机电传动系统的运动方程式

机电传动系统的运动方程式
机电传动系统的运动方程式

① 掌握机电传动系统的运动方程式,并学会用它来分析与判别机电传动系统的运行状

态;

运动方程式

根据动力学原理,T M 、T L 、ω(或n )之间的函数关系如下:

t

J T T d d L M ω=-dt

dn GD T T .3752L M =-∴…… 运动方程式 dn T ,时,当0L M >=>dt a T 传动系统为加速运动;,时,当0L M <=

dn a T T 传动系统为减速运动;GD 2.375d dn T dt

=动态转矩

M L d M L d T T T T T T -==+……转矩平衡方程式

M L T T ≠动态(时):

M L d :T 0

T T ==稳态(时)系统恒速运转

T M 、T L 、n 的参考方向

对转矩正方向的约定:

T M 与n 的方向一致,即T M 为正;

T L 与n 的方向相反,即T L 为正。

无论是输出转矩T M ,还是负载转矩T L ,与n 方向相同的称为拖动转矩,与n 方向相反的称为制动转矩。

举例:如图所示电动机拖动重物上升和下降。 当重物上升时:

T M 、T L 、n 的方向如图(a )

所示。运动方程式为:

t n J T T d d 602L M π=- 因此重物上升时,T M 为拖动转矩,T L 为制动转矩。

T M 为正, T L 为正。

(a) 启动时

② 会根据机电传动系统中TM 、TL 、n 的方向确定TM 、TL 是拖动转矩还是制动转矩,从而判别出系统的运行状态,是处于加速、减速还是匀速;

③ 掌握机电传动系统稳定运行的条件,并学会用它来分析与判别系统的稳定平衡点。 当重物下降时:

T M 、T L 、n 的方向如图(b )所

示。 运动方程式为:

因此重物下降时,T M 为制动

转矩,T L 为拖动转矩。 T M 为负,

T L 为负。

(a) 制动时 t

J T T d d )(L M ω

=---即: t

J T T d d M L ω=-

机电运动控制系统离线作业必

机电运动控制系统离线作 业必 Newly compiled on November 23, 2020

浙江大学远程教育学院 《机电运动控制系统》课程作业(必做) 姓名:严超学号: 3 年级:16秋电气学习中心:武义 ————————————————————————————— 1.直流电机有哪些调速方法根据其速度公式说明之, 并说明如何釆用电力电子手段实现。 答:根据直流电机速度公式,有 (1)电枢电压Ua控制-调压调速(向下调速):采用电力电子手段时,有晶闸管可控整流器供电和自关断器件H型桥脉宽调制(PWM)供电等方式,其损耗小,控制性能好。 (2)磁场φ控制-弱磁(向上调速),采用电力电子手段时,有晶闸管可控整流器供电励磁控制。 (3)由于运行损耗大、效率低,一般不再采用串Ra调速。 2.画出双闭环晶闸管—直流电动机不可逆调速系统电原理图(非方块图),须清楚表达两个闭环的关键元件,写出各部分名称,标注有关信号量;指出两闭环连接上的特点及相互关系。 答:双闭环晶闸管-直流电动机不可逆调速系统电路原理图如下: 两闭环连接上的关系是速度调节器的输出作为电流调节器的输入,这就使得该系统具有由速度调节器的输出限幅值确定了电流环的给定值,进面确定了系统的最大电流的特点。 3.分析双闭环晶闸管—直流电动机不可逆调速系统:

(1) 如果要改变转速,应调节什么参数为什么 (2) 如要控制系统的起动电流、确保系统运行安全,应调节什么参数为什么 答:(1)改变转速时只能改变速度调节器的输入ug,因为它是速度环的指令信号。改变速度调节哭的参数对稳态速度无调节作用,仅会影响动态响应速度快慢。 (2)要控制系统的起动电流、确保系统运行安全,应调节速度调节器的输出限幅值。 因为速度调节器的输出限幅值确定了电流环的给定值,进而确定了系统的最大电流。 4. 填空 : 双闭环晶闸管━直流电动机调速系统中,内环为_电流_环,外环为_速度环,其连接关系是:_速度调节器_的输出作为__电流调节器的输入,因此外环调节器的输出限幅值应按__调速系统允许最大电流_来整定;内环调节器的输出限幅值应按__可控整流器晶闸管最大、最小移相触发角_来整定。两调节器均为_PI_型调节器,调速系统能够做到静态无差是由于调节器具有_积分(记忆)功能;能实现快速动态调节是由于节器具有__饱和限幅_功能。 5.在转速、电流双闭环系统中,速度调节器有哪些作用其输出限幅值应按什么要求来调整电流调节器有哪些作用其输出限幅值应如何调整 答:速度调节器用于对电机转速进行控制,以保障:①调速精度,做至静态无差;②机械特性硬,满足负载要求。 速度调节器输出限幅值应按速系统允许最大电流来调整,以确保系统运行安全(过电流保护) 电流调节器实现对电流的控制,以保障:①精确满足负载转矩大小要求(通过电流控制);②调速的快速动态特性(转矩的快速响应)。

直流伺服电机控制系统设计

电子信息与电气工程系课程设计报告 设计题目:直流伺服电机控制系统设计 系别:电子信息与电气工程系 年级专业: 学号: 学生姓名: 2006级自动化专业《计算机控制技术》课程设计任务书

