多项式的乘法练习题汇编

多项式的乘法练习题汇编
多项式的乘法练习题汇编

多项式乘多项式:(a+b)(c+d)= (x+a)(x+b)= 平方差公式: (a+b)(a-b)=

完全平方公式:(a+b)2= (a-b)2= 1.化简()()()a b c b c a c a b ---+-的结果是( ) A .222ab bc ac ++ B .22ab bc - C .2ab D .2bc -

2.下列各式中计算错误的是( )

A .3

4

2

2(231)462x x x x x x -+-=+- B .2

3

2

(1)b b b b b b -+=-+ C .231

(22)2

x x x x -

-=--

D .

342232(31)2323

x x x x x x -+=-+ 3.若(8×106)(5×102)(2×10)=M ×10a ,则M 、a 的值为( )

A .M =8,a =8

B .M =8,a =10

C .M =2,a =9

D .M =5,a =10 4、若2x 2+5x +1=a (x +1)2+b (x +1)+c ,那么a ,b ,c 应为( ) A .a =2,b =-2,c =-1 B .a =2,b =2,c =-1 C .a =2,b =1,c =-2

D .a =2,b =-1,c =2

5、.若))((b x a x +-的乘积中不含x 的一次项,则b a ,的关系是( ) A.互为倒数 B.相等 C.互为相反数 D.b a ,都为0

6、.下列各式中,不能用平方差公式计算的是( )

A.)43)(34(x y y x ---

B.)2)(2(2

222y x y x +- C.))((a b c c b a +---+ D.))((y x y x -+-

7、.下列各式中,相等关系一定成立的是 ( ) A 、22)()(x y y x -=- B 、6)6)(6(2

-=-+x x x

C 、2

22)(y x y x +=+ D 、)6)(2()2()2(6--=-+-x x x x x 8.若9x 2+4y 2=(3x +2y )2+M ,则 M 为( ) A .6xy B .-6xy C .12xy D .-12xy 9.下列等式不能恒成立的是( )

A .(3x -y )2=9x 2-6xy +y 2

B .(a +b -c )2=(c -a -b )2

C .(0.5m -n )2=0.25m 2-mn +n 2

D .(x -y )(x +y )(x 2-y 2)=x 4-y 4 10、已知(x+3)(x-2)=x 2

+ax+b ,则a 、b 的值分别是( )

A .a=-1,b=-6

B .a=1,b=-6

C .a=-1,b=6

D .a=1,b=6

11. 观察下列算式:12=2,22=4,32=8,42=16,52=32,62=64,72=128,8

2=256,…… 根据其规律可知10

8的末位数是( ) A 、2 B 、4 C 、6 D 、8

二、填空题:

1.._______________)104)(105.2)(10

2.1(9113=??? =???)103

1()103(322______

-2ab ·(a 2b+3ab 2-1)=____________(4=-?-+-)2

1

()864(22x x x ________;

223263()(2)2(1)x x y x x y --?-+-=

2、(-2x+y )(-2x+y )=______(-x-3y )(-x-3y )=_______-(2x 2+3y )(3y -2x 2) =____________

2121

()()3232m n m n +-+=____________ (a+b+2)(a+b-2) =____________ 2)325.1(b a -=_________ 2)2

1(b a --=_________

)3

243)(4332(

m

n n m --+=____________ 3

23.

232x

y y x +-=____________ 3、(a +2b +3c )(a -2b -3c )=(______)2-(______)2;

(41x +y 2)(_____)=y 4-16

1x 2

;(-5a -2b 2)(______)=4b 4-25a 2. 4、20052-4010×2006+20062 =____________

1999×2001=____________

______________)1)(1)(1)(1(42=++-+x x x x (3x+2)(3x- 2)(9x 2 +4) =____________

(

31x +y )(31x -y )(9

1

x 2+y 2) =____________(y -3)2-2(y +2)(y -2)=___________ 5、①29))(

3(x x -=--;②-+2)23(y x =2)23(y x -

6、 若代数式2x 2

+3x+7的值是8,则代数式4x 2

+6x -9的值是 ;代数式3x 2

-4x+6的值为9,则x 2

-3

4

x+6的值为 (2)若m 2+m -1=0,求m 3+2m 2+2008的值 7、 已知: a 2+b 2-2a +6b +10 = 0, 则a 2005-b

1

= 若, 则

a 2 +

b 2的值为

8已知:单项式M 、N 满足22

2(3)6x M x x y N +=+,M = N =

9、 若a 2+ma +9可以写成另一个多项式的平方,则 m = _____; 若x 2+2ax +16是一个完全平方式,是a =______. 二、公式: a 2 + b 2 = (a –b )2 + ____= (a + b )2 – ____;

-+=+

222)1(1x x x x ______=2

)1(x

x -+______. (a + b )2+ (a –b )2= _____;(a + b )2-(a –b )2= _____;

(a –b )2

+(b -c )2

+(a -c )2

=____________ (a+b+c)2

=____________

(x+y-3)2=____________ (x+y+5)2=____________

(3m+n-p)2=____________ (2x+y-3)2 =____________

(1)已知x2 – y2 = 8, x + y = 4,求x – y的值. (2)已知x2 +y2 = 10, x + y = 4,求xy的值. (3已知a2+b2=13,ab=6,求(a+b)2,(a-b)2的值

(4已知(a+b)2=7,(a-b)2=4,求a2+b2,ab的值。

(5)

,5

1

=

+

a

a

则2

2

1

a

a+

的值是多少?若

,2

1

=

-

a

a

则2

2

1

a

a+

的值是多少?

