高考不等式经典例题
高中不等式题目30道

高中不等式的题目:1. x2+3x+2/x2+2x+1 的取值范围是什么?2. 对于实数x,求解不等式|x-1|+|x+3|≥5。
3. 若不等式(k+1)x2-2(k+2)x+4>0 对任意实数x 恒成立,求k 的取值范围。
4. 已知不等式ax2-2x+b<0 的解集是{x|1<x<3},求a、b 的值。
5. 求下列不等式的解集:(1)3x2-7x-10≥0(2)4x2-12x+9≤0(3)4-3x-5x2≥0(4)6x-10x2≥06. 解不等式|2x+1|+|3x-4|≥5。
7. 求不等式-2x2+4x-3<0 的解集。
8. 若不等式(a-1)x2+2(a-1)x-3≤0 对于任意实数x 都成立,求a 的取值范围。
9. 解不等式|x-3|-|2x+1|≤x+2。
10. 求不等式x2+2x+3≥2x2+ x的解集。
11. 求下列不等式的整数解:(1)5x-7<3x+1(2)3(x-1)≥7(x-4)(3)10-4(3x-9)≤2(9-4x)(4)5(6x+1)-7(3x+2)≥012. 求不等式-3≤x< 4 的整数解。
13. 解不等式(x-5)(x+7)≥8(x-3)。
14. 求不等式4(3x-7)≥24(x-5)的解集。
15. 求不等式|2x-3|≤x+1 的解集。
16. 求不等式-2x+3>10-3x的解集。
17. 求不等式3(2x-4)≥5(x-1)的解集。
18. 求不等式2(4x-2)≥3(x+1)的解集。
19. 求不等式-3(x+2)≥4(x-3)的解集。
20. 求不等式5(x-1)≥2(x+2)的解集。
21. 求不等式-4(x-3)≥5(x-2)的解集。
22. 求不等式2(3x-1)≥5(x+1)的解集。
23. 求不等式6(x+1)≤7(x-2)的解集。
24. 求不等式5(x-1)≤2(x+3)的解集。
25. 求不等式3(x+1)≥5(x-1)的解集。
不等式练习题及讲解高中答案

不等式练习题及讲解高中答案### 不等式练习题及讲解#### 一、基础不等式练习题1. 题目一:若 \( a, b, c \) 均为正数,证明不等式 \( a + b\geq 2\sqrt{ab} \) 成立。
2. 题目二:已知 \( x \) 和 \( y \) 均为实数,且 \( x^2 + y^2 = 1 \),求证 \( x + y \leq \sqrt{2} \)。
3. 题目三:若 \( a, b \) 均为正整数,证明 \( a^2 + b^2 \geq 2ab \)。
4. 题目四:对于任意实数 \( x \),证明 \( \frac{x^2}{2} +\frac{1}{2x^2} \geq 1 \)。
5. 题目五:若 \( x, y, z \) 均为正数,证明 \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac{9}{xy + yz + zx} \)。
#### 二、不等式练习题讲解题目一讲解:利用算术平均数-几何平均数不等式(AM-GM不等式):\[ a + b \geq 2\sqrt{ab} \]这是因为对于任意非负实数 \( a \) 和 \( b \),它们的算术平均数总是大于或等于它们的几何平均数。
题目二讲解:由于 \( x^2 + y^2 = 1 \),我们有 \( (x + y)^2 \leq 2(x^2 +y^2) = 2 \),从而 \( x + y \leq \sqrt{2} \)。
题目三讲解:同样使用AM-GM不等式:\[ a^2 + b^2 \geq 2\sqrt{a^2b^2} = 2ab \]当且仅当 \( a = b \) 时,等号成立。
题目四讲解:利用AM-GM不等式:\[ \frac{x^2}{2} + \frac{1}{2x^2} \geq 2\sqrt{\frac{x^2}{2}\cdot \frac{1}{2x^2}} = 1 \]等号成立条件是 \( x^2 = 1 \),即 \( x = \pm 1 \)。
高中不等式经典例题

高中不等式经典例题例1解不等式:(1)2x ³-x ²-15x>0;(2)(x+4)(x+5)²(2-x)³<0.分析:如果多项式 f(x)可分解为 n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)把方程x(2x+5)(x-3)=0的三个根说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正:②对于偶次或奇次重根可转化为不含重根的不等式, 也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如图.典型例题二例2解下列分式不等式: (1)3x−2≤1−2x+2; (2)x 2−4x+13x 2−7x+2<1分析:当分式不等式化为 f (x )g (x )<0(或≤0)时,要注意它的等价变形(1) 解:原不等式等价于3x−2≤x x+23x−2−x x+2≤03(x+2)−x (x−2)(x−2)(x+2)≤0−x 2+5x+6(x−2)(x+2)≤0可用“穿根法”求解,但要注意处理好有重根的情况。