摘要 随着集成电路技术的飞速发展,微控制器在伺服控制系统普遍应用,这种数字伺服系统的性能可以大大超过模拟伺服系统。数字伺服系统可以实现高精度的位置控制、速度跟踪,可以随意地改变控制方式。单片机和DSP在伺服电机控制中得到了广泛地应用,用单片机作为控制器的数字伺服控制系统,有体积小、可靠性高、经济性好等明显优点。。本设计研究的直流伺服电机控制系统即以单片机作为核心部件,主要是单片机为控制核心通过软硬件结合的方式对直流伺服电机转速实现开环控制。 对于伺服电机的闭环控制,采用PID控制,利用MATLAB软件对单位阶跃输入响应的PID 校正动态模拟仿真,研究PID控制作用以及PID各参数值对控制系统的影响,通过试凑法得到最佳PID参数。同时能更深度地掌握在自动控制领域应用极为广泛的MATLAB软件。 关键词:单片机直流伺服电机 PID MATLAB

目录 1.引言 ...................................................... 错误!未定义书签。2.单片机控制系统硬件组成.................................... 错误!未定义书签。 微控制器................................................ 错误!未定义书签。 DAC0808转换器.......................................... 错误!未定义书签。 运算放大器............................................... 错误!未定义书签。 按键输入和显示模块....................................... 错误!未定义书签。 按键输入............................................ 错误!未定义书签。 显示模块............................................ 错误!未定义书签。 直流伺服电动机.......................................... 错误!未定义书签。 3.单片机控制系统软件设计..................................... 错误!未定义书签。 主程序................................................... 错误!未定义书签。 键盘处理子程序........................................... 错误!未定义书签。 4.控制系统原理图及仿真....................................... 错误!未定义书签。 控制系统方框图........................................... 错误!未定义书签。 控制系统电路原理图....................................... 错误!未定义书签。 Proteus仿真结果........................................ 错误!未定义书签。组件对直流伺服控制系统的仿真................................. 错误!未定义书签。 MATLAB与Simulink简介.................................. 错误!未定义书签。 MATLAB简介......................................... 错误!未定义书签。 Simulink简介....................................... 错误!未定义书签。 直流伺服电机数学模型.................................... 错误!未定义书签。 系统Simulink模型及时域特性仿真......................... 错误!未定义书签。 开环系统Simulink模型及仿真......................... 错误!未定义书签。 单位负反馈系统Simulink模型及仿真................... 错误!未定义书签。 PID校正................................................ 错误!未定义书签。 PID参数的凑试法确定................................ 错误!未定义书签。 比例控制器校正...................................... 错误!未定义书签。 比例积分控制器校正.................................. 错误!未定义书签。 PID控制器校正...................................... 错误!未定义书签。6.小结...................................................... 错误!未定义书签。参考文献..................................................... 错误!未定义书签。附录 ........................................................ 错误!未定义书签。

机电传动控制

习题与思考题 第二章机电传动系统的动力学基础 2.1 说明机电传动系统运动方程中的拖动转矩,静态转矩和动态转矩。 拖动转矩是有电动机产生用来克服负载转矩,以带动生产机械运动的。静态转矩就是由生产机械产生的负载转矩。动态转矩是拖动转矩减去静态转矩。 2.2 从运动方程式怎样看出系统是处于加速,减速,稳态的和静态的工作状态。 T M-T L>0说明系统处于加速,T M-T L<0 说明系统处于减速,T M-T L=0说明系统处于稳态(即静态)的工作状态。 2.3 试列出以下几种情况下(见题2.3图)系统的运动方程式,并说明系统的运动状态是加速,减速,还是匀速?(图中箭头方向表示转矩的实际作用方向) T M T T M=T L T M< T L T M-T L>0说明系统处于加速。 T M-T L<0 说明系统处于减速

T M T L T M T L T M> T L T M> T L 系统的运动状态是减速系统的运动状态是加速 T M T L T T L T M= T L T M= T L 系统的运动状态是减速系统的运动状态是匀速 2.4 多轴拖动系统为什么要折算成单轴拖动系统?转矩折算为 什么依据折算前后功率不变的原则?转动惯量折算为什么依据 折算前后动能不变的原则? 因为许多生产机械要求低转速运行,而电动机一般具有较高的 额定转速。这样,电动机与生产机械之间就得装设减速机构,如 减速齿轮箱或蜗轮蜗杆,皮带等减速装置。所以为了列出系统运 动方程,必须先将各转动部分的转矩和转动惯量或直线运动部分 的质量这算到一根轴上。转矩折算前后功率不变的原则是P=Tω, p不变。转动惯量折算前后动能不变原则是能量守恒MV=0.5Jω 2