(6如果

22

15,6

ab ab

a b

+=+=

2222

a b a b

-+

和的值

(7)若△ABC三边a、b、c满足a2+b2+c2=ab+bc+ca.试问△ABC的三边有何关系?

多项式乘多项式试题精选(二)附答案

多项式乘多项式试题精选(二) 一.填空题(共13小题) 1.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要C类卡片_________张. 2.(x+3)与(2x﹣m)的积中不含x的一次项,则m=_________. 3.若(x+p)(x+q)=x2+mx+24,p,q为整数,则m的值等于_________. 4.如图,已知正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要A类卡片_________张,B类卡片_________张,C类卡片_________张. 5.计算: (﹣p)2?(﹣p)3=_________;=_________;2xy?(_________)=﹣6x2yz;(5﹣a)(6+a)=_________. 6.计算(x2﹣3x+1)(mx+8)的结果中不含x2项,则常数m的值为_________. 7.如图是三种不同类型的地砖,若现有A类4块,B类2块,C类1块,若要拼成一个正方形到还需B类地砖 _________块. 8.若(x+5)(x﹣7)=x2+mx+n,则m=_________,n=_________. 9.(x+a)(x+)的计算结果不含x项,则a的值是_________. 10.一块长m米,宽n米的地毯,长、宽各裁掉2米后,恰好能铺盖一间房间地面,问房间地面的面积是_________平方米. 11.若(x+m)(x+n)=x2﹣7x+mn,则﹣m﹣n的值为_________. 12.若(x2+mx+8)(x2﹣3x+n)的展开式中不含x3和x2项,则mn的值是_________. 13.已知x、y、a都是实数,且|x|=1﹣a,y2=(1﹣a)(a﹣1﹣a2),则x+y+a3+1的值为_________.

初中数学-多项式乘以多项式练习

初中数学-多项式乘以多项式练习 一、选择题 计算(2a-3b)(2a+3b)的正确结果是( ) A.4a2+9b2 B.4a2-9b2 C.4a2+12ab+9b2 D.4a2-12ab+9b2 若(x+a)(x+b)=x2-kx+ab,则k的值为( ) A.a+b B.-a-b C.a-b D.b-a 计算(2x-3y)(4x2+6xy+9y2)的正确结果是( ) A.(2x-3y)2 B.(2x+3y)2 C.8x3-27y3 D.8x3+27y3 (x2-px+3)(x-q)的乘积中不含x2项,则( ) A.p=q B.p=±q C.p=-q D.无法确定 若0<x<1,那么代数式(1-x)(2+x)的值是( ) A.一定为正B.一定为负C.一定为非负数D.不能确定计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是( ) A.2(a2+2) B.2(a2-2) C.2a3 D.2a6 方程(x+4)(x-5)=x2-20的解是( ) A.x=0 B.x=-4 C.x=5 D.x=40 若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为( ) A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1 C.a=2,b=1,c=-2 D.a=2,b=-1,c=2 若6x2-19x+15=(ax+b)(cx+d),则ac+bd等于( ) A.36 B.15 C.19 D.21 (x+1)(x-1)与(x4+x2+1)的积是( ) A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1 二、填空题 (3x-1)(4x+5)=_________. (-4x-y)(-5x+2y)=__________. (x+3)(x+4)-(x-1)(x-2)=__________. (y-1)(y-2)(y-3)=__________.

沪科数学七下《 整式乘法《多项式与多项式相乘》教案2

《多项式与多项式相乘》 【教学目标】: 理解多项式乘法法则;灵活运用多项式乘以多项式的运算法则. 【教学重点】: 多项式乘法的运算. 【教学难点】: 探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“符号”的问题. 【教学过程】: 情境导入 复习单项式×多项式运算法则. 整式的乘法实际上就是. 单项式×单项式. 单项式×多项式 多项式×多项式 组织讨论: 如图,计算此长方形的面积有几种方法? 如何计算?小组讨论,你从计算中发现了什么? 由于(m +n )(a +b )和(ma +mb +na +nb )表示同一个量, 即有(m +n )(a +b )=ma +mb +na +nb 探索法则与应用 根据乘法分配律,我们也能得到下面等式: (m +n )(a +b )=ma +mb +na +nb 总结多项式与多项式的乘法法则. 理论依据: 乘法对加法的分配律. 多项式乘以多项式先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加 例题讲解巩固练习. 1、计算下列各题. (1)(x +2)(x +3) (2)(a -4)(a +1) (3))31))(21(+-y y (4))4 36))(42(-+x x (5)(m +3n )(m -3n ) 2、某零件如图所示,求图中阴影部分的面积S.

练习点评: 在讲解、练习过程中,提醒学生法则的灵活、正确应用,注意符号,不要漏乘注意: 一定要用第一个多项式的每一项依次去乘第二个多项式的每一项,在计算时要注意多项式中每个单项式的符号 课堂总结 主要针对以下方面: 1、多项式×多项式. 2、整式的乘法. 用一个多项式中的每一项乘遍另一个多项式的每一项,不要漏乘在没有合并同类项之前,两个多项式相乘展开后的项数应是这两个多项式项数之 积. 本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。内容由一线名师原创,立意新,图片精,是非常强的一手资料。