解:(1) 原不等式可化为x(2x+5)(x-3)>0x 1=0,x 2=−52,x 3=3顺次标上数轴, 然后从右上开始画线顺次经过三个根, 其解集如下图的阴影部分,∴原不等式解集为(2) 原不等式等价于(x+4)(x+5)³(x -2)³>0x>2 ∴原不等式解集为 或-5<x<-4或x>2}f (x )g (x )<0f (x )⋅g (x )<0;(x−6)(x+1)(x−2)(x+2)≥0{(x −6)(x +1)(x −2)(x +2)≥0(x +2)(x −2)≠0(2) 解法一:原不等式等价于2x 2−3x+13x 2−7x+2>0 (2x 2−3x +1)(3x 2−7x +2)>0{2x 2−3x +1>03x 2−7x +2>0或 {2x 2−3x +1<03x 2−7x +2<0x <13或 12<x <1或x>2,∴原不等式解集为 (−∞,13)∪(12,1)∪(2,+∞). 解法二:原不等式等价于典型例题三例3解不等式|x ²-4|<x+2 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义 |a|={a (a ≥0)−a(a <0)二是根据绝对值的性质: |x|<a −a <x <a,|x|ax >a 或x<-a, 因此本题有如下两种解法。
高三数学不等式解法15个典型例题doc

高三数学不等式解法15个典型例题典型例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x x x x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
高中数学不等式高考真题精选和解析

高中数学不等式高考真题精选和解析1.(2020·全国卷Ⅱ)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2.(2020·全国卷Ⅰ)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.2.(2020·全国卷Ⅲ)设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥3 4.4.(2019·全国卷Ⅰ)已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.5.已知函数f(x)=|x+1|+|2x-1|.(1)解不等式f(x)≤x+3;(2)若g(x)=|3x-2m|+|3x-2|,对任意的x1∈R,存在x2∈R,使得f(x1)=g(x2)成立,求实数m的取值范围.6.已知函数f(x)=|2x+1|+|x-1|.(1)求不等式f(x)≥3的解集;(2)若直线y=x+a与y=f(x)的图象所围成的多边形面积为92,求实数a的值.答案解析1.解 (1)当a =2时,f (x )=|x -4|+|x -3|.当x ≤3时,f (x )=4-x +3-x =7-2x ,由f (x )≥4,解得x ≤32;当3<x <4时,f (x )=4-x +x -3=1,f (x )≥4无解; 当x ≥4时,f (x )=x -4+x -3=2x -7,由f (x )≥4,解得x ≥112. 综上所述,f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤32或x ≥112. (2)f (x )=|x -a 2|+|x -2a +1|≥|(x -a 2)-(x -2a +1)|=|-a 2+2a -1|=(a -1)2(当且仅当2a -1≤x ≤a 2时取等号),∴(a -1)2≥4,解得a ≤-1或a ≥3,∴a 的取值范围为(-∞,-1]∪[3,+∞).2.解 (1)f (x )=⎩⎪⎨⎪⎧ x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位,可得函数f (x +1)的图象,如图所示:由-x -3=5(x +1)-1,解得x =-76.所以不等式的解集为⎝ ⎛⎭⎪⎫-∞,-76.3. 