电力拖动自动控制系统-运动控制系统习题解答第4、5章

习题四 4.1双闭环调速系统的ASR 和ACR 均为PI 调节器,设系统最大给定电压 *nm U =15V ,转速调节器限幅值为*im U =15V , n N =1500r/min ,N I =20A ,电流过载倍数为2,电枢回路总电阻R =2Ω,s K =20,e C =0.127V·min/r ,求:(1)当系统稳 定运行在*n U =5V ,dL I =10A 时,系统的n 、n U 、*i U 、i U 和c U 各为多少?(2) 当电动机负载过大而堵转时,*i U 和c U 各为多少? 解: (1)150.01min/1500/min nm N U V V r n r α= == 5500/min 0.01min/n U V n r V r α = = = *150.375/40im dm U V V A I A β=== *0.37510 3.75i d U I V β==?= 0.37510 3.75i d U I V β==?= 0.127500102 4.17520 e d c s C n I R U V K +?+?= == (2)堵转时,V I U dm i 15*==β, 0.1270402 420 e d c s C n I R U V K +?+?= == 4.2 在转速、电流双闭环调速系统中,两个调节器ASR ,ACR 均采用PI 调节器。已知参数:电动机:N P =3.7kW ,N U =220V ,N I =20A ,N n =1000 r/min ,电 枢回路总电阻R =1.5Ω,设cm im nm U U U ==* * =8V ,电枢回路最大电流dm I =40A,电力电子变换器的放大系数s K =40。试求: (1)电流反馈系数β和转速反馈系数α。 (2)当电动机在最高转速发生堵转时的,0d U c i i U U U ,,*值。 解:1)* 80.32/40im dm U V V A I A β===

《伺服控制系统课程设计》

《伺服控制系统课程设计》 指导书 ?动化与电??程学院 ?零??年??

?、伺服控制系统课程设计的意义、?标和程序 (3) ?、伺服控制系统课程设计内容及要求 (5) 三、考核?式和报告要求 (11)

?、伺服控制系统课程设计的意义、?标和程序 (?)伺服控制系统程设计的意义 伺服控制系统课程设计是?动化专业?才培养计划的重要组成部分,是实现培养?标的重要教学环节,是?才培养质量的重要体现。通过伺服控制系统课程设计,可以培养考??所学基础课及专业课知识和相关技能,解决具体的?程问题的综合能?。本次课程设计要求考?在指导教师的指导下,独?地完成伺服控制系统的设计和仿真,解决与之相关的问题,熟悉伺服控制系统中控制器设计与整定、电机建模和仿真和其他检测装置的选型以及?程实践中常?的设计?法,具有实践性、综合性强的显著特点。因?对培养考?的综合素质、增强?程意识和创新能?具有?常重要的作?。 伺服控制系统课程设计是考?在课程学习结束后的实践性教学环节;是学习、深化、拓宽、综合所学知识的重要过程;是考?学习、研究与实践成果的全?总结;是考?综合素质与?程实践能?培养效果的全?检验;也是?向?程教育认证?作的重要评价内容。 (?)课程设计的?标 课程设计基本教学?标是培养考?综合运?所学知识和技能,分析与解决?程实际问题,在实践中实现知识与能?的深化与升华,同时培养考?严肃认真的科学态度和严谨求实的?作作风。使考?通过综合课程设计在具备?程师素质??更快地得到提?。对本次课程设计有以下???的要求: 1.主要任务 本次任务在教师指导下,独?完成给定的设计任务,考?在完成任务后应编写提交课程设计报告。 2.专业知识

浙大远程 机电运动控制系统作业 必做 答案

机电运动控制系统(习题集) 必做作业 1.直流电机有哪些调速方法? 根据其速度公式说明之, 并说明如何釆用电力电子 手段实现。 答: 根据直流电机速度公式 φ φe a a a e C I R U C E n -== , 有 (1) 电枢电压 U a 控制 - 调压调速 (向下调速) 采用电力电子手段时,有晶闸管可控整流器供电和自关断器件H 型桥脉宽调 制(PWM)供电等方式, 其损耗小,控制性能好。 (2) 磁场φ 控制 - 弱磁(向上调速),采用电力电子手段时,有晶闸管可 控整流器供电励磁控制。 (3)由于运行损耗大、效率低, 一般不再釆用串 R a 调速。 2. 画出双闭环晶闸管—直流电动机不可逆调速系统电原理图(非方块图),须清 楚表达两个闭环的关键元件,写出各部分名称,标注有关信号量;指出两闭环连 接上的特点及相互关系。 答: 双闭环晶闸管—直流电动机不可逆调速系统电原理图如下: 两闭环连接上的关系是速度调节器的输出作为电流调节器的输入,这就使得该 系统具有由速度调节器的输出限幅值确定了电流环的给定值,进而确定了系统的 最大电流的特点。 3. 分析双闭环晶闸管—直流电动机不可逆调速系统: (1) 如果要改变转速,应调节什么参数?为什么? (2) 如要控制系统的起动电流、确保系统运行安全,应调节什么参数?为什么?