深入探究多项式乘法的快速算法

深入探究多项式乘法的快速算法 焦作市第一中学 闵梓轩 一、 高精度、多项式与生成函数 1.1 高精度 在OI 中我们有时会碰到一些问题的必要数值超出64位整形的范围,这个时候我们就需要用到高精度方式存储。而高精度数的思想是进制思想的一个具体体现,出于正常人类的习惯,我们所使用的高精度数都采用10进制,即每一位都表示十进制上的一个数,从0~9,更进一步,为了优化高精度数运算所花费的时间与空间,我们采用了万进制,即每一位存0~9999的数,这样同时优化了程序效率,同时在输出上也没有什么太大的问题(每一位不足1000补0即可)。 当然,我们也可以用三进制、五进制、450进制,8964进制的高精度数,虽然因为在输出时会变得非常麻烦而没有人去用,但是它们的可行性正对应了进制的一种思想,比如一个十进制数12450,它的算数含义是0123410*010*510*410*210*1++++二进制数10010,它的算数含义是1 42*12*1+(把为0的位忽略),这样形如 ),0(*0N a x a x a i i n i i i ∈<≤∑=的每一位上的数字在数值表示上都乘上了某个数的一个幂的数正是进制思想的基础。在编程实现上这样的一个数我们通常用整形数组来表示,a[i]表示i 次项的系数,如果数组长度为n ,那么学过高精度的人都知道两个数相加的时间复杂度是θ(n),两个数相乘的时间复杂度是O(n^2),在信息学竞赛中,这样的时间复杂度足以满足大部分题目的需求,因为一般来说我们的数值都不会达到10^100000次方这么大。 1.2多项式 熟悉数学的我们能够发现上面这样的一个式子,如果忽略了括号中的内容的限制,那么 我们可以发现这样的式子其实就是我们所学的n 次多项式∑∞==0*)(i i i x a x A , 比如十进制数12450就是05421234++++x x x x 当x=10的时候的数值嘛。所以,当一个值b 代入多项式A(x)时,这个式子也就变成了一个值A(b)。但是要注意的是多项式的系数是没有限制的,所以多项式可以用浮点数组表示,而且我们可以惊奇地发现多项式的加法和乘法在代码上除了不需要进位之外和高精度是一样的。所以说,我们所见的b 进制数值,就是一个当x=b 的多项式的取值而已。但是在多项式中,x 的意义仅仅是一个符号而已,ai*x^i 你可以理解为ai 在数组的第i 个位置。 我们需要注意的是,n 次多项式的数组表示需要用到n+1个数,为什么?因为有n 个含x 的项和一个常数项,所以我们一般把多项式A(x)的最高次项的次数+1称作为这个多项式的次数界(次数界的真正意义是系数不为零的最高次项的次数+1,下文中提到的“次数界“为

整式的乘法计算题

一、计算 1.a2·(-a)5·(-3a)3 2.[(a m)n]p 3.(-mn)2(-m2n)3 4.(-a2b)3·(-ab2) 5.(-3ab)·(-a2c)·6ab2 6.(-ab)3·(-a2b)·(-a2b4c)27.(3m-n)(m-2n). 8.(x+2y)(5a+3b). 9.5x(x2+2x+1)-(2x+3)(x-5) 10. (-2x-5)(2x-5) 11. -(2x2+3y)(3y-2x2) 12. (a-5) 2-(a+6)(a-6)

13. (2x -3y )(3y +2x )-(4y - 3x )(3x +4y ) 14. 3(2x +1)(2x -1)-2(3x +2)(2- 3x ) 15. (31x +y )(31x -y )(9 1x 2+y 2) 16. )1)(1)(1)(1(42x x x x ++-+ 二、基础训练 1.多项式8x 3y 2-12xy 3z 的公因式是_________. 2.多项式-6ab 2+18a 2b 2-12a 3b 2 c 的公因式是( ) A .-6ab 2c B .-ab 2 C .-6ab 2 D .-6a 3b 2c 3.下列用提公因式法因式分解正确的是( ) A .12abc-9a 2b 2 =3abc (4-3ab ) B .3x 2y-3xy+6y=3y (x 2-x+2y ) C .-a 2+ab-ac=-a (a-b+c ) D .x 2y+5xy-y=y (x 2+5x ) 4.下列多项式应提取公因式5a 2b 的是( ) A .15a 2b-20a 2b 2 B .30a 2b 3-15ab 4-10a 3b 2 C .10a 2b-20a 2b 3+50a 4b D .5a 2b 4-10a 3b 3+15a 4b 2 5.下列因式分解不正确的是( ) A .-2ab 2+4a 2b=2ab (-b+2a ) B .3m (a-b )-9n (b-a )=3(a-b )(m+3n ) C .-5ab+15a 2bx+25ab 3y=-5ab (-3ax-5b 2y ); D .3ay 2-6ay-3a=3a (y 2-2y-1) 6.填空题: (1)ma+mb+mc=m (________); (2)多项式32p 2q 3-8pq 4m 的公因式是_________; (3)3a 2-6ab+a=_________(3a-6b+1);(4)因式分解:km+kn=_________; (5)-15a 2+5a=________(3a-1); (6)计算:21××=_________. 7.用提取公因式法分解因式: (1)8ab 2-16a 3b 3; (2) -15xy-5x 2; (3)a 3b 3+a 2b 2-ab ; (4) -3a 3m-6a 2m+12am . 8.因式分解:-(a-b )mn-a+b . 三、提高训练 9.多项式m (n-2)-m 2(2-n )因式分解等于( ) A .(n-2)(m+m 2) B .(n-2)(m-m 2) C .m (n-2)(m+1) D .m (n-2)(m-1)