证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +bc +ca =-12(a 2+b 2+c 2).由abc =1得a ,b ,c 均不为0,则a 2+b 2+c 2>0,∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0,∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc ≥2bc +2bc bc =4. 当且仅当b =c 时,取等号,∴a ≥34,即max{a ,b ,c }≥34.4. 证明 (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac , 又abc =1,故有a 2+b 2+c 2≥ab +bc +ca=ab +bc +ca abc=1a +1b +1c . 当且仅当a =b =c =1时,等号成立.所以1a +1b +1c ≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥3 3(a +b )3(b +c )3(c +a )3=3(a +b )(b +c )(c +a ) ≥3×(2ab )×(2bc )×(2ca )=24.当且仅当a =b =c =1时,等号成立.所以(a +b )3+(b +c )3+(c +a )3≥24.5.(1)原不等式等价于⎩⎨⎧ x ≤-1,-3x ≤x +3或⎩⎪⎨⎪⎧ -1<x ≤12,-x +2≤x +3或⎩⎪⎨⎪⎧ x >12,3x ≤x +3,解得-12≤x ≤32,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-12≤x ≤32. (2)由f (x )=|x +1|+|2x -1|=⎩⎪⎨⎪⎧ -3x ,x ≤-1,-x +2,-1<x ≤12,3x ,x >12,可知当x =12时,f (x )最小,无最大值,且f (x )min =f ⎝ ⎛⎭⎪⎫12=32. 设A ={y |y =f (x )},B ={y |y =g (x )}, 则A =⎩⎨⎧⎭⎬⎫y |y ≥32,因为g (x )=|3x -2m |+|3x -2|≥|(3x -2m )-(3x -2)|=|2m -2|,所以B ={y |y ≥|2m -2|}.由题意知A ⊆B ,所以|2m -2|≤32,所以m ∈⎣⎢⎡⎦⎥⎤14,74. 故实数m的取值范围为⎩⎨⎧⎭⎬⎫m |14≤m ≤74.6.解 (1)由题意,得f (x )=⎩⎪⎨⎪⎧ 3x ,x ≥1,x +2,-12<x <1,-3x ,x ≤-12.当x ≥1时,由f (x )≥3得3x ≥3,解得x ≥1;当-12<x <1时,由f (x )≥3得x +2≥3,解得x ≥1, 这与-12<x <1矛盾,故舍去;当x ≤-12时,由f (x )≥3得-3x ≥3,解得x ≤-1.综上可知,不等式f (x )≥3的解集为{x |x ≤-1或x ≥1}.(2)画出函数y =f (x )的图象,如图所示,其中A ⎝ ⎛⎭⎪⎫-12,32,B (1,3), ∴k AB =3-321+12=1,∴直线y =x +a 与直线AB 平行.若要围成多边形,则a >2.易得直线y =x +a 与y =f (x )的图象交于两点C ⎝ ⎛⎭⎪⎫a 2,3a 2,D ⎝ ⎛⎭⎪⎫-a 4,3a 4,则|CD|=2·|a2+a4|=324a,平行线AB与CD间的距离d=|a-2|2=a-22,|AB|=322,∴梯形ABCD的面积S=322+324a2·a-22=32+34a2·(a-2)=92(a>2),即(a+2)(a-2)=12,∴a=4.故所求实数a的值为4.。
高考考前复习均值不等式典型题汇编

高考考前复习均值不等式典型题汇编【典型例题】例1、若x 、y +∈R ,求4()f x x x=+)10(≤<x 的最小值。
例2、已知正数x 、y 满足811x y+=,求2x y +的最小值。
例3、已知正数x y 、满足3xy x y =++,试求xy 、x y +的范围。