答: (1) 改变转速时只能改变速度调节器的输入u ,因为它是速度环的指令信 g 号。改变速度调节器的参数对稳态速度无调节作用,仅会影响动态响应速度快慢。 (2) 要控制系统的起动电流、确保系统运行安全,应调节速度调节器的输出限幅值。因为速度调节器的输出限幅值确定了电流环的给定值,进而确定了系统的最大电流。 4. 填空 : 双闭环晶闸管━直流电动机调速系统中,内环为_电流_环,外环为_速度_环,其连接关系是:_速度调节器_的输出作为_电流调节器_的输入,因此外环调节器的输出限幅值应按_调速系统允许最大电流_来整定;内环调节器的输出限幅值应按_可控整流器晶闸管最大、最小移相触发角_来整定。两调节器均为_PI_型调节器,调速系统能够做到静态无差是由于调节器具有_积分(记忆)_功能;能实现快速动态调节是由于节器具有_饱和限幅_功能。 5.在转速、电流双闭环系统中,速度调节器有哪些作用?其输出限幅值应按什么要求来调整?电流调节器有哪些作用?其输出限幅值应如何调整? 答:速度调节器用于对电机转速进行控制,以保障:①调速精度,做到静态无差;②机械特性硬,满足负载要求。 速度调节器输出限幅值应按调速系统允许最大电流来调整,以确保系统运行安全(过电流保护) 电流调节器实现对电流的控制,以保障:①精确满足负载转矩大小要求(通过电流控制);②调速的快速动态特性(转矩的快速响应)。 电流调节器的输出限幅作为可控整流器晶闸管的移相触发电压,其限幅值决定了触发角的移相范围,故应按αmin― αmax来调整。 6. 双闭环调速系统正常工作时,调节什么参数可以改变电动机转速?如果速度闭

纯电动汽车传动系统知识分享

第一章绪论 1.1 课题的目的意义: 1.1.1 纯电动汽车的背景 当前,我国电动汽车发展已经进入关键时期,既面临重大的发展机遇,也面临着严峻的挑战。我国电动汽车发展中还存在很多需要解决的问题,如核心技术还不具备竞争力,企业投入不足,政府的统筹协调能力还没有充分发挥等。总体上看来,我国电动汽车产业,起步不晚,发展不慢,但是由于传统汽车及相关产业基础相对薄弱、投入不足,差距仍然存在,中高端技术竞争压力越来越大,因此,必须加大攻坚力度,推动我国汽车产业向创新驱动转型,提高核心技术竞争力,确保我国汽车行业的可持续发展。 纯电动汽车使用电动机作为传动系统的动力源,缓解了能源紧缺的压力,实现了人们长期以来对汽车零尾气排放的期盼,传动系统作为汽车的核心组成部分,其技术创新是纯电动汽车发展的必经之路。 1.1.2 纯电动汽车的意义 近年来,关于纯电动汽车的研究主要集中在能量存储系统、电驱动系统和控制策略的开发研究三方面。 能量存储系统相当于纯电动汽车的发动机,是纯电动汽车电动机所需电能的提供者。目前,铅酸蓄电池是使用最为广泛的,但其充电速度较慢,使用寿命短,节能环保差。随着电动汽车技术的发展,其他电池正在渐渐取代着铅酸蓄电池。目前发展的新电源有纳硫电池、锂电池、镍镉电池、飞轮电池、燃料电池等,尽管这些新电源投入应用,但是短时间内还是无法解决纯电动汽车电源充电缓慢,电量存储低续航里程短的问题。 纯电动汽车整车控制策略的开发研究一直在紧锣密鼓的进行着,整车控制系统是纯电动汽车实现整车控制和管理的关键,是实现和提高整车控制功能和性能水平的一个重要技术保证。其核心技术主要体现在整车控制软件的架构设计、转矩控制策略以及对整车和各系统得能量管理上。尽管控制策略的开发研究一直没有间断,但是,系统开发较为复杂,进度较慢。

伺服驱动系统方案设计

伺服驱动系统设计方案 伺服电机的原理: 伺服的基本概念是准确、精确、快速定位。与普通电机一样,交流伺服电机也由定子和转子构成。定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。伺服电机内部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度{线数)。 伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。 交流伺服电机的工作原理和单相感应电动机无本质上的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 图3 伺服电动机的转矩特性

机电运动控制系统离线作业 必

浙江大学远程教育学院 《机电运动控制系统》课程作业(必做) 姓名:严超学号: 3 年级:16秋电气学习中心:武义 ————————————————————————————— 1.直流电机有哪些调速方法根据其速度公式说明之, 并说明如何釆用电力电子手段实现。 答:根据直流电机速度公式,有 (1)电枢电压Ua控制-调压调速(向下调速):采用电力电子手段时,有晶闸管可控整流器供电和自关断器件H型桥脉宽调制(PWM)供电等方式,其损耗小,控制性能好。 (2)磁场φ控制-弱磁(向上调速),采用电力电子手段时,有晶闸管可控整流器供电励磁控制。 (3)由于运行损耗大、效率低,一般不再采用串Ra调速。 2.画出双闭环晶闸管—直流电动机不可逆调速系统电原理图(非方块图),须清楚表达两个闭环的关键元件,写出各部分名称,标注有关信号量;指出两闭环连接上的特点及相互关系。 答:双闭环晶闸管-直流电动机不可逆调速系统电路原理图如下:两闭环连接上的关系是速度调节器的输出作为电流调节器的输入,这就使得该系统具有由速度调节器的输出限幅值确定了电流环的给定值,进面确定了系统的最大电流的特点。 3.分析双闭环晶闸管—直流电动机不可逆调速系统: (1) 如果要改变转速,应调节什么参数为什么 (2) 如要控制系统的起动电流、确保系统运行安全,应调节什么参数为什么 答:(1)改变转速时只能改变速度调节器的输入ug,因为它是速度环的指令信号。 改变速度调节哭的参数对稳态速度无调节作用,仅会影响动态响应速度