多项式×多项式教案

教学过程设计

(-x+3) 中的每一项,计算可得:-2x2+6x+x-3 . 例 1 计算: (1)(x+2y)(5a+3b); (2)(2x-3)(x+4); (3)(x+y)2; (4)(x+y)(x2-xy+y2) 解:(1)(x+2y)(5a+3b) =x·5a+x·3b+2y·5a+2y·3b =5ax+3bx+10ay+6by; (2)(2x-3)(x+4) =2x2+8x-3x-12 =2x2+5x-12 (3)(x+y)2 =(x+y)(x+y) =x2+xy+xy+y2 =x2+2xy+y2; (4)(x+y)(x2-xy+y2) =x3-x2y+xy2+x2y-xy2+y3 =x3+y3 结合例题讲解,提醒学生在解题时要注意:(1)解题书写和格式的规范性;(2)注意总结不同类型题目的解题方法、步骤和结果;(3)注意各项的符号,并要注意做到不重复、不遗漏 三、课堂训练 1.计算: (1)(m+n)(x+y);

教学程序及教学内容 (2)(x-2z)2; (3)(2x+y)(x-y) 2.选择题: (2a+3)(2a-3)的计算结果是( ) (A)4a2+12a-9 (B)4a2+6a-9 (C)4a2-9 (D)2a2-9 3.判断题: (1)(a+b)(c+d)=ac+ad+bc; ( ) (2)(a+b)(c+d)=ac+ad+ac+bd; ( ) (3)(a+b)(c+d)=ac+ad+bc+bd; ( ) (4)(a-b)(c-d)=ac+ad+bc-ad( ) 4.长方形的长是(2a+1),宽是(a+b),求长方形的面积。 5.计算: (1)(xy-z)(2xy+z); (2)(10x3-5y2)(10x3+5y2) 6.计算: (1)(3a-2)(a-1)+(a+1)(a+2); (2)(3x+2)(3x-2)(9x2+4) 四、小结归纳 启发引导学生归纳本节所学的内容: 1.多项式的乘法法则: (a+b)(m+n)=am+an+bm+bn 2.解题(计算)步骤(略)。 3.解题(计算)应注意:(1)不重复、不遗漏;(2)符号问题。五、作业设计注意根据信息反馈,及时提醒学生正确运用多项式的乘法法则,注意例题讲解时总结的三条。 学生应用:多项式与多项式相乘,就是先用一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加. 学生认真计算,教师订正。 学生回答,教师点评。

多项式的乘法教学设计

15.1.5 整式的乘法2 【课题】:多项式的乘法 【教学时间】: 【学情分析】:(适用于特色班)学生前面已学习了幂的运算性质、单项式的乘法、单项式与多项式的乘法及乘法的分配律,适当地进行复习,即可巩固前面的学习,也为多项式乘法的学习打好基础,使学生较容易地把多项式乘法归结为单项式的乘法。 【教学目标】: (一)教学知识点 探索并了解多项式与多项式相乘的法则,并运用它们进行运算. (二)能力训练要求 让学生主动参与到一些探索过程中去,逐步形成独立思考,主动探索的习惯,培养思维的批判性、严密性和初步解决问题的愿望和能力. (三)情感与价值观要求 在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美. 【教学重点】:多项式与多项式相乘的法则。 【教学难点】:运用法则进行混合运算。 【教学突破点】:整体思想的贯彻。 【教法、学法设计】:合作探究式分层次教学,讲授、练习相结合。 【课前准备】:课件 【教学过程设计】: 教学环节教学活动设计意图 一、师生互动,探究分类 1.练一练:教科书第175页练习1、2 2.前面这节课我们研究了单项式与单项式、单项式与多项式相乘的方法,请同学回忆方法. 二、创造问题情境,探究新知 我们再来看一看第一节课悬而未决的问题: 为了扩大绿地面积,要把街心花园的一块长a米,宽m米的长 方形绿地增长b米,加宽n米(课件展示街心花园实景,而后抽象成 数学图形,并用不同的色彩表示出原有部分及其新增部分).提出问 题:你能用几种方法表示扩大后绿地的面 积?不同的表示方法之间有什么关系? 用不同的方法怎样表示扩大后的绿地 面积?用不同的方法得到的代数式为什么是 相等的呢?这个问题激起学生的求知欲望, 引起学生对多项式乘法学习的兴趣. 从实际生 活中的实例引 入,体现了数 学知识源于生 活,调动学生 学的积极性。

多项式算法

#include #include #include #include #include #define NULL 0 //************************************************** typedef struct LNode { float coef;//系数 int exp;//指数 struct LNode *next; }LNode, *Polyn; //************************************************** //销毁传递过来的链表【多项式】 void DestroyPolyn(Polyn &L) { Polyn p; p=L->next; while(p) { L->next=p->next; free(p); p=L->next; } free(L); } //************************************************** /*判断指数是否与多项式中已存在的某项相同*/ int JudgeExp(Polyn L,Polyn e) { Polyn p; p=L->next; while(p!=NULL&&(e->exp!=p->exp)) p=p->next; if(p==NULL) return 0; else return 1; } //******************************************************** //创建一个项数为n的多项式,有头结点 void CreatePolyn(Polyn &L,int n)

5.多项式乘以多项式练习题

5.多项式与多项式相乘 一、选择题 1.计算(2a-3b)(2a+3b)的正确结果是() A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b2 2.若(x+a)(x+b)=x2-kx+ab,则k的值为() A.a+b B.-a-b C.a-b D.b-a 3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是() A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y3 4.(x2-px+3)(x-q)的乘积中不含x2项,则() A.p=q B.p=±q C.p=-q D.无法确定 5.若0<x<1,那么代数式(1-x)(2+x)的值是() A.一定为正B.一定为负C.一定为非负数D.不能确定6.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是() A.2(a2+2)B.2(a2-2)C.2a3D.2a6 7.方程(x+4)(x-5)=x2-20的解是() A.x=0 B.x=-4 C.x=5 D.x=40 8.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为() A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1 C.a=2,b=1,c=-2 D.a=2,b=-1,c=2 9.若6x2-19x+15=(ax+b)(cx+d),则ac+bd等于() A.36 B.15 C.19 D.21 10.(x+1)(x-1)与(x4+x2+1)的积是() A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1 二、填空题 1.(3x-1)(4x+5)=_________. 2.(-4x-y)(-5x+2y)=__________. 3.(x+3)(x+4)-(x-1)(x-2)=__________. 4.(y-1)(y-2)(y-3)=__________. 5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.