例4、 求函数221632y x x =++的最小值.例5、已知0,0x y >>,且满足3212x y +=,求lg lg x y +的最大值.例6、 已知1x >-,求函数()()521x x y x ++=+的最小值.例7、 已知102x <<,求函数2(1)(12)x y x x +=-的最小值. 例8、已知0,0x y >>且22283y x +=求.例9、求函数25y x =+的最大值.【高考题汇编】例1、(重庆理,2005)若x ,y 是正数,则22)21()21(xy y x +++的最小值是【 】 A .3 B .27 C .4 D .29例2、(天津文,2009) 设yx b a b a b a R y x yx11,32,3,1,1,,+=+==>>∈则若的最大值为【 】A. 2B.23 C. 1 D. 21 例3.(福建文,2011)若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】A.2 B .3 C .6 D .9例4、(重庆文,2011)若函数)2(21)(>-+=x x x x f 在x a =处取最小值,则a =【 】 A.21+ B .31+ C .3 D .4例5、已知54x <,求函数14245y x x =-+-的最大值.例6、函数1(3)3x x x +>-的最小值为【 】 A. 2B. 3C. 4D. 5例7、函数232(0)x x x+>的最小值为【 】A. B. 例8、(天津文,2011)已知22log log 1a b +≥,则39ab+的最小值为__________.例9、(重庆文,2009)已知0,0a b >>,则11a b++ 】A.2 B ..4 D .5 例10、(四川理,2009)设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是【 】A.2B.4C.5 例11、(重庆文,2005)若y x y x -=+则,422的最大值是 .例12、(福建理,2005)设b a b a b a +=+∈则,62,,22R 的最小值是【 】A .22-B .335-C .3-D .27-例13、设,x y 是实数,且224,x y +=则22xyS x y =+-的最小值是【 】A.2-B.C. 2-1)例14、已知实数,,0a b c >满足9,24,a b c ab bc ca ++=++=,则b 的取值范围为例15、(重庆理,2011)已知2,0,0=+>>b a b a ,则14y a b=+的最小值是【 】 A.72 B .4 C .92D .5例16、(天津理,2009)设0,0.a b >>1133aba b+与的等比中项,则的最小值为 【 】A. 8B. 4C. 1D.14例17、已知,,a b c 都是正实数,且满足93log (9)log a b +=4a b c +≥恒成立的c 的取值范围是【 】A.4[,2)3B. [0,22)C. [2,23)D. (0,25]例18、(重庆文,2010)0t >已知,则函数241t t y t-+=的最小值为__________.例19、(湖北文,2004)已知4254)(,252-+-=≥x x x x f x 则有【 】A .最大值45 B .最小值45C .最大值1D .最小值1 例20、(浙江理,2011)设,x y 为实数,若2241,x y xy ++=则2x y +的最大值是 .例21、(重庆文,2004)已知()2320,0x y x y+=>>,则xy 的最小值是 . 例22、(重庆理,2007)若a 是12b +与12b -的等比中项,则22aba b+的最大值为【 】A.15 B .4 C .5 D .2例22、(重庆文,2006)若,,0a b c >且222412a ab ac bc +++=,则a b c ++的最小值是【 】A. B. 3 C. 2例23、已知0,0,01,a b c a b c >>>++=且则222a b c ++最小值为【 】A.12 B. 13 C. 14D. 15 例24、若,,1a b R a b +∈+=,则1ab ab+的最小值为【 】 A. 144 B. 142 C. 124D. 2 例25、已知1a b +=,则44a b +的最小值是【 】A. 1B.12 C. 14D. 18例26、已知0,0,01,a b c a b c >>>++=且则222111a b c ++最小值为【 】 A. 12 B. 18 C. 24 D. 27例27、(全国1,2004),2,2,1222222=+=+=+a c c b b a 则ca bc ab ++的最小值【 】12 B .12 C .12- D .12+例28、(湖南理,2004)设,0,0>>b a 则以下不等式中不恒成立....的是【 】 A .()114a b a b ⎛⎫++≥⎪⎝⎭B .2332ab b a ≥+C .b a b a 22222+≥++ D .b a b a -≥-||例29、(陕西理,2006)已知不等式1()()9ax y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为【 】A. 8B. 6C. 4D. 2例30、(全国1理,2008)若直线1x ya b+=通过点()cos sin M αα,,则【 】 A .221a b +≤B .221a b +≥ C .22111a b +≤ D .22111a b+≥例31、已知0,0>>b a 且1=+b a ,求证:425)1)(1(≥++b b a a . 例32、若+∈R b a ,且1=+b a ,求证:22121≤+++b a。