快慢。 (2)要控制系统的起动电流、确保系统运行安全,应调节速度调节器的输出限 幅值。因为速度调节器的输出限幅值确定了电流环的给定值,进而确定了系统的最大电流。 4. 填空 : 双闭环晶闸管━直流电动机调速系统中,内环为_电流_环,外环为_速度环,其连接关系是:_速度调节器_的输出作为__电流调节器的输入,因此外环调节器的输出限幅值应按__调速系统允许最大电流_来整定;内环调节器的输出限幅值应按__可控整流器晶闸管最大、最小移相触发角_来整定。两调节器均为_PI_型调节器,调速系统能够做到静态无差是由于调节器具有_积分(记忆)功能;能实现快速动态调节是由于节器具有__饱和限幅_功能。 5.在转速、电流双闭环系统中,速度调节器有哪些作用其输出限幅值应按什么要求来调整电流调节器有哪些作用其输出限幅值应如何调整 答:速度调节器用于对电机转速进行控制,以保障:①调速精度,做至静态无差; ②机械特性硬,满足负载要求。 速度调节器输出限幅值应按速系统允许最大电流来调整,以确保系统运行安全(过电流保护) 电流调节器实现对电流的控制,以保障:①精确满足负载转矩大小要求(通过电流控制);②调速的快速动态特性(转矩的快速响应)。 电流调节器的输出限幅作为可控整流器晶闸管的移相触发电压,其限幅值决定了触发角的移相范围,故应按αmin-αmax来调整。 6.双闭环调速系统正常工作时,调节什么参数可以改变电动机转速如果速度闭环的转速反馈线突然断掉,会发生什么现象电动机还能否调速 答:(1)双闭环调速系统正常工作时,只有调节速度给定信号ug才可以改变电动机转速。而改变速度调节器的参数(如比例系数,积分时间常数)均无作用,改

电动车轮毂电机及其电传动系统简析

电动车轮毂电机及其电传动系统简析 雷王宏永济电机厂 内容摘要:介绍了美国德莱赛公司170D电动车(电动轮卡车)的电传动系统,并对其轮毂电机、谐波同步发电机这两个大部件的结构特点作了简要分析。 关键词:电动车轮毂电机发电机 EV 一、前言 目前,在我国山西平朔安太堡露天煤矿,因其特殊的作业形式,煤的运输周转是使用大吨位运煤装卸卡车,这些卡车为进口美国德莱赛公司的电动车(型号有170D等几种),载重量达150吨,时速最高可达30公里/小时,这在我国目前还是独一无二。 电动轮卡车外形像一辆大翻斗汽车,其牵引传动控制系统与一般内燃机车的有很大相似之处,但又有特殊性,特别是其特有的电动轮胎别具特色,笔者在此结合对776电动轮大修中遇到的部分零部件实物,并结合对搜集的一些零散外文资料的阅读和规整,对它们作以简要系统的介绍,以供同行共同探讨。 二、传动控制系统 1.系统分析

整个车的动力来源为燃油发动机,主要有美国的卡特发动机、康明斯发动机等几种型号。我们以170D车为例,其装配的传动控制系统均为美国GE公司的配套装置,有关发动机、发电机、电动轮,整流控制柜等的布置示意图如下: 系统硬件布置示意图 1----发动机 2----发电机 3----整流及控制柜 4---- 电阻制动柜 5----电动轮 6----风机 由示意图可见,发动机---同步发电机机组安装在司机室下方,维修时可整体由卡车前方出入,电动轮分别安装在翻斗下方左右两侧,司机室的后面是电气控制柜。实际上,在翻斗下方的中部还安装有液压系统,液压泵在中间,其两侧为油箱,液压系统主要是控制翻斗箱的起落,在此不予赘述。 卡车制停时,司机可通过脚踏板控制刹车盘,其安装在电动轮换向器端(结构示意图见后),同时也可借助电阻制动协助卡车制停。

燃料电池汽车的动力传动系统设计

燃料电池汽车的动力传动系统设计 1引言 燃料电池汽车是电动汽车的一种。 燃料电池发出的电,经逆变器、控制器等装置,给电动 机供电,再经传动系统、驱动桥等带动车轮转动 ,就可使车辆在路上行驶,燃料电池的能量转 换效率比内燃机要高 2-3倍。燃料电池的化学反应过程不会产生有害产物 ,因此燃料电池车 辆是无污染汽车。随着对汽车燃油经济性和环保的要求 ,汽车动力系统将从现在以汽油等化 石燃料为主慢慢过渡到混合动力 ,最终将完全由清洁的燃料电池车替代。 近几年来,燃料电池系统和燃料电池汽车技术已经取得了重大的进展。世界著名汽车制 造厂,如丰田、本田、通用、戴姆勒-克莱斯勒、日产和福特汽车公司已经开发了几代燃料电 池汽车,并宣布了各种将燃料电池汽车投向市场的战略目标。 目前,燃料电池轿车的样车正在 进行试验,以燃料电池为动力的运输大客车在北美的几个城市中正在进行示范项目。其中本 田的FCX Clarity 最高时速达到了 160 km/h[8];丰田燃料电池汽车 FCHV-adv 已经累计运行 了 360,000 km 的路试,能够在零下37度启动,一次加氢能够从大阪行驶到东京 (560公 里)。 在我国科技部的支持下,燃料电池汽车技术得到了迅速发展。 2007年,我国第四代燃料电池 轿车研制成功,该车最高时速达150 km/h,最大续驶里程319 km 。2008年,20燃料电池示范 汽车又 在北京奥运进行了示范运行。 2010年,包括上汽、奇瑞等国内汽车企业共有 196辆燃 料电池汽车在上海世博园区进行示范运行。 燃油绘济性 排放环保 l ;uel economic exhaust eih ironmen(al protection Internal combustion engine Shori peicxl Mid peitxl Long pei