多项式的乘法优秀教案

多项式的乘法 【教学目标】 1.经历探索多项式的乘法运算法则的过程,掌握多项式与多项式相乘的法则。 2.会运用单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,化简整式。 3.会用多项式的乘法解决简单的实际问题。 【教学重难点】 多项式与多项式相乘的运算。 【教学过程】 一、创设情境,引出课题 小明找来一张铅画纸包数学课本,已知课本长a 厘米,宽b 厘米,厚c 厘米,小明想将课本封面与封底的每一边都包进去m 厘米,问如果你是小明你会在铅画纸上裁下一块多大面积的长方形? 二、引出新知,探究示例 1.合作探索学习:有一家厨房的平面布局如图1 (1)请用三种不同的方法表示厨房的总面积。 (2)这三种不同的方法表示的面积应当相等,你能用运算律解释吗? (3)通过上面的讨论,你能总结出单项式与多项式相乘的运算规律 吗? (让学生以同桌合作的形式进行探索,然后表达交流) 答: (1)总面积:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm (2)总面积相等,由此可得到(a+n)(b+m)=a(b+m)+n(b+m)……① =ab+am+nb+nm ……② 第①步运用分配律把(b+m)看成一个数,第②步再运用分配律。 (3)由(a+n)(b+m)=ab+am+nb+nm 师生共同总结得出多项式与多项式相乘的法则: (学生归纳,教师板书) 2.运用新知,计算例题 例1:计算 n a m 右侧 矮矮柜 b

(1)(x+y)(a+2b) (2)(3x-1)(x+3) (3)(x-1)2 解:(1)(x+y)(a+2b)=x ?a+x ?(2b)+y ?a+y ?(2b)=ax+2bx+ay+2by (2)(3x-1)(x+3)=3x2+9x-x-3=3x2+8x-3 (3)(x-1)2=(x-1)(x-1)=x2-x-x+1=x2-2x+1 教师在示范过程中引导学生注意这三题都按多项式相乘的法则进行,运算过程中注意符号,防止漏乘,结果要合并同类项。 例2,先化简,再求值:(2a-3)(3a+1)-ba(a-4),其中a= 721- 解:(2a-3)(3a+1)-ba(a-4)=6a2+2a-9a-3-6a2+24a=17a-3 当a=721-时,原式=17a-3=17×(1719-)-3=-19-3=-22 注意的几点:(1)必须先化简,再求值,注意符号及解题格式。 (2)当代入的是一个负数时,添上括号。 (3)在运算过程中,把带分数化为假分数来计算。 反馈练习:计算当y=-2时,(3y+2)(y-4)-(y-2)(y-3)的值。 三、分层训练,能力升级 1.填空 (1)(2x-1)(x-1)= (2)x(x2-1)-(x+1)(x2+1)= (3)若(x-a)(x+2)=x2-6x-16,则a= (4)方程y(y-1)-(y-2)(y+3)=2的解为 2.某地区有一块原长m 米,宽a 米的长方形林区增长了200米,加宽了15米,则现在这块地的面积为 平方米。 3.某人以一年期的定期储蓄把2000元钱存入银行,当年的年利率为x ,第二年的年利率减少10%,则第二年到期时他的本利和为多少元? 四、小结 让学生谈谈通过这节课的学习,有哪些收获与疑问?教师及时总结内容并解答疑惑。 【作业布置】 课本的分层作业题。

浙教版七年级数学下册多项式的乘法作业练习

3.3 多项式的乘法 一.选择题(共4小题) 1.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为() A.1 B.﹣3 C.﹣2 D.3 2.(x2+ax+8)(x2﹣3x+b)展开式中不含x3和x2项,则a、b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=0,b=0 D.a=3,b=8 3.若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A.﹣4 B.﹣2 C.0 D.4 4.下列计算错误的是() A.(x+a)(x+b)=x2+(a+b)x+ab B.(x+a)(x﹣b)=x2+(a+b)x+ab C.(x﹣a)(x+b)=x2+(b﹣a)x+(﹣ab) D.(x﹣a)(x﹣b)=x2﹣(a+b)x+ab 二.填空题(共8小题) 5.若(x+1)(x+a)展开是一个二次二项式,则a= 6.定义运算:a⊕b=(a+b)(b﹣2),下面给出这种运算的四个结论:①3⊕4=14;②a⊕b=b⊕a; ③若a⊕b=0,则a+b=0;④若a+b=0,则a⊕b=0.其中正确的结论序号为.(把 所有正确结论的序号都填在横线上) 7.已知m+n=3,mn=﹣6,则(1﹣m)(1﹣n)= . 8.已知(3x﹣p)(5x+3)=15x2﹣6x+q,则p+q= . 9.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(2a+b)的长方形,则需要C类卡片张. (第9题图) 10.一个三角形的底边长为(2a+6b),高是(3a﹣5b),则这个三角形的面积是.11.计算下列各式,然后回答问题. (a+4)(a+3)= ;(a+4)(a﹣3)= ; (a﹣4)(a+3)= ;(a﹣4)(a﹣3)= .