高三数学解不等式练习题
高三数学解不等式练习题解答一:1. 解不等式2x - 5 < 7:首先加5得到:2x < 12然后除以2:x < 6因此解集为x < 62. 解不等式3(x - 1) + 2 > 5:首先化简得到:3x - 3 + 2 > 5再合并同类项:3x - 1 > 5最后加1得到:3x > 6除以3:x > 2因此解集为x > 23. 解不等式4 - x > 2x + 5:首先整理得到:4 - 2x > 3x + 5然后移项得到:4 - 5 > 3x + 2x化简得到:-1 > 5x最后除以5:x < -1/5因此解集为x < -1/54. 解不等式2x - 3 < 4 - x:首先移项得到:2x + x < 4 + 3合并同类项得到:3x < 7最后除以3:x < 7/3因此解集为x < 7/35. 解不等式|x - 2| > 3:针对绝对值不等式,分为正负两种情况求解:当x - 2 > 0时,即x > 2时,不等式转换为:x - 2 > 3移项得到:x > 5当x - 2 < 0时,即x < 2时,不等式转换为:-(x - 2) > 3移项得到:-x + 2 > 3再移项得到:-x > 1最后乘以-1(注意改变不等号方向):x < -1综合两种情况,解集为x < -1 或 x > 5解答二:1. 解不等式3x - 4 > 7:首先加4得到:3x > 11然后除以3:x > 11/3因此解集为x > 11/32. 解不等式2(x + 3) - 5 > 4(x - 1):首先化简得到:2x + 6 - 5 > 4x - 4再合并同类项:2x + 1 > 4x - 4最后移项得到:5 > 2x因此解集为x < 5/23. 解不等式-2x - 3 < 5 - x:首先移项得到:-2x + x < 5 + 3合并同类项得到:-x < 8最后乘以-1(注意改变不等号方向):x > -8因此解集为x > -84. 解不等式3x - 2 > 4(x + 1):首先化简得到:3x - 2 > 4x + 4然后移项得到:-2 - 4 > 4x - 3x化简得到:-6 > x因此解集为x < -65. 解不等式|2x + 1| < 5:针对绝对值不等式,分为正负两种情况求解:当2x + 1 > 0时,即2x > -1时,不等式转换为:2x + 1 < 5移项得到:2x < 4最后除以2:x < 2当2x + 1 < 0时,即2x < -1时,不等式转换为:-(2x + 1) < 5移项得到:-2x - 1 < 5再移项得到:-2x < 6最后除以-2(注意改变不等号方向):x > -3综合两种情况,解集为-3 < x < 2通过以上解答,你可以更好地理解高三数学中的解不等式练习题。
高中数学不等式题目
高中数学不等式题目一、已知实数a, b, c满足a + b + c = 0,且a2 + b2 + c2 = 1,则下列不等式恒成立的是:A. a2 ≤ 1/3B. b2 ≥ 1/2C. c2 ≤ 2/3D. a2 + b2 ≤ 2/3(答案)D二、设x, y ∈ R,且xy ≠ 0,若|x| ≤ |y|,则下列不等式成立的是:A. x2 + 1/x2 ≥ y2 + 1/y2B. x2 + 1/y2 ≥ 2C. |x| + 1/|x| ≤ |y| + 1/|y|D. |x| + |y| ≥ 2√(|xy|)(答案)D三、对于任意实数x,y,若|x - y| ≤ 1,|x + y| ≤ 1,则下列不等式恒成立的是:A. x2 + y2 ≤ 1B. |x| + |y| ≤ √2C. max{|x|, |y|} ≤ 1D. min{|x|, |y|} ≤ 1/2(答案)D四、已知a, b, c为正实数,且a + b + c = 1,则下列不等式中不成立的是:A. √(ab) + √(bc) + √(ca) ≤ 1/2B. a2 + b2 + c2 ≥ 1/3C. abc ≤ (1/3)3D. 1/(a + b) + 1/(b + c) + 1/(c + a) ≥ 9/2(答案)A五、设x, y ∈ R,且x2 + y2 = 1,则下列不等式恒成立的是:A. |x + y| ≤ √2B. |x - y| ≥ 1C. x2 + 2y2 ≥ 3/4D. √(|x|) + √(|y|) ≥ √2(答案)A六、已知a, b, c为三角形的三边长,则下列不等式中不成立的是:A. a + b > cB. a2 + b2 + c2 ≥ ab + bc + caC. (a + b + c)2 ≥ 3(ab + bc + ca)D. √(ab) + √(bc) + √(ca) ≥ a + b + c(答案)D七、设x, y ∈ R,且|x| ≤ 1,|y| ≤ 1,则下列不等式中恒成立的是:A. |x + y| ≤ 1B. |x - y| ≤ 2C. x2 + y2 ≤ 1D. |x| + |y| ≤ 1(答案)B八、已知a, b, c为正实数,且a + b + c = 3,则下列不等式中成立的是:A. √(ab) + √(bc) + √(ca) ≤ 3B. a2b + b2c + c2a ≥ 3C. (a + b + c)3 ≥ 27abcD. 1/a + 1/b + 1/c ≤ 1(答案)C。
高一数学不等式部分经典习题及答案
ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。
如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
不等式高考试题及答案
不等式高考试题及答案一、选择题1. 若不等式3x+2>7成立,则x的取值范围是:A. x < -1B. x > -1C. x < 1D. x > 1答案:D2. 已知不等式2(x-1) > 3(x+2),则x的取值范围是:A. x < -7/5B. x > -7/5C. x < -1D. x > -1答案:C3. 若x<y,则对x+y,下列不等式成立的是:A. x + y < 2xB. x + y < 2yC. x + y > 2xD. x + y > 2y答案:C4. 若不等式5x+3y > 6成立,下列不等式中一定成立的是:A. 10x + 6y > 12B. 5x + 6y > 12C. 5x + 3y > 6D. 10x + 3y > 6答案:D5. 下列不等式组中,解集与其他三个不同的是:A. {x | -2 < x < 3}B. {x | 0 < x < 5}C. {x | 1 < x < 4}D. {x | -3 < x < 2}答案:B二、填空题1. 若不等式2x - 1 > 5成立,则x的取值范围为________。
答案:x > 32. 若不等式-3(x - 1) < 2(x + 3)成立,则x的取值范围为________。
答案:x < 13/53. 已知不等式2x - 3 < 5x + 4,则x的取值范围为________。
答案:x > -7/34. 若不等式x + 5 > 2x - 3成立,则x的取值范围为________。
答案:x < 85. 若不等式3x - 2 > 5成立,则x的取值范围为________。
答案:x > 7/3三、解答题1. 解不等式组{x | 2x + 3 > 5, x - 1 < 4},并将解表示在数轴上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考不等式经典例题
高考数学中的不等式经典例题通常包括比较两个数(式)的大小、不等式的性质、一元二次不等式恒成立问题、特值法判断不等式等。
以下是一些高考数学中不等式的经典例题:
例1:比较两个数的大小
题目:若a = 1/2, b = 3, c = 2, 请比较a, b, c的大小。
解答:因为a = 1/2 < 1 < 2 < 3 = b < c,所以a < b < c。
例2:不等式的性质
题目:若x > 0, y > 0, 且x + y > 2, 请证明:xy < 1。
解答:根据不等式的性质,可以得到以下推导:
x > 0, y > 0, 则x + y > 2 > 0, 所以xy < (x + y) / 2 < 1。
例3:一元二次不等式恒成立问题
题目:若a, b, c均为实数,且a > 0, b > 0, c > 0。
求解不等式:ax2 + bx + c > 0。
解答:首先考虑判别式,由一元二次方程的判别式可知,当判别式小于0时,不等式恒成立。
因此,我们需要求解判别式:
Δ= b2 - 4ac < 0,所以不等式ax2 + bx + c > 0恒成立。
例4:特值法判断不等式
题目:若a, b为实数,且a > 0, b > 0。
求解不等式:a2 + b2 > ab。
解答:我们可以使用特值法来求解这个不等式。
取a = 2, b = 1,则a2 = 4, b2 = 1, ab = 2。
因为4 > 2 > 1,所以a2 + b2 > ab。
希望以上例题能够帮助你复习不等式部分的知识,祝你高考取得好成绩!。