高考立体几何文科大题答案

高考立体几何文科大题答案
高考立体几何文科大题答案

高考立体几何大题及答案

1.(2009全国卷Ⅰ文)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD

AD =2DC SD ==,点M 在侧棱SC 上,∠ABM=60。

(I )证明:M 是侧棱SC 的中点;

()II 求二面角S AM B --的大小。

2.(2009全国卷Ⅱ文)如图,直三棱柱ABC-A 1B 1C 1中,AB ⊥AC,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BD-C 为60°,求B 1C 与平面BCD

所成的角的大小

3.(2009浙江卷文)如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,

120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平

面ABE 所成角的正弦值.

A

C

B

A 1

B 1

C 1 D

E

4.(2009北京卷文)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱

PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当PD =

且E 为PB 的中点时,求

AE 与平面PDB 所成的角的大小.

5.(2009江苏卷)如图,在直三棱柱111ABC A B C -中,E 、F 分别是1A B 、1A C 的中点,点D 在11B C 上,11A D B C ⊥。求证:(1)EF ∥平面ABC ;(2)平面1A FD ⊥平面11BB C C .

6.(2009安徽卷文)如图,ABCD 的边长为2的正方形,直线l 与平面ABCD 平行,g 和F 式l 上的两个不同点,且EA=ED ,FB=FC ,

是平面ABCD 内的两点,

都与平面ABCD

垂直,(Ⅰ)证明:直线

垂直且平分线段AD :(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多

面体ABCDEF 的体积。

7.(2009江西卷文)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球

面交PD 于点M .

(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离.

8.(2009四川卷文)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△

ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠=

(I )求证:EF BCE ⊥平面;

(II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。

B

C

9.(2009湖北卷文)如图,四棱锥S =ABCD 的底面是正方形,SD ⊥平面ABCD,SD =AD =a,点E 是SD 上的点,且DE =λa(0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1),都有AC ⊥BE:

(Ⅱ)若二面角C-AE-D 的大小为600

C ,求λ的值。

10.(2009湖南卷文)如图3,在正三棱柱111ABC A B C -中,AB =4, 1AA =点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E.(Ⅰ)证明:平面1A DE ⊥平面11ACC A ;(Ⅱ)求直线AD

和平面1A DE 所成角的正弦值。

11.(2009辽宁卷文)如图,已知两个正方形ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点。(I )若CD =2,平面ABCD ⊥平面DCEF ,求直线MN 的长; (II )用反证法证明:直线ME 与 BN 是两条异面直线。

12.(2009四川卷文)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?

==∠= (I )求证:EF BCE ⊥平面;

(II )设线段CD 、AE 的中点分别为P 、M ,

求证: PM ∥BCE 平面

(III )求二面角F BD A --的大小。

13.(2009陕西卷文)如图,直三棱柱111ABC A B C -中, AB =1

,1AC AA ==∠ABC=600

. (Ⅰ)证明:1AB A C ⊥;

(Ⅱ)求二面角A —1A C —B 的大小。

14.(2009宁夏海南卷文)如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 (Ⅰ)证明:AB ⊥PC

(Ⅱ)若4PC =,且平面PAC ⊥平面PBC , 求三棱锥P ABC -体积。

15.(2009福建卷文)如图,平行四边形ABCD 中,60DAB ?

∠=,2,4AB AD ==将

CBD ?沿BD 折起到EBD ?的位置,使平面EDB ⊥平面ABD (I )求证:AB DE ⊥

(Ⅱ)求三棱锥E ABD -的侧面积。

16.(2009重庆卷文)如题(18)图,在五面体ABCDEF 中,AB ∥DC ,2

BAD π

∠=

2CD AD ==,四边形ABFE 为平行四边形,FA ⊥平面ABCD ,3,FC ED ==.求:

(Ⅰ)直线AB 到平面EFCD 的距离;

(Ⅱ)二面角F AD E --的平面角的正切值.

17.(2009年广东卷文)某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图. (1)请画出该安全标识墩的侧(左)视图;

(2)求该安全标识墩的体积

(3)证明:直线BD⊥平面PEG

参考答案

⊥交AB于E,

1、【解析】(I)解法一:作MN∥SD交CD于N,作NE AB

连ME 、NB ,则MN ⊥面ABCD ,ME AB ⊥,NE AD ==设MN x =,则NC EB x ==,

在RT MEB ?中,

60MBE ∠=?ME ∴=。

在RT MNE ?中由2

2

2

ME NE MN =+2

2

32x x ∴=+ 解得1x =,从而1

2

MN SD =

∴ M 为侧棱SC 的中点M. 解法二:过M 作CD 的平行线.

(II )分析一:利用三垂线定理求解。在新教材中弱化了三垂线定理。这两年高考中求二面角也基本上不用三垂线定理的方法求作二面角。

过M 作MJ ∥CD 交SD 于J ,作SH AJ ⊥交AJ 于H ,作HK AM ⊥交AM 于K ,则

JM ∥CD ,JM ⊥面SAD ,面SAD ⊥面MBA ,SH ⊥面AMB ∴SKH ∠即为所求二面角的补

角.

法二:利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,取SA 的中点G ,连GF ,易证GF AM ⊥,则GFB ∠即为所求二面角.

解法二、分别以DA 、DC 、DS 为x 、y 、z 轴如图建立空间直角坐标系D —xyz ,则

)2,0,0(),2,0,0(),0,2,2(),0,0,2(S C B A 。

(Ⅰ)设)0,0)(,,0(>>b a b a M ,则

)2,,0(),,2,2(),0,2,0(-=--=-=b a b a ,

)2,2,0(-=SC ,由题得

??

?

?

?

>=

????

-=-=++-?--)

2(22212)2(2)2(22

2b a b a a 解之个方程组得1,1==b a 即)1,1,0(M 所以M 是侧棱SC 的中点。

法2:设MC SM λ=,则)12

,12,2(),12,12,

0(λ

λλλλ+-+=++MB M 又o 60,),0,2,0(>=<= 故o AB MB AB MB 60cos ||||?=?,即

2

2)12()12(214λ

λλ++++=+,解得1=λ, 所以M 是侧棱SC 的中点。

(Ⅱ)由(Ⅰ)得)1,1,2(),1,1,0(--=M ,又)2,0,2(-=,)0,2,0(=,

设),,(),,,(22221111z y x n z y x n ==分别是平面SAM 、MAB 的法向量,则

?????=?=?0011n MA n 且?????=?=?0

012n MA n ,即????