直流无刷伺服电机运动控制系统设计

直流无刷伺服电机运动控制系统设计 Motionchip是一种性能优异的专用运动控制芯片,扩展容易,使用方便。本文基于该芯片设计了一款可用于直流有刷/无刷伺服电机的智能伺服驱动器,并将该驱动器运用到加氢反应器超声检测成像系统中,上位机通过485总线分别控制直流有刷电机和无刷电机,取得了很好的控制效果,满足了该系统的高精度要求。 在传统的电机伺服控制装置中,一般采用一个或多个单片机作为伺服控制的核心处理器。由于这种伺服控制器外围电路复杂,计算速度慢,从而导致控制效果不理想。近年来,许多新的电机控制算法被研究并运用于电机控制系统中,如矢量控制、直接转矩控制等。随着这些控制算法的日益复杂,必须具备高速运算能力的处理器才能实现实时计算和控制。为了适应这种需要,国外许多公司开发了控制电机专用的高档单片机和数字信号处理器(DSP)。现在,通常使用的伺服控制器的控制核心部分大都由DSP和大规模可编程逻辑器件组成,这种方案可以根据不同需要,灵活的设计出性能很好的专用伺服控制器,但是一般研制周期都比较长。 MotionChip的特点 MotionChip是瑞士Technosoft公司开发的一种高性能且易于使用的电机运动控制芯片,它是基于TMS320C240的DSP,外围设置了许多电机伺服控制专用的可编程配置管脚。TMS320C240是美国TI公司推出的电机控制专用16位定点数字信号处理器,其具有高速的运算能力和专为电机控制设计的外围接口电路。MotionChip很好的利用了该DSP的优点,并集成多种电机控制算法于一身,以简化用户设计难度为目的,设计成为一种新颖的电机专用控制芯片。MotionChip有着集成全部必要的配置功能在一块芯片的优点,它是一种为各种电机类型进行快速和低投入设计全数字、智能驱动器的理想核心处理器。具有如下特点: ?可用于控制5种电机类型:直流有刷/无刷电机、交流永磁同步电机、交流感应电机和步进电机,且易于嵌入到用户的硬件结构中; ?可以选择独立或主从方式工作,并可根据需要,设置成通过网络接口进行多伺服控制器协同工作; ?全数字控制环的实现,包括电流/转矩控制环、速度控制环、位置控制环; ?可实现各种命令结构:开环、转矩、速度、位置或外环控制,步进电机的微步进控制,并可实现控制结构的配置,其中包括交流矢量控制; ?可以配置使用各种运动和保护传感器(位置、速度、电流、转矩、电压、温度等); ?使用各种通讯接口,可以实现RS232/RS485通讯、CAN总线通讯; ?基于Windows95/98/2000/ME/NT/XP平台,强大功能的IPM Motion Studio 高级图形编程调试软件:可通过RS232快速设置,调整各参数与编程运动控制程序。其功能强大的运动语言包括:34种运动模式、判决、函数调用,事件驱动运动控制、中断。因此便于开发和使用。 ?可以通过动态链接库TMLlib,利用VC/VB实现PC机控制;也可以与Labview和PLC无缝连接,通过动态链接库,用户可以在上层开发电机的控制程序,研究控制策略。 运动控制系统设计

