一所高校在数学研究领域的实力。

相关文档
最新文档