?=+-=--022*******z x z y x 且?????

==--02022222y z y x 分别令221=

=x x 得2,0,1,12211====z y y z ,即

)2,0,2(),1,1,2(21==n n ,

∴3

6

6

2202,cos 21=

?++>=

6arccos

-π。 2、解法一:(Ⅰ)取BC 中点F ,连接EF ,则EF

1

2

1B B ,从而EF DA 。 连接AF ,则ADEF 为平行四边形,从而AF//DE 。又D E ⊥平面1BCC ,故AF ⊥平面1BCC ,从而AF ⊥BC ,即AF 为BC 的垂直平分线,所以AB=AC 。

(Ⅱ)作AG ⊥BD ,垂足为G ,连接CG 。由三垂线定理知CG ⊥BD ,故∠AGC 为二面角A-BD-C 的平面角。由题设知,∠AGC=600.

.

设AC=2,则

AB=2,

BC=

由AB AD AG BD ?=?得

故AD=AF 。又AD ⊥AF ,所以四边形ADEF 为正方形。

因为BC ⊥AF ,BC ⊥AD ,AF ∩AD=A ,故BC ⊥平面DEF ,因此平面BCD ⊥平面DEF 。 连接AE 、DF ,设AE ∩DF=H ,则EH ⊥DF ,EH ⊥平面BCD 。

连接CH ,则∠ECH 为1B C 与平面BCD 所成的角。

因ADEF 为正方形,EH=1,又EC=

11

2

B C =2, 所以∠ECH=300

,即1B C 与平面BCD 所成的角为300

.

解法二:

(Ⅰ)以A 为坐标原点,射线AB 为x 轴的正半轴,建立如图所示的直角坐标系A —xyz 。

设B (1,0,0),C (0,b ,0),D (0,0,c ),则1B (1,0,2c ),E (

12,2

b

,c ). 于是DE →

=(12,2

b

,0),BC →=(-1,b,0).由D E ⊥平面1BCC 知DE ⊥BC , DE BC →→?=0,求得

b=1,所以 AB=AC 。

(Ⅱ)设平面BCD 的法向量(,,),AN x y z →

=则0,0.AN BC AN BD →→→→

?=?= 又BC →

=(-1,1, 0),

BD →

=(-1,0,c ),故0

x y x cz -+=??

-+=? 令x=1, 则y=1, z=1c ,AN →=(1,1, 1

c

).

又平面ABD 的法向量AC =(0,1,0)

由二面角C BD A --为60°知,AC AN ,

=60°, 故 60cos ??=?AC AN AC AN °,求得2

1c =

于是 ),,(211=AN , ),,211(1-=CB

2

1

cos 1

11=

??=

CB AN CB AN CB AN ,, 601=CB AN ,

° 所以C B 1与平面BCD 所成的角为30°

3、(Ⅰ)证明:连接CQ DP ,, 在ABE ?中,Q P ,分别是AB AE ,的中点,所以BE PQ 2

1

//==,

又BE DC 21

//

==,

所以DC PQ ==

//,又?PQ 平面ACD ,DC ?平面ACD , 所以//PQ 平面ACD (Ⅱ)在ABC ?中,BQ AQ BC AC ===,2,所以AB CQ ⊥ 而DC ⊥平面ABC ,DC EB //,所以⊥EB 平面ABC

而?EB 平面ABE , 所以平面ABE ⊥平面ABC , 所以⊥CQ 平面ABE 由(Ⅰ)知四边形DCQP 是平行四边形,所以CQ DP //

所以⊥DP 平面ABE , 所以直线AD 在平面ABE 内的射影是AP , 所以直线AD 与平面ABE 所成角是DAP ∠ 在APD Rt ?中,5122222=+=+=DC AC AD ,1sin 2=∠==CAQ CQ DP

所以55

5

1sin =

==

∠AD DP DAP

4、【解法1】(Ⅰ)∵四边形ABCD 是正方形,∴AC ⊥BD ,

∵PD ABCD ⊥底面, ∴PD ⊥AC ,∴AC ⊥平面PDB , ∴平面AEC PDB ⊥平面.

(Ⅱ)设AC∩BD=O ,连接OE ,

由(Ⅰ)知AC ⊥平面PDB 于O , ∴∠AEO 为AE 与平面PDB 所的角, ∴O ,E 分别为DB 、PB 的中点, ∴OE//PD ,1

2

OE PD =

,又∵PD ABCD ⊥底面, ∴OE ⊥底面ABCD ,OE ⊥AO ,

在Rt △AOE 中,122

OE PD AB AO =

==, ∴45AOE ?

∠=,即AE 与平面PDB 所成的角的大小为45?

. 【解法2】如图,以D 为原点建立空间直角坐标系D xyz -, 设,,AB a PD h ==

则()()()()(),0,0,,,0,0,,0,0,0,0,0,0,A a B a a C a D P h , (Ⅰ)∵()()(),,0,0,0,,,,0AC a a DP h DB a a =-==,

∴0,0AC DP AC DB ?=?=,

∴AC ⊥DP ,AC ⊥DB ,∴AC ⊥平面PDB , ∴平面AEC PDB ⊥平面.

(Ⅱ)当PD =且E 为PB 的中点时,()

11,,,222P E a a ??

? ???

, 设AC∩BD=O ,连接OE ,

由(Ⅰ)知AC ⊥平面PDB 于O , ∴∠AEO 为AE 与平面PDB 所的角,

∵112,,,0,0,2222EA a a a EO a ????

=--=- ? ? ? ?????

, ∴2

cos 2

EA EO AEO EA EO

?∠=

=

?, ∴45AOE ?

∠=,即AE 与平面PDB 所成的角的大小为45?

.

5、

6、【解析】(1)由于EA=ED 且'''ED ABCD E D E C ⊥∴=面

∴点E '在线段AD 的垂直平分线上,同理点F '在线段BC 的垂直平分线上. 又ABCD 是四方形

∴线段BC 的垂直平分线也就是线段AD 的垂直平分线 即点E 'F '都居线段AD 的垂直平分线上. 所以,直线E 'F '垂直平分线段AD.