电动汽车四轮独立驱动技术

电动汽车四轮独立驱动技术 一、引言 内燃机汽车自20世纪初出现至今,在其自身随人类科技的进步经历了巨大的变的过程中也给人类生活和生产带来了巨大方便,为人类社会的进步做出了巨大的贡献,但其消耗日益紧缺的石油并产生大量污染物也使人类赖以生存的环境恶化。因此近年来由于环境恶化及能源紧张等问题,迫切需要开发低能耗,无污染的汽车。因此,电动汽车成为21世纪汽车技术研究的热点。 混合动力汽车与纯电动汽车是电动汽车研究的两个分支。经过近些年的发展,电动汽车技术日趋成熟,部分产品已进入商业化应用如ToyotaPrius。目前,电动汽车传动系统多数在传统内燃机汽车的传动系基础上进行一些改变,进而将电动机及电池等部件加入总布置中。这种布置难以充分发挥电动汽车的优势。为使电动汽车对传统内燃机汽车形成更大的竞争优势,设计出适合电动汽车的底盘系统势在必行。而四轮独立驱动技术则可使电动汽车底盘实现电子化,主动化,大大提高电动汽车的性能。使电动汽车与传统汽车相比具有更强的竞争力。 二、四轮独立驱动技术的特点 电动汽车四轮独立驱动系统是利用四个独立控制的电动机分别驱动汽车的四个车轮,车轮之间没有机械传动环节。其电动机与车轮之间可以是轴式联接也可以将电动机嵌入车轮成为轮式电机,车轮一般带有轮边减速器。这种驱动系统与传统汽车驱动系统相比有以下特点: 1.传动系统得到减化,整车质量大大减轻。由电动机直接驱动车轮甚至两者集成为一体。这样省掉了离合器、变速器及传动轴等传动环节,传动效率得到提高,也更便于实现机电一体化。传动系质量在汽车整车质量中占有很大比重,机械传动系的消失,使汽车很好的实现了轻量化目标。另外,由于动力传动的中间环节减少,传动系的振动及噪声得到改善。甚至在采用纯电力驱动时,可实现无声行驶。这是美国海军的"RST-V"侦察车及其新一代军用"悍马"汽车采用四轮独立驱动技术的重要原因。 2.与传统汽车相比,四轮独立驱动系统可通过电动机来完成驱动力的控制而不需要其他附件,容易实现性能更好的、成本更低的牵引力控制系统(TCS)、防抱死制动系统(ABS)及动力学控制系统(VDC)。传统汽车的TCS与ABS系统均须对发动机与制动系进行联合控制才能达到较好性能,由于机械系统的响应较慢,且受制动器,液压管路及电磁阀的延迟等因素影响,传统内燃机汽车的ABS系统与TCS系统的实际时间延迟达50~100ms。限制了TCS系统与ABS系统的性能提高,而且增加能耗。与内燃机相比,无论在加速还是减速,电动机转矩响应都非常快且容易获得其准确值,这对TCS、ABS、VDC系统来说是非常重要的。因此电动机作为ABS、TCS及VDC 系统的执行器是非常理想的。 3.对各车轮采用制动能量回收系统,则可大大提高汽车能量利用效率,且与采用单电动机驱动的电动汽车相比,其能量回收效率也获得显著增加。这对提高电动汽车续驶里程是很重要的。 4.实现汽车底盘系统的电子化、主动化。现代汽车驱动系统布置分为前驱动、后驱动或全驱动。这两种驱动型式各有优缺点,而且对汽车行驶工况的适应性也不同。如前驱动轿车在高

详解电动汽车传动系统原理、传动方式及拓扑构架设计

详解电动汽车传动系统原理、传动方式及拓扑构架设计 随着现代汽车电子技术的发展,新能源汽车、电动汽车的出现无疑给整个行业注入了一股新鲜而且充满挑战性的血液。凭借可以减少很多废弃物、有害气体的排放,对整个社会的生活环境都有很大的改善效果,得到社会及国家的高度的重视,具有很好的发展前景。下面我们就来从电动车的结构引入到电动汽车传动系统,并分析它的工作原理、传动方式、优势等,并简单的列举一些成功的应用案例。电动汽车和普通的汽车不同,它是用车载电源提供行驶的动力,用电机来驱动车轮的运动,而不是用点火装置来提供向前运动的力。我们知道,电动汽车主要是由电力驱动及控制系统、驱动力传动系统、工作装置等各个部分组成。它的工作原理是蓄电池中提供恒定的电流输出,这些恒定的电路通过电力调节器进行一次转换成可以驱动电动机的合适的电流和电压,从而可以驱动整个动力传动系统的正常运行,经过他们之间相互的作用最终给汽车提供可以运行的动力汽车可以正常的行驶。由此可见,电动汽车传动系统的有效性和安全性直接影响着整个系统的运行。电动汽车传动系统原理是直接将电动机的驱动转矩传给汽车的驱动轴。汽车传动轴在采用电动轮驱动时,由于它是靠车载电源提供动力源驱动电动机因而可以实现带负载启动,无需离合器;也正是因为是车载电源可以提供恒定的电流,中间会有电路控制的环境来实现驱动电机的方向和转速的控制,所以不需要倒档和差速器。若采用无级调速,就可以实现自动控制,无需变速器。电动汽车传动系统的传动方式主要有三种:(1)电机+传动轴+后桥(2)电机+变速箱+后桥(3)电机+磁力变矩器+后桥以目前的变速箱技术成熟度而言,除了传统车的变速箱外还没有一款真正成熟的适用于电动汽车的产品,最可靠和适用的传动方式还是电机+传动轴+后桥的直驱方案。当然在具体的设计时,我们需要更具实际情况来设计,包括电机的位置、电源的位置、驱动负载的能力、行驶速度要求、稳定性等这些都需要综合的来考虑。了解车辆效率损失分配即从发动机输出的功率消耗在不同汽车部件上的量及比例。这对改善车辆总体的传动效能非常有用,以达到适当配置资源,改善性能的目的。各种损失,使用安装在车辆适当位置的传感器进行测定。电动汽车传动系统拓扑构架设计汽车动力传动系统采用传统的内燃机和电动机作为动力能源,通过混合使用热能和电能两套系统开动汽车。在低速小功率运行时可以关闭发动机,采用电动机驱动;而高速行驶时用内燃机驱动;通过发动机和电动机的协同工作模式,将车辆在制动时产生的能量转化为电能,并积蓄起来成为新的驱动力量.从而在不同工况下都能达到高效率。一般上有串联式、并联式、混联式和复合式4种布置形式。(1)串联式—下图中采用的电力电子装置只有电机控制器,电池和辅助动力装置都直接并接在电机控制器的入口,属于串联式,车辆的驱动力只来源于电动机。 (2)并联式—下图中是典型的并联式动力系统结构,通常在电池和电机控制器之间安装了一个DC/DC变换器,电池的端电压通过DC/DC变换器的升压或降压来与系统直流母线的电压等级进行匹配。车辆的驱动力由电动机及发动机同时或单独供给。(3)混联式----采用四轮驱动、前后轮分别与不同的驱动系相连,后轮驱动有发动机、后置电机、发电机、变速器等组成,前轮驱动由前置电机、发电机组成。由于它使用不同的驱动方式,所以整个电动汽车传动系统既分离又相关联,可以更好的控制。下图就是一个简单的混联式的拓扑构架。同时具有串联式、并联式驱动方式。(4)复合式---改结构主要集中于双轴混合动力系统中,前轴和后轴独立驱动,前轮和后轮之间没有任何驱动抽或转电力主动型的设计,这种独立的驱动,让传动系统各个部件在运行过程中相互独立控制,因此可以有更好的传输能力。要让整个系统可以更好的运行,除了结构设计方面需要注意之外,还有一个就是电动汽车传动系统的参数设计也需要合理的匹配,这些参数对传动结构的性能影响也是很大的。这一方面的知识,小编在这边文章就不具体介绍了。总结能源问题和环境污染问题是现在社会日益突出的问题,深受国家的重视。因此寻找新能源汽车可以减少废气排放,让能源可以更好的利用在汽车电子设计行业是当务之急。电动汽车正是因为具有上面