多项式乘多项式练习题

整式乘法:多项式乘多项式习题(4) 一、选择题 1.计算(2a-3b)(2a+3b)的正确结果是() A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b2 2.若(x+a)(x+b)=x2-kx+ab,则k的值为() A.a+b B.-a-b C.a-b D.b-a 3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是() A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y3 4.(x2-px+3)(x-q)的乘积中不含x2项,则() A.p=q B.p=±q C.p=-q D.无法确定 5.若0<x<1,那么代数式(1-x)(2+x)的值是() A.一定为正B.一定为负C.一定为非负数D.不能确定6.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是() A.2(a2+2)B.2(a2-2)C.2a3D.2a6 7.方程(x+4)(x-5)=x2-20的解是() 8.A.x=0 B.x=-4 C.x=5 D.x=40 9.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为() A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1 C.a=2,b=1,c=-2 D.a=2,b=-1,c=2 10.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于() A.36 B.15 C.19 D.21 11.(x+1)(x-1)与(x4+x2+1)的积是() A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1 二、填空题 1.(3x-1)(4x+5)=__________. 2.(-4x-y)(-5x+2y)=__________. 3.(x+3)(x+4)-(x-1)(x-2)=__________. 4.(y-1)(y-2)(y-3)=__________. 5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.

哈密顿图判定问题的多项式时间算法

哈密顿图判定问题的多项式时间算法 姜新文等** (410073,国防科技大学计算机学院,长沙) Abstract: 本文给出一个称为 问题的定义及其多项式时间判定算法。已经证明包括哈密顿图判定问题在内的众多 完全问题可以多项式归结到 问题。 问题的多项式时间判定算法就是 完全问题的多项式判定算法。本文结果暗示 。本文涉及的内容属于简单的图论问题算法设计的入门性范畴,被计算机、数学和信息安全等类专业本科以上知识背景覆盖。相关专业本科甚至专科以上学生通过适当求教算法设计、计算复杂性、图论、运筹学和密码算法相关教师和权威可以阅读本文。 Key words: Algorithm, problem, problem, complete problem 1 问题引入及若干定义 哈密顿图判定问题是 完全问题。为了求解该问题,我们需要对问题进行转化。为缩短证明长度,以分段确认,分割围歼,综合众多意见,我们提出 问题,并将注意力集中在 问题多项式时间判定上。 算法是一堆动作的有序集合。为一个问题设计算法是容易的,将一些动作凑在一起即可。设计算法的困难性和严肃性在于,你的算法是否实现了你的计算目标?于是需要证明。而如何证明常常让人无从着手。 问题是一个人工构造的问题,它的特别的结构特性,使我们容易找到时间复杂性为关于问题规模的多项式函数算法并证明其正确性。该问题的定义已经可以在很多文章中查到。为了本文的完整性,我们首先转述对 问题的定义。 定义1称 , , , , 是加标多级图(labeled multistage graph),如果满足以下条件: 1. 为顶点集合, ∪ ∪ ∪?∪ , ∩ ?,0 , , 。如果 ∈ ,0 ,称 所在级为 级,也称 是 级的顶点。 称为 的级。 2. 为边的集合, 中的边均为有向边,它用三元组? , , ?表示。如果? , , ?∈ ,1 ,则 ∈ , ∈ 。称? , , ?为 的第l级的边。 3. 和 都只包含唯一顶点。称 中的唯一顶点为源点,记为 ,称 中的唯一顶点为汇点,记为 。 4. 对每个顶点 ∈ ,都有一个边集 ( )作为标记, ( )? 。称 ( )为 的边集。 例如,图1所示的两个图,都是加标多级图。各个顶点的边集的一组可能的取值定义如下。对左边的图, (1) , (2) , (3) , , , , (4) , , , (5) , , , (6) , , , , (7) , (8) , , , , ( ) , , , , 。对右边的图, (1) ?, (2) ?, (3) ?, (4) , , , (5) , , , (6) , , , (7) (7 ) , , , , (8) , , , , ( ) ?。 定义2设 , , , , 是一个加标多级图, ? ? (1 , )是 中一**Please visit https://www.360docs.net/doc/cf2411220.html,/u/1423845304 for revision information

多项式的乘法练习试题一

单元测验 一、判断题1.x 5·x 5=2x 5.( )2.a 2·a 3=a 6.( ) 3.( 21 xy 2)3=2 1x 3y 6.( )二、填空题(每小题2分,共20分) 2.(-b )2·(-b )3·(-b )5= . 3.3. -2a (3a -4b )= . 4. (9x +4)(2x -1)= . 5. (3x +5y )· = 9x 2-25y 2. 6. (x +y )2- = (x -y )2. 7. 若x 2+x +m 是一个完全平方式,则m = . 8. 若2x +y =3,则4x ·2y = . 9.若x (y -1)-y (x -1)=4, 则2 2 2y x -xy = . 10. 若m 2+m -1=0,则m 3+2m 2+2001= . 三、选择题(每小题3分,共24分) 1. 下列计算正确的是( ) A.2x 3·3x 4=5x 7 B.3x 3·4x 3=12x 3 C.2a 3+3a 3=5a 6 D.4a 3·2a 2=8a 5 2. 下列多项式中是完全平方式的是( ) A.2x 2+4x -4 B.16x 2-8y 2+1 C.9a 2-12a +4 D.x 2y 2+2xy +y 2 4. 两个连续奇数的平方差是( ) A. 6的倍数 B. 8的倍数 C. 12的倍数 D. 16的倍数