(2)连接EB 、EC 由题意知多面体ABCD 可分割成正四棱锥E —ABCD 和正四面体E —BCF 两部

分.设AD 中点为M,在Rt △MEE '中,由于ME '

=1, 'ME EE =.

E V ∴—

ABCD 211'2333

S ABCD EE =??=?四方形

又E V —BCF=V C -BEF=V C -BEA=V E -

ABC 2111'23323

ABC

S EE =

?=??= ∴多面体ABCDEF 的体积为V E —ABC D +V E —

BCF=7、解:方法(一):

(1)证:依题设,M在以BD为直径的球面上,则BM⊥PD. 因为PA⊥平面ABCD,则PA⊥AB,又AB⊥AD,

所以AB⊥平面PAD,则AB⊥PD,因此有PD⊥平面ABM,所以平面ABM⊥平面PCD.

(2)设平面ABM与PC交于点N,因为AB∥CD,所以AB∥平面PCD,则AB∥MN∥CD,

由(1)知,PD⊥平面ABM,则MN 是PN 在平面ABM 上的射影,

所以 P N M ∠就是PC 与平面ABM 所成的角, 且PNM PCD ∠=∠

tan tan PD

PNM PCD DC

∠=∠==

所求角为arctan (3)因为O 是BD 的中点,则O 点到平面ABM 的距离等于D 点到平面ABM 距离的一半,由

(1)知,PD⊥平面ABM于M ,则|DM|就是D 点到平面ABM 距离.

因为在Rt △PAD 中,4PA AD ==,PD AM ⊥,所以M 为PD 中点,DM =,则O 点

到平面ABM 。

方法二: (1)同方法一;

(2)如图所示,建立空间直角坐标系,则(0,0,0)A ,(0,0,4)P ,(2,0,0)B , (2,4,0)C ,

(0,4,0)D ,(0,2,2)M ,

设平面ABM 的一个法向量(,,)n x y z =,由,n A B n

A M ⊥⊥可得:20

220x y z =??

+=?

,令1z =-,

则1y =,即(0,1,1)n =-.设所求角为α,则2sin 3

PC n PC n

α?=

=

所求角的大小为arcsin

3

. (3)设所求距离为h ,由(1,2,0),(1,2,0)O AO =,得:2AO n h n

?=

=

8、【解析】解法一:

因为平面ABEF ⊥平面ABCD ,BC ?平面ABCD ,BC ⊥AB ,平面ABEF ∩平面ABCD=AB , 所以BC ⊥平面ABEF. 所以BC ⊥EF.

因为⊿ABE 为等腰直角三角形,AB=AE , 所以∠AEB=45°, 又因为∠AEF=45,

所以∠FEB=90°,即EF ⊥BE.

因为BC ?平面ABCD, BE ?平面BCE, BC ∩BE=B

所以EF BCE ⊥平面

…………………………………………6分

(II )取BE 的中点N,连结CN,MN,则MN

12

A B PC

∴ PMNC 为平行四边形,所以PM ∥CN. ∵ CN 在平面BCE 内,PM 不在平面BCE 内,

∴ PM ∥平面BCE. …………………………………………8分 (III )由EA ⊥AB,平面ABEF ⊥平面ABCD,易知EA ⊥平面ABCD.

作FG ⊥AB,交BA 的延长线于G,则FG ∥EA.从而FG ⊥平面ABCD, 作GH ⊥BD 于H,连结FH,则由三垂线定理知BD ⊥FH. ∴ ∠FHG 为二面角F-BD-A 的平面角. ∵ FA=FE,∠AEF=45°, ∠AEF=90°, ∠FAG=45°.

设AB=1,则AE=1,AF=

2,则1FG AF sin FAG 2

=?= 在Rt ⊿BGH 中, ∠GBH=45°,BG=AB+AG=1+

12=3

2

,

3GH BG sin GBH 2=?=

?=,

在Rt ⊿FGH 中, FG tan FHG GH 3

=

=,

∴ 二面角F BD A --的大小为arc tan

3

…………………………………………12分

解法二: 因ABE ?等腰直角三角形,AE AB =,所以AB AE ⊥

又因为平面AB ABCD ABEF =?平面,所以AE ⊥平面ABCD , 所以AD AE ⊥

即AE AB AD 、、两两垂直;如图建立空间直角坐标系,

(I) 设1=AB ,则1=AE ,)0,1,1(),1,0,0(),0,0,1(),0,1,0(C E D B

∵?=∠=45,AEF FE FA ,∴090=AFE ∠,

从而)

,,-(21

210F

)2

1

,21,0(--=EF ,)0,0,1(),1,1,0(=-=

于是02

1

210=-+=?,0=?

∴EF ⊥BE ,EF ⊥BC

∵BE ?平面BCE ,BC ?平面BCE ,B BE BC =? ∴EF BCE ⊥平面

(II ))0,21,

1(),2

1,0,0(P M ,从而)2

1,21,1(--=PM 于是04

1

410)21,21,0()21,21,1(=-+=--?--=?

∴PM ⊥EF ,又EF ⊥平面BCE ,直线PM 不在平面BCE 内, 故PM ∥平面BCE

(III )设平面BDF 的一个法向量为1n ,并设1n =(),,z y x )2

1,23,0(),0,1,1(-

=-= ?????=?=?0011n BD n 即???

??=+-=-021

2

30z y y x 取1=y ,则1=x ,3=z ,从而1n =(1,1,3) 取平面ABD D 的一个法向量为)1,0,0(2=n

11

11

31

113cos 21=

?=

>=

故二面角F BD A --的大小为11

11

3arccos

9、(Ⅰ)证发1:连接BD ,由底面是正方形可得AC ⊥BD 。 SD ⊥平面ABCD,∴BD 是BE 在平面ABCD 上的射影, 由三垂线定理得AC ⊥BE.

(II)解法1: SD ⊥平面ABCD ,CD?平面ABCD,∴ SD ⊥CD.

又底面ABCD是正方形,∴ CD ⊥AD ,又SD AD=D ,∴CD ⊥平面SAD 。 过点D 在平面SAD 内做DF ⊥AE 于F ,连接CF ,则CF ⊥AE , 故∠CFD 是二面角C-AE-D 的平面角,即∠CFD=60° 在Rt △ADE 中, AD=a , DE= a λ, AE=a 12+λ 。

于是,DF=

1

2

+=?λλa AE

DE

AD

在Rt △CDF 中,由cot 60°=

1

2

+=λλCD

DF

3

3

1

2

=

+λλ, 即332+λ=3λ (0,1]λ∈, 解得λ=

2

2 10、解:(Ⅰ)如图所示,由正三棱柱111ABC A B C -的性质知1AA ⊥平面ABC .