机电运动控制系统作业答案(选做)

机电运动控制系统(习题集) 选做作业 参考答案 1.答: 与直流发电机-电动机组机械特性相比, 不同之处是: (1) 分电流连续与电流断续二个区域; (2) 电流连续区因可控整流器内阻大 (特别有换流重迭压降引入的等效电阻) 而使机械 特性软; 电流断续区则因电流不连续致使机械特性更软而无法负载工作。 三相半波可控整流器供电直流电机机械特性如图所示: 时,整流器工作在整流状态,电机工作在电动状态; 时,整流器工作在逆变状态,电机工作在制动状态。 2. 答: 由于可控整流器供电直流电机调速系统负载轻时电流断续, 机械特性软, 调速特性差,无静差度可言。 解决办法:串接平波电抗器L ,增大晶闸管导通角以使电流连续。 平波电抗器电感量计算原则是: 能确保轻载下最小电流 时电流仍连续。 一般规律是I dmin 越小,要求平波电抗器电感量越大。 3.答: (1) 电网电压波动:影响整流电压U d ,整流电流I d ,反映到控制信号即u fi ,它从电流环介入,故电流调节器起主要作用。 (2)负载扰动:负载T L 的变化将影响转矩平衡关系,继而影响转速ωr ,n ,反映到控制信号即u fn ,它从速度环介入,故速度调节器起主要作用 4. 答: (1) 根据PI 调节器的特性,稳态时能实现无差调节,使反馈等于给定,即: △u n = 0 或 00α<00α>dmin (5~10)%20% N N I I I ?=??

△u i = 0 ,两个PI 调节器的输入偏差为零。 (2) 它们的输出电压应对应于第一次进入△u n = 0 或△u i = 0 时的输出状态值(如 u n , u i ,α,U d ,I d ,T )。这是由于PI 调节器有积分、记忆功能,对过去出现过的误差信号有记忆作用。 当 时, ,调节器输入为零,但由于PI 调节器的积分作用,对过去出现过的误差有记忆,则积分输出不为零,维持第一次出现时 的输出值 ,进而维持 (无差) 5.答: 两桥反并联且同时整流时, 产生的整流电压 会不经直流电机而顺串短路,因无电阻限流,会形成巨大环流。 限制环流的有效办法(对策)是: (1) 要求直流电压: ● 极性互顶:一桥整流、一桥逆变。 如图所示 ● 大小相等 , 即 这样可以消除平均环流, 因为 ① 平均环流 整流平均电压 ,消除了平均环流 g fn u u =0 n u ?=0n n ?=0n u ≠g fn u u = p K E E 桥I 桥II I I ()αβII II ()αβI I αββα∏∏=??=?' d d U U =' d d U U 、cos cos I E E αβ∏=I I αββα∏ ∏=??=?' d d U U =

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。 1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。

1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置伺服、速度伺服和加速度伺服系统等。 电器伺服系统根据电气信号可分为直流伺服系统和交流伺服系统两大类。交流伺服系统又有感应电机伺服系统和永磁同步电机伺服系统两种。 1.2 伺服系统的发展过程 伺服系统的发展经历了由液压到电气的过程,电器伺服系统的发展则与伺服电机的不同发展阶段具有紧密的联系,伺服电机至今已有50多年的发展历史,经历了三个主要发展阶段。 第一发展阶段(20世纪60年代以前):此阶段是以步进电动机驱动的液压伺服马达或以功率步进电动机直接驱动为中心的时代,伺服系统的位置控制多为

相关文档
最新文档