5. 已知x +y =7,xy =-8,下列各式计算结果不正确的是( ) A. (x -y )2=81 B. x 2+y 2=65 C. x 2+y 2=33 D. x 2-y 2=±63 7. (-135)1997×(-253 )1997等于( ) A.-1 B.1 C.0 D.1997 8. 已知a -b =3,那么a 3-b 3-9ab 的值是( ) A.3 B.9 C.27 D.81 四、计算(每小题5分,共20分) 1.(x -2)2(x +2)2·(x 2+4) 2. 2.(5x +3y )(3y -5x )-(4x -y )(4y +x ) 五、解方程(组)(每小题5分,共10分) (3x +2)(x-1)=3(x +1)(x +1) 六、求值题(每小题5分,共10分) 1.已知(x -y )2=6 x +y =5求xy 的值. 3.(a -b )2=(a +b )2+_____. 4.化简:4(a +b )+2(a +b )-5(a +b )=_____. 5.x +y =-3,则32-2x -2y =_____. 12.若3x =12,3y =4,则27x -y =_____. 6.(x +2)(3x -a )的一次项系数为-5,则a =_____.

人教版初二数学上册多项式乘式项式

14. 1. 4整式的乘法 多项式乘以多项式 教学目标: 知识与技能:经历探索多项式与多项式相乘的运算法则的过程,会进行整式相乘的运算。 过程与方法:在探索过程中,体会知识间的联系。 情感价值观:培养学生的分析解决问题的能力,使学生养成良好的学习习惯。教学重点:多项式与多项式相乘的运算法则的探索。 教学难点:灵活运用法则进行计算和化简。 教学方法:创设情境-主体探究-合作交流-应用提高。 媒体资源:多媒体投影 教学过程: 一、课前练习 师:前面我们学习了整式的乘法,快速做一做,看看你掌握的怎样? 计算:(1) -2x2 3xy2(2) -2x(1 - x) . 2 2 4 (3)x 4x x (4)(4x x-1) 9x 生:交流答案 师:同学们看这道题怎样做?(a+b)(p+q)和我们以前所学的有何不同?生:现在是多项式乘多项式 师:那多项式乘多项式如何去计算呢?这节课我们一起来探究吧! 二、探求新知 创设情景引入新课: 为了扩大街心花园的绿地面积,把一块原长a米、宽p米的长方形绿地,增长了

b米,加宽了q米.你能用几种方法求出扩大后的绿地面积?

q f- 你能用不同的方法表示此长方形的面积吗? 计算方法一:是先计算大长方形的长和宽,然后利用长乘以宽得出大长方 形的面积,即(a+b) (p+q) 计算方法二:先分别求出四个长方形的面积,再求它们的和, 2 即(ap+aq+bp+bq 米 两种计算结果表示的是同一个量, 因此(a+b) (p+q)= ap+aq+bp+bq. 引导学生把其中一个因式a b看作一个整体,再利用乘法分配律来理(p+q) 与(a+b)相乘的结果,从而导出多项式与多项式相乘的法则。 三、归纳、小结多项式乘法法则 (1)文字叙述:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个 多项式的每一项,再把所得的积相加 (2)用字母表示 法则的形成是本节课的重点之一。在学生归纳法则的过程中,结合学生讨论的情况,播放法则的形成动画,并在此过程中进行启发讲解,让学生明白两个“每一项”的含义。

多项式的乘法典型例题(整理)

多项式的乘法 多项式的乘法的法则: 一般地,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项。然后把所得的积相加。 整式的乘法运算与化简 多项式的乘法 转化为单项式 与多项式相乘 代数式的化简求值 典型例题 一.整式的计算 1.)1-n -m )(n 3m (+ 2.若c bx ax x x ++=+-2 )3)(12(,求c b a ,,的值. 二.确定多项式中字母的值 1.多项式)32)(8x mx -+(中不含有x 的一次项,求m 的值? 2.若))(23(22q px x x x +++-展开后不含3x 和2x 项,求q p ,的值。

三.与方程相结合 解方程:8)2)(2(32-=-+x x x x 四.化简求值: 化简并求值:)3(2)42)(2(2 2--++-m m m m m ,其中2=m 五.图形应用 1.有若干张如图所示的正方形A 类、B 类卡片和长方形C 类卡片,如果要拼成一个长为(2a +b ),宽为(a +2b )的大长方形,则需要C 类卡片 张. 2.如图所示的正方形和长方形卡片若干张,拼成一个长为(a+3b ),宽为(2a+b )的矩形,需要这三类卡片共________ 张. 3.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形,把余下的部分剪成两个直角梯形后,再拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,这个等式是( ) A .a 2-b 2=(a +b )(a -b ) B .(a +b )2=a 2+2ab +b 2 C .(a -b )2=a 2-2ab +b 2 D .a 2-ab =a (a -b )