又DE ?平面ABC ,所以DE 1AA ⊥.而DE ⊥1A E ,111AA A E A =,

所以DE ⊥平面11ACC A .又DE ?平面1A DE , 故平面1A DE ⊥平面11ACC A .

(Ⅱ)解法 1: 过点A 作AF 垂直1A E 于点F , 连接DF .由(Ⅰ)知,平面1A DE ⊥平面11ACC A , 所以AF ⊥平面1A DE ,故ADF ∠是直线AD 和

平面1A DE 所成的角。因为DE ⊥11ACC A ,

所以DE ⊥AC.而?ABC 是边长为4的正三角形, 于是AD

=AE=4-CE =4-

1

2

CD =3.

又因为1AA =1A E

= 1A

E =

== 4,

11AE AA AF A E ?=

=

,

sin 8AF ADF AD ∠==. 即直线AD 和平面1A DE

解法2 : 如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系, 则相关各点的坐标分别是A(2,0,0,), 1A

), D(-1,

E(-1,0,0).

易知1A D =(-3

,DE =(0,

0),AD =(-3

0).

设(,,)n x y z =r

是平面1A DE 的一个法向量,则

10,

30.

n DE n A D x ??==???=--=??r uuu v r uuu v

解得,0x z y ==.

故可取3)n =-r

.于是

cos ,n AD n AD n AD ?=?r uuu r

r uuu r r uuu r

8=-

由此即知,直线AD 和平面1A DE

所成角的正弦值为8

11解(Ⅰ)取CD 的中点G 连结MG ,NG. 因为ABCD ,DCEF 为正方形,且边长为2, 所以MG ⊥CD ,MG =2

,NG = 因为平面ABCD ⊥平面DCEF , 所以MG ⊥平面DCEF ,可得MG ⊥NG.

所以MN =

=……6分

(Ⅱ)假设直线ME 与BN 共面, …..8分

则AB ?平面MBEN ,且平面MBEN 与平面DCEF 交于EN ,

由已知,两正方形不共面,故AB ?平面DCEF.

又AB ∥CD ,所以AB ∥平面DCEF.而EN 为平面MBEN 与平面DCEF 的交线, 所以AB ∥EN. 又AB ∥CD ∥EF,

所以EN ∥EF ,这与EN EF=E ?矛盾,故假设不成立。

所以ME 与BN 不共面,它们是异面直线。 ……..12分

12、【解析】解法一:

因为平面ABEF ⊥平面ABCD ,BC ?平面ABCD ,BC ⊥AB ,平面ABEF ∩平面ABCD=AB , 所以BC ⊥平面ABEF. 所以BC ⊥EF.

因为⊿ABE 为等腰直角三角形,AB=AE , 所以∠AEB=45°, 又因为∠AEF=45,

所以∠FEB=90°,即EF ⊥BE.

因为BC ?平面ABCD, BE ?平面BCE, BC ∩BE=B

所以EF BCE ⊥平面

…………………………………………6分

(II )取BE 的中点N,连结CN,MN,则MN

12

A B PC

∴ PMNC 为平行四边形,所以PM ∥CN. ∵ CN 在平面BCE 内,PM 不在平面BCE 内,

∴ PM ∥平面BCE. …………………………………………8分 (III )由EA ⊥AB,平面ABEF ⊥平面ABCD,易知EA ⊥平面ABCD.

作FG ⊥AB,交BA 的延长线于G,则FG ∥EA.从而FG ⊥平面ABCD, 作GH ⊥BD 于H,连结FH,则由三垂线定理知BD ⊥FH. ∴ ∠FHG 为二面角F-BD-A 的平面角. ∵ FA=FE,∠AEF=45°, ∠AEF=90°, ∠FAG=45°.

设AB=1,则AE=1,AF=

2,则1FG AF sin FAG 2

=?=

全国高考文科数学立体几何综合题型汇总

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又 1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证 11 A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D 1 C B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

高中数学《立体几何(文科)》练习题

高中数学《立体几何》练习题 1.用斜二测画法画出长为6,宽为4的矩形水平放置的直观图,则该直观图面积为 ( ) A.12 B.24 C.62 D.122 2.设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是 ( ) A .若//,,m n m n αβ⊥⊥,则αβ⊥ B .若//,,m n m n αβ⊥⊥,则//αβ C .若//,,//m n m n αβ⊥,则α⊥β D .若//,,//m n m n αβ⊥,则//αβ 3.如图,棱长为1的正方体1111D C B A ABCD -中,P 为线段B A 1上的动点,则下列结论错误.. 的是 A .P D DC 11⊥ B .平面⊥P A D 11平面AP A 1 C .1AP D ∠的最大值为090 D .1PD AP +的最小值为22+ 4.一个几何体的三视图如图所示(单位:m),则该几何体的体积为______m 3. 5.若某几何体的三视图如图所示,则此几何体的体积等于 . 6.如图是一个几何体的三视图,则该几何体的体积是____________

7.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞F E D ,,,且知 1:2:::===FS CF EB SE DA SD ,若仍用这个容器盛水,则最多可盛水的体积是原来的 . 8.如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB = 12 PD. (1)证明:PQ ⊥平面DCQ ; (2)求棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值.[来 9.如图所示的多面体中,ABCD 是菱形,BDEF 是矩形,ED ⊥面ABCD ,3 BAD π ∠=. (1)求证://BCF AED 平面平面. (2)若,BF BD a A BDEF ==-求四棱锥的体积。 10.在四棱锥ABCD P -中,底面ABCD 为矩形,ABCD PD 底面⊥,1=AB ,2=BC ,3=PD ,F G 、分别为CD AP 、的中点. (1) 求证:PC AD ⊥; (2) 求证://FG 平面BCP ; S F C B A D E

2015年高考文科数学立体几何试题汇编

图 2 1俯视图 侧视图 正视图2 11.(北京8)如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点, 则 P 到各顶点的距离的不同取值有( ) A .3个 B .4个 C .5个 D .6个 2.(广东卷6)某三棱锥的三视图如图所示,则该三棱锥的体积是( ) A .1 6 B .1 3 C .2 3 D .1 3. (广东卷8)设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβ C .若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥ 4. (湖南卷7)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于 A . 3 B.1 C. 21 + D.2 5. 江西卷8).一几何体的三视图如右所示,则该几何体的体积为( ) A.200+9π B. 200+18π C. 140+9π D. 140+18π 6. (辽宁卷10)已知三棱柱 1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为 A . 317 B .210 C .13 2 D .310 B .. (全国卷11)已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 (A ) 2 3 (B )3 (C )2 (D )13 8. (四川卷2)一个几何体的三视图如图所示,则该几何体可以是( )

2013-2018全国新课标1.2卷文科数学立体几何题(附答案)

2013-2018高考立体几何题文科数学(Ⅰ) (2013年): (11)某几何体的三视图如图所示,则该几何体的体积为( ) (A )168π+ (B )88π+ (C )1616π+ (D )816π+ (15)已知H 是球O 的直径AB 上一点, :1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______。 (19)如图,三棱柱111ABC A B C -中,CA CB =, 1AB AA =,160BAA ∠=。 (Ⅰ)证明:1 AB AC ⊥; (Ⅱ)若2AB CB == ,1 AC 111ABC A B C -的体积。 (2014年): (8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三 视图,则这个几何体是 A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 1

(19)如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O , 且⊥AO 平面C C BB 11.(Ⅰ)证明:证明:;1AB C B ⊥(Ⅱ)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高. (2015年): 6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆 放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛 11、圆柱被一个平面截去一部分后与半球(半径 为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( ) (A )1 (B )2 (C )4 (D )8

山东高考文科数学立体几何大题及答案汇编

2008年-2014年山东高考文科数学立体几何大题及答案 (08年)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC == (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. (09年)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 11111 (10年)(本小题满分12分) 在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. (I )求证:平面EFG ⊥平面PDC ; (II )求三棱锥P MAB -与四棱锥P ABCD -的体积之比. (11年)(本小题满分12分) 如图,在四棱台 1111 ABCD A B C D -中, 1D D ABCD ⊥平面,底面 ABCD 是平行四边形, 112,,60AB AD AD A B BAD ==∠= (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11//CC A BD 平面. A B C M P D E A B C F E1 A1 B1 C1 D1 D D B1 D1 C1 C B A A1

(12年) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点, 求证:DM ∥平面BEC . (13年)(本小题满分12分) 如图,四棱锥P —ABCD 中,AB ⊥AC , AB ⊥PA ,AB ∥CD ,AB=2CD ,E ,F ,G , M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点。 (Ⅰ)求证,CE ∥平面PAD; (Ⅱ)求证,平面EFG ⊥平面EMN 。 (14年)(本小题满分12分) 如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 2 1 = =,F E ,分别为线段PC AD ,的中点。 (Ⅰ)求证:BEF AP 平面// (Ⅱ)求证:PAC BE 平面⊥ P A C D E

高考立体几何文科大题及标准答案

高考立体几何大题及答案 1.(2009全国卷Ⅰ文)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD , 2AD =,2DC SD ==,点M 在侧棱SC 上,o ∠ABM=60。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.(2009全国卷Ⅱ文)如图,直三棱柱ABC-A 1B 1C 1中,AB ⊥AC,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BD-C 为60°,求B 1C 与平面BCD 所成的角的大小 3.(2009浙江卷文)如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====, 120ACB ∠=o ,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平 面ABE 所成角的正弦值. A C B A 1 B 1 C 1 D E

4.(2009北京卷文)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB = 且E 为PB 的中点时,求 AE 与平面PDB 所成的角的大小. 5.(2009江苏卷)如图,在直三棱柱111ABC A B C -中,E 、F 分别是1A B 、1A C 的中点,点D 在11B C 上,11A D B C ⊥。 求证:(1)EF ∥平面ABC ;(2)平面1A FD ⊥平面11BB C C .

6.(2009安徽卷文)如图,ABCD 的边长为2的正方形,直线l 与平面ABCD 平行,g 和F 式l 上的两个不同点,且EA=ED ,FB=FC , 和是平面ABCD 内的两点,和都与平面ABCD 垂直,(Ⅰ)证明:直线垂直且平分线段AD :(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多 面体ABCDEF 的体积。 7.(2009江西卷文)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球 面交PD 于点M . (1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 8.(2009四川卷文)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 O A P B M D

最新高考文科立体几何大题

1.(2013年高考辽宁卷(文))如 图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点 (I)求证:BC PAC ⊥平面; (II)设//.Q PA G AOC QG PBC ?为的中点,为的重心,求证:平面 2.2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中 心, A 1O ⊥平面ABCD , 12AB AA == (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. O D 1 B 1 C 1 D A C A 1

3.(2013年高考福建卷(文))如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=o .(1)当正视图方向与向量AD u u u r 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积. 4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点. (1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积.

5.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23 AD =时,求三棱锥F DEG -的体积F DEG V -. 图 4G E F A B C D 图 5D G B F C A E 6.(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD

最新最全立体几何 文科大题复习求体积完整版.doc

A C D 图2 B A C D 图1 1 C 1B 1 A 1D C B A D F E 1,(本小题满分14分)如图(1),ABC ?是等腰直角三角形,4AC BC ==,E 、F 分别为AC 、AB 的中点,将AEF ?沿EF 折起, 使A '在平面BCEF 上的射影O 恰为EC 的中点,得到图(2). (Ⅰ)求证:EF A C '⊥; (Ⅱ)求三棱锥BC A F '-的体积. 2,(本小题满分13分) 如图1,在直角梯形中,,,.将沿折起,使平面 平面,得到几何体,如图2所示. (Ⅰ) 求证:平面; (Ⅱ) 求几何体的体积. 3,(本小题满分14分)、已知几何体1111ABCD A B C D -的直观图如图所示,其三视图中主视图是长边为3的矩形,左视图是边长为2有一个角等于60°的菱形。 (1)求证平面1AD C ⊥平面11A DCB (2)求四棱锥1111D A B C D -的体积 4.(本小题满分12分) 在棱长为1的正方体1111ABCD A B C D -中,,,,E F G H 分别是棱1111,,,AB CC D A BB 的中点. (1)证明://FH 平面1A EG ; (2)证明:AH EG ⊥; (3)求三棱锥1A EFG -的体积. 5.(本小题满分14分) 如图,已知三棱锥A-BPC 中,AP ⊥PC, AC ⊥BC , M 为AB 中点,D 为PB 中点,且△PMB 为正三角形。 (Ⅰ) 求证:DM ∥平面APC :(Ⅱ) 求证:平面ABC ⊥平面APC ; (Ⅲ) 若BC=4,AB=20,求三棱锥D-BCM 的体积. 6.(本小题满分12分)在棱长为a 的正方体1111ABCD A B C D -中,E 是线段11A C 中点,AC BD F =. (Ⅰ) 求证:CE ⊥BD ;(Ⅱ) 求证:CE ∥平面1A BD ; (Ⅲ) 求三棱锥1D A BC -的体积. ABCD 90ADC ∠=?//CD AB 4,2AB AD CD ===ADE ?AC ADE ⊥ABC D ABC -BC ⊥ACD D ABC -3 2 2 A 1 B 1 A D C B D 1 C 1 俯视图 左视图 主视图 A C A 1E F