多项式的乘法练习题

多项式乘多项式:(a+b)(c+d)= (x+a)(x+b)= 平方差公式: (a+b)(a-b)= 完全平方公式:(a+b)2= (a-b)2= 1.化简()()()a b c b c a c a b ---+-的结果是( ) A .222ab bc ac ++ B .22ab bc - C .2ab D .2bc - 2.下列各式中计算错误的是( ) A .3 4 2 2(231)462x x x x x x -+-=+- B .2 3 2 (1)b b b b b b -+=-+ C .231 (22)2 x x x x - -=-- D . 342232(31)2323 x x x x x x -+=-+ 3.若(8×106)(5×102)(2×10)=M ×10a ,则M 、a 的值为( ) A .M =8,a =8 B .M =8,a =10 C .M =2,a =9 D .M =5,a =10 4、若2x 2+5x +1=a (x +1)2+b (x +1)+c ,那么a ,b ,c 应为( ) A .a =2,b =-2,c =-1 B .a =2,b =2,c =-1 C .a =2,b =1,c =-2 D .a =2,b =-1,c =2 5、.若))((b x a x +-的乘积中不含x 的一次项,则b a ,的关系是( ) A.互为倒数 B.相等 C.互为相反数 D.b a ,都为0 6、.下列各式中,不能用平方差公式计算的是( ) A.)43)(34(x y y x --- B.)2)(2(2 222y x y x +- C.))((a b c c b a +---+ D.))((y x y x -+- 7、.下列各式中,相等关系一定成立的是 ( ) A 、22)()(x y y x -=- B 、6)6)(6(2 -=-+x x x C 、2 22)(y x y x +=+ D 、)6)(2()2()2(6--=-+-x x x x x 8.若9x 2+4y 2=(3x +2y )2+M ,则 M 为( ) A .6xy B .-6xy C .12xy D .-12xy 9.下列等式不能恒成立的是( ) A .(3x -y )2=9x 2-6xy +y 2 B .(a +b -c )2=(c -a -b )2 C .(0.5m -n )2=0.25m 2-mn +n 2 D .(x -y )(x +y )(x 2-y 2)=x 4-y 4 10、已知(x+3)(x-2)=x 2 +ax+b ,则a 、b 的值分别是( ) A .a=-1,b=-6 B .a=1,b=-6 C .a=-1,b=6 D .a=1,b=6 11. 观察下列算式:12=2,22=4,32=8,42=16,52=32,62=64,72=128,8 2=256,…… 根据其规律可知10 8的末位数是( ) A 、2 B 、4 C 、6 D 、8

初中数学-多项式乘多项式练习

初中数学-多项式乘多项式练习 ◆随堂检测 1、多项式与多项式相乘,现用一个多项式的每一项乘另一个多项式的 ,再把所得的积 。 2、计算:=-?+)5()3(x x 。 3、)3)(3(+-ab ab 的计算结果是 。 ◆典例分析 例题:将一多项式[(17x 2-3x +4)-(ax 2 +bx +c )],除以(5x +6)后,得商式为(2x +1),余式为0。求a -b -c =? A .3 B .23 C .25 D .29 分析:①被除数=除数?商,②两个多项式相等即同类项的系数相等 解:∵ 6171016261525)12()65(2++=?+?+?+?=+?+x x x x x x x x ∵[(17x 2-3x +4)-(ax 2+bx +c )]=)4()3()17(2c x b x a -+--+- ∴=++617102x x )4()3()17(2c x b x a -+--+- ∴?????=-=--=-641731017c b a 得?????-=-==2 207 c b a ∴29)2()20(7=----=--c b a 故选D ◆课下作业 ●拓展提高 1、若b x x x a x +-=+?+5)2()(2,求a ,b 的值。 2、若()()4-+x a x 的积中不含x 的一次项,求a 的值。 3、若()()53--=x x M ,()()62--=x x N ,试比较M ,N 的大小。

4、计算: )2)(1()3)(3(---++x x x x 5、已知2514x x -=,求()()()2 12111x x x ---++的值 ●体验中考 1、(福州)化简:(x -y )(x+y )+(x -y )+(x+y ). 2、(宁夏)已知:32 a b += ,1ab =,化简(2)(2)a b --的结果是 . 参考答案:

数据结构 多项式乘法

实习报告 一、实习题: 请写出计算两个以单链接表表示的多项式相乘的程序。 1.需求分析和说明 两个多项式相乘,可以利用两个多项式的加法来实现,因为乘法运算可以分 解为一系列的加法运算:C(x)=A(x)*B(x)=A(x)*(b1x+b2x2+…+b n x n)=∑ = n i i i x b x A 1 ) ( 先用其中一个多项式去乘以另一个多项式的每一项,得出的若干个多项式按照一定的顺序相加,即幂不同的按照升幂排列,幂相同的将系数相加。 例如: 对于(X->1+2X->2)*(2X->2+4X->3). X->1*(2X->2+4X->3)=2X->3+4X->4; 2X->2*(2X->2+4X->3)=4X->4+8X->5; 排列结果:2X->3+8X-4+8X->5 2.设计 用两个单链表的存储两个多项式,每个结点包含单项式的系数,幂和指向下一个元素地址的指针。用其中的一个多项式乘以另一个多项式的每一项,随后将所得结果按照升幂顺序排列,最后得到结果。 存储结构: //单项式结构 struct Term { float coef; // 系数。 int exp; // 幂指数。 Term( float c, int e) { coef = c; exp = e;} Term( ) { } friend int operator == (const Term & L, const Term & T ) { return L.exp == T.exp; } friend int operator > (const Term & L, const Term & T ) { return L.exp > T.exp; } friend int operator < (const Term & L, const Term & T ) { return L.exp < T.exp; } friend Term & operator += ( Term & L, const Term & T ) { L.coef += T.coef; return L; } //幂指数相同,则系数相加。 friend Term & operator *=(Term &L, const Term &T){ //实现单项式乘法 L.coef*=T.coef; L.exp+=T.exp;

相关文档
最新文档