高考文科立体几何大题

1. (2013年高考辽宁卷(文))如 图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点. (I) 求证:BC _平面PAC ; (II) 设Q为PA的中点,G为AOC的重心,求证:QG//平面PBC. 2.2013年高考陕西卷(文))如图,四棱柱ABCDAιBιCD的底面ABCt是正方形,O为底面中 心,AC⊥平面ABCD AB=AA=√2. (I )证明:A i BD // 平面CDB1; ( ∏ )求三棱柱ABDABD的体积.

3. (2013年高考福建卷(文))如图,在四棱锥P- ABCD 中,PD _ 面ABCD , AB∕∕DC , AB _ AD , BC =5, DC =3, AD = 4, .PAD =60 .(1)当正视图方向与向量AD的方向相同时,画出四棱锥P- ABCD的正视图.(要求标出尺寸,并画出演算过程); ⑵若M为PA的中点,求证:DM / /面PBC ; (3) 4. 如图,四棱锥 P—ABCD中,ABCD为矩形,△ PAD为等腰直角三角形,∠ APD=90°,面 PAD⊥面 ABCD,且 AB=1,AD=2, E、F分别为 PC和BD的中点. (1)证明:EF// 面 PAD (2)证明:面PDC⊥面PAD; (3)求四棱锥 P— ABCD的体积. A B 求三棱锥D- PBC的体积.

5. (2013年高考广东卷(文))如图4,在边长为1的等边三角形 ABC 中,D ) E 分别是AB )AC 边上的点,AD =AE , F 是BC 的中点,AF 与DE 交于点G , 将 :ABF 沿AF 折起, (1)证明:DE //平面BCF ; (2) 证明:CF _平面ABF ; 2 ⑶ 当AD 时,求三棱锥F - DEG 的体积V F DEG 3 _ 6. (2013年高考北京卷(文))如图,在四棱锥P-ABCD 中,AB∕∕CD , AB _ AD , CD =2AB ,平面 PAD _ 底面 ABCD , PA _ AD , E 和 F 分别是CD 和PC 的中点,求证: (1) PA _ 底面 ABCD ;(2) BE//平面 PAD ;(3)平面 BEF _ 平面 PCD 得到如图5所示的三棱锥 A - BCF ,其中BC 洱

2018高考文科立体几何大题

立体几何综合训练1、证明平行垂直 1.如图,AB 是圆O 的直径,PA⊥圆O 所在的平面,C是圆O 上的点.(1)求证:BC⊥平面PAC; (2)若Q 为PA的中点,G为△AOC 的重心,求证:QG∥平面PBC.2.如图,在四棱锥P﹣ABCD 中,AB ∥ CD,AB⊥AD ,CD=2AB ,平面PAD⊥ 底面ABCD ,PA⊥ AD .E和F分别 是CD 和PC 的中点,求证:(Ⅰ) PA⊥底面ABCD; (Ⅱ)BE∥平面PAD; (Ⅲ)平面BEF⊥平面PCD .

3.如图,四棱锥P﹣ABCD 中,PA⊥底面ABCD ,AB⊥AD ,点E在线段AD 上,且CE∥AB . (Ⅰ)求证:CE⊥平面PAD ; (Ⅱ)若PA=AB=1 ,AD=3 ,CD= , ∠ CDA=45 °,求四棱锥P﹣ABCD 的体4.如图,在四棱锥P﹣ABCD 中,底面ABCD 是矩形.已知 .M 是PD 的中点. Ⅰ)证明PB∥平面MAC Ⅱ)证明平面PAB⊥平面ABCD Ⅲ)求四棱锥p ﹣ABCD 的体积.

Ⅲ)若M 是PC 的中点,求三棱锥M ﹣ACD 的体积. 2、求体积问题 5.如图,已知四棱锥P﹣ABCD 中,底面ABCD 是直角梯形,AB ∥DC,∠ ABC=45 °,DC=1 ,AB=2 ,PA⊥平面ABCD ,PA=1 . (Ⅰ)求证:AB∥平面PCD; Ⅱ)求证:BC⊥平面PAC;

6.(2011? 辽宁)如图,四边形ABCD 为正方形,QA⊥平面ABCD , PD∥QA, OA=AB= PD. (Ⅰ)证明PQ⊥平面DCQ ; (Ⅱ)求棱锥Q﹣ABCD 的体积与棱锥P ﹣DCQ 的体积的比值.7.如图,四棱锥P﹣ABCD 的底面ABCD 是边长为 2 的菱形,∠ BAD=60 °,已知 PB=PD=2 ,PA= . (Ⅰ)证明:PC⊥ BD (Ⅱ)若E为PA 的中点,求三棱锥P ﹣ BCE的体积.

(新)高三立体几何习题(文科含答案)

23 正视图 图1 侧视图 图2 2 2 图3 立几习题2 1若直线l 不平行于平面a ,且l a ?,则 A .a 内的所有直线与异面 B .a 内不存在与l 平行的直线 C .a 内存在唯一的直线与l 平行 D .a 内的直线与l 都相交 2.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 (A )12l l ⊥,23l l ⊥13//l l ? (B )12l l ⊥,23//l l ?13l l ⊥ (C )233////l l l ?1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点?1l ,2l ,3l 共面 3.如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为 A .3 B .4 C .3 D .2 4.某几何体的三视图如图所示,则它的体积是( ) A.283 π - B.83 π- C.8-2π D.23 π 5、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点 求证: (1)直线E F ‖平面PCD ; (2)平面BEF ⊥平面PAD

5(本小题满分13分) 如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OD=,△OAB,△OAC,△ODE,△ODF都是正三角形。 OA=,2 1 ∥; (Ⅰ)证明直线BC EF -的体积. (Ⅱ)求棱锥F OBED 6.(本小题共14分) 如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点. (Ⅰ)求证:DE∥平面BCP; (Ⅱ)求证:四边形DEFG为矩形; . (Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由 7.(本小题满分12分) 如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。

高中数学立体几何大题练习(文科)

立体几何大题练习(文科): 1.如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,侧面SAD⊥底面ABCD. (1)求证:平面SBD⊥平面SAD; (2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求侧面△SAB的面积. 【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD⊥平面SAD,运用面面垂直的判定定理即可得证; (2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值.【解答】(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=, 设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°, 可得BD=a,∠CBD=45°,∠ABD=45°, 由余弦定理可得AD==a, 则BD⊥AD, 由面SAD⊥底面ABCD.可得BD⊥平面SAD, 又BD?平面SBD,可得平面SBD⊥平面SAD; (2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为, 由AD=SD=a, 在△SAD中,可得SA=2SDsin60°=a, △SAD的边AD上的高SH=SDsin60°=a, 由SH⊥平面BCD,可得 ×a××a2=,

解得a=1, 由BD⊥平面SAD,可得BD⊥SD, SB===2a, 又AB=2a, 在等腰三角形SBA中, 边SA上的高为=a, 则△SAB的面积为×SA×a=a=. 【点评】本题考查面面垂直的判定定理的运用,注意运用转化思想,考查三棱锥的体积公式的运用,以及推理能力和空间想象能力,属于中档题. 2.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(1)EF∥平面ABC; (2)AD⊥AC. 【分析】(1)利用AB∥EF及线面平行判定定理可得结论; (2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论. 【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,

高考真题立体几何文科

文科立体几何

4、如图,矩形ABCD 中,ABE AD 平面⊥,2===BC EB AE ,F 为CE 上的点,且 ACE BF 平面⊥. (Ⅰ)求证:BCE AE 平面⊥; (Ⅱ)求证;BFD AE 平面//; (Ⅲ)求三棱锥BGF C -的体积. B C

5、如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分 别为1DD 、DB 的中点. (Ⅰ)求证://EF 平面11ABC D ; (Ⅱ)求证:1EF B C ⊥; (III )求三棱锥EFC B V -1的体积. 6、如图,在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD , 1==DC PD ,E 是PC 的中点,作PB EF ⊥交PB 于点F . (I) 证明: PA ∥平面EDB ; (II) 证明:PB ⊥平面EFD ; (III) 求三棱锥DEF P -的体积. A B D E F A 1 B 1

1 A 1B 1C A B D C 7、 如图, 在三棱柱中,, 1CC ⊥平面ABC ,,,, 点是的中点, (1)求证:; (2)求证:; (3)求三棱锥的体积。 8. 如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点, 且BF ⊥平面ACE . (1)求证:AE ⊥BE ; (2)求三棱锥D -AEC 的体积; (3)设M 在线段AB 上,且满足AM =2MB ,试 在线段CE 上确定一点N ,使得MN ∥平面DAE. 111ABC A B C -3AC =4BC =5AB =14AA =D AB 1AC BC ⊥11AC CDB 平面11C CDB -

2017届文科数学立体几何大题训练 (1)

2017届文科数学立体几何大题训练 1. 如图,三棱锥A —BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 中点,D 为PB 中点,且△PMB 为正三角形. (Ⅰ)求证:DM 如图1,在四棱锥ABCD P -中,⊥PA 底面ABCD ,面ABCD 为正方形,E 为侧棱PD 上一点,F 为AB 上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示. (Ⅰ)求四面体PBFC 的体积; (Ⅱ)证明:AE ∥平面PFC ; (Ⅲ)证明:平面PFC ⊥平面PCD . 3. 如图,四棱柱P ABCD -中, .//,,AB PAD AB CD PD AD F ⊥=平面是DC 上的点且1 ,2 DF AB PH =为PAD ?中AD 边上的高. (Ⅰ)求证://AB 平面PDC ; (Ⅱ)求证:PH BC ⊥; (Ⅲ)线段PB 上是否存在点E ,使EF ⊥平面PAB 说明理由. F A D P C H

4. 如图,在四棱锥中,底面为菱形,,为的 中点。 (1)若 ,求证:平面 ; (2)点在线段上, ,试 确定的值,使; 5. .如图,E 是矩形ABCD 中AD 边上的点,F 为CD 边的中点, 2 43 AB AE AD ===,现将ABE ?沿BE 边折至PBE ?位置,且平面PBE ⊥平面 BCDE . ⑴ 求证:平面PBE ⊥平面 PEF ; ⑵ 求四棱锥P BEFC -的体积. P B C E D F E

6. 如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD , 90ABC BCD ∠=∠=,PA PD DC CB a ====,2AB a =,E 是PB 中点,H 是AD 中点. (Ⅰ)求证://EC 平面APD ;(Ⅱ)求三棱锥E BCD -的体积. 7. 如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形, 90BAC ∠=°,O 为BC 中点. (Ⅰ)证明:SO ⊥平面ABC ; (Ⅱ)求异面直线BS 与AC 所成角的大小. S

高考文科立体几何考试大题(供参考)

1文档来源为:从网络收集整理.word 版本可编辑. 文科数学立体几何大题题型 题型一、基本平行、垂直 1、如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,BAD=∠60°. (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11CC A BD ∥平面. 2.如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ?为等腰三角形,90APD ∠=,平面PAD ⊥ 平面ABCD ,且 1,2,AB AD E ==.F 分别为PC 和BD 的中点. (1)证明://EF 平面PAD ; (2)证明:平面PDC ⊥平面PAD ; (3)求四棱锥P ABCD -的体积. 3. 如图,已知四棱锥ABCD P -中,底面ABCD 是直角梯形, //AB DC , 45=∠ABC ,1DC =,2=AB ,⊥PA 平面ABCD , 1=PA . (1)求证://AB 平面PCD ; (2)求证:⊥BC 平面PAC ; (3)若M 是PC 的中点,求三棱锥M —ACD 的体积. 4.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是矩形,E 、F 分别是AB 、PD 的中点.若3PA AD ==,6CD = . (Ⅰ)求证://AF 平面PCE ; (Ⅱ) 求点F 到平面PCE 的距离; 题型二、体积: 1、如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8, AB =2DC =45. (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面 P AD ; (Ⅱ)求四棱锥P -ABCD 的体积. 2、如图,三棱锥BCD A -中,AD 、BC 、CD 两两互相垂直, E F D A C B P A B C D P M

高考文科立体几何考试大题题型

文科数学立体几何大题题型 题型一、基本平行、垂直 1、如图,在四棱台ABCD A1B1C1D1 中,D1D 平面ABCD ,底面ABCD 是平行四边 形,AB=2AD ,A D=A 1B1 ,BAD= 60°. (Ⅰ)证明:A A BD ; 1 (Ⅱ)证明:C C ∥平面A BD . 1 1 2.如图,四棱锥P ABCD 中,四边形ABCD 为矩形,PAD 为等腰三角形,APD 90 , 平面PAD 平面ABCD ,且AB 1, AD 2,E .F 分别为PC和B D P 的中点. E (1)证明:E F / / 平面PAD ; D (2)证明:平面PDC 平面PAD ; (3)求四棱锥P ABCD 的体积. C F A B

1

3.如图,已知四棱锥P ABCD中,底面ABCD是直角梯形,AB // DC ,ABC 45 , DC 1,AB 2,PA 平面ABCD,PA 1. P (1)求证:AB // 平面PCD ;[ 来源:https://www.360docs.net/doc/d0179716.html,] (2)求证:BC 平面PAC ; (3)若M是PC的中点,求三棱锥M—ACD的体积. M A B D C 4. 如图,四棱锥P ABCD中,PA 平面ABCD,四边形ABCD 是矩形,E 、F分别 是AB 、P D 的中点.若PA AD 3,CD 6 . (Ⅰ)求证:AF // 平面P CE ; (Ⅱ)求点F 到平面PCE 的距离;

2

题型二、体积: 1、如图,在四棱锥P-ABCD 中,平面PAD⊥平面ABCD,AB∥DC ,△PAD 是等边三角形,已知BD=2AD =8, AB =2DC = 4 5 . (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P-ABCD 的体积. 2 、如图,三棱锥A BCD 中,AD 、BC 、CD 两两互相垂直,且A B 1 3 , BC 3, CD 4 , M 、N分别为AB 、A C 的中点. (Ⅰ)求证:BC // 平面MND ; (Ⅱ)求证:平面MND 平面ACD ; (Ⅲ)求三棱锥 A MND 的体积. 3

立体几何高考真题大题

立体几何高考真题大题 1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD , 90AFD ∠=,且二面角D-AF-E 与二面角C-BE-F 都是60. (Ⅰ)证明:平面AB EF ⊥平面E FDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析; (Ⅱ)19 - 【解析】 试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ?平面F ABE ,可得平面F ABE ⊥平面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m 及平面C B E 的法向量n ,再利用cos ,n m n m n m ?= 求二面角. 试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ?平面F ABE ,故平面F ABE ⊥平面FDC E . (Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE . 以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(Ⅰ)知 DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则 DF 2=,DG 3=,可得()1,4,0A ,()3,4,0 B -,()3,0,0E -,(D . 由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角, C F 60∠E =.从而可得( C -. 所以(C E =,()0,4,0EB =,(C 3,A =--,()4,0,0AB =-. C A B D E F

高考文科立体几何大题

1.(2013年高考辽宁卷(文))如 图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点 (I)求证:BC PAC ⊥平面; (II)设//.Q PA G AOC QG PBC ?为的中点,为的重心,求证:平面 2、2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 就是正方形, O 为底面中 心, A 1O ⊥平面ABCD , 12AB AA == (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积、 O D 1 B 1 C 1 D A C A 1 3、(2013年高考福建卷(文))如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=o 、(1)当正视图方向与向量AD u u u r 的方向相同时,画出四棱锥P ABCD -的正视图、(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积、

4、 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD,且AB=1,AD=2,E 、F 分别为PC 与BD 的中点. (1)证明:EF ∥面PAD; (2)证明:面PDC ⊥面PAD; (3)求四棱锥P —ABCD 的体积. 5、(2013年高考广东卷(文))如图4,在边长为1的 等边三角形ABC 中,,D E 分别就是 ,AB AC 边上的点,AD AE =,F 就是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =、 (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23 AD =时,求三棱锥F DEG -的体积F DEG V -、 图 4G E F A B C D 图 5D G B F C A E

2020年高考立体几何大题文科(供参考)

2017年高考立体几何大题(文科) 1、(2017新课标Ⅰ文数)(12分) 如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为 83 ,求该四棱锥的侧面积. 2、(2017新课标Ⅱ文)(12分) 如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2 AB BC AD BAD ABC ==∠=∠=? (1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为P ABCD -的体积. 3、(2017新课标Ⅲ文数)(12分) 如图,四面体ABCD 中,△ABC 是正三角形,AD =CD . (1)证明:AC ⊥BD ; (2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比. 4、(2017北京文)(本小题14分) 如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点. (Ⅰ)求证:PA ⊥BD ; (Ⅱ)求证:平面BDE ⊥平面PAC ; (Ⅲ)当PA ∥平面BD E 时,求三棱锥E –BCD 的体积.

5、(2017山东文)(本小题满分12分) 由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (Ⅰ)证明:1A O ∥平面B 1CD 1; (Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1. 6、(2017江苏)(本小题满分14分) 如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A , D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC . 7、(2017浙江)(本题满分15分)如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的 等腰直角三角形,,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点. (第19题图) (Ⅰ)证明:平面PAB ; (Ⅱ)求直线CE 与平面PBC 所成角的正弦值. 8、(2017天津文)(本小题满分13分) 如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥, PD PB ⊥,1AD =,3BC =,4CD =,2PD =. (I )求异面直线AP 与BC 所成角的余弦值; (II )求证:PD ⊥平面PBC ; (II )求直线AB 与平面PBC 所成角的正弦值. //BC AD //CE

相关文档
最新文档