高中数学人教A版【精品习题】必修5章末检测:第一章 解三角形 Word含解析
【试题】2019年新课标人教A版高中数学必修五第一章《解三角形》单元测试题及答案

【试题】2019年新课标人教A 版高中数学必修五第一章《解三角形》单元测试题及答案第Ⅰ卷(选择题共60分)一、选择题(共12小题,每小题5分,只有一个选项正确):1.在△ABC 中,若∠A =60°,∠B =45°,BC =AC =( )A .. C D 2.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形3.在△ABC 中,已知a =11,b =20,A =130°,则此三角形( )A .无解B .只有一解C .有两解D .解的个数不确定 4. 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60 的视角,从B 岛望C 岛和A岛成75 视角,则B 、C 两岛的距离是( )海里A. 65B. 35C. 25D. 55.边长为3、7、8的三角形中,最大角与最小角之和为 ( )A .90°B .120°C .135°D .150°6.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定的一点C ,测出AC 的距离为m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A ,B 两点的距离为 ( )A. 100mB. mC. mD. 200m7.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则△ABC 的面积为( )A .1B .2 C. 2 D. 38.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于( )A. 3B .5 3C .6 3D .7 39.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C 的值为( ) A.85 B.58 C.53 D.3510.某海上缉私小分队驾驶缉私艇以40 km/h 的速度由A 处出发,沿北偏东60°方向航行,进行海面巡逻,当行驶半小时到达B 处时,发现北偏西45°方向有一艘船C ,若C 船位于A 处北偏东30°方向上,则缉私艇B 与船C 的距离是( )A .5(6+2) kmB .5(6-2) kmC .10(6+2) kmD .10(6-2) km11.△ABC 的周长为20,面积为A =60°,则BC 的长等于( )A .5 B.6 C .7 D .812.在ABC △中,角A B C 、、所对的边分别为,,a b c ,若120,C c ∠=︒=,则( )A .a b >B .a b <C .a b =D .a 与b 的大小关系不能确定第Ⅱ卷(非选择题共90分)二、填空题(共4小题,每小题5分):13.三角形的两边分别是5和3,它们夹角的余弦值是方程06752=--x x 的根,则此三角形的面积是 。
高中数学(人教A版,必修五)【课时作业与单元检测】:第

第一章 章末检测 (B)姓名:________ 班级:________ 学号:________ 得分:________(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.在△ABC 中,a =2,b =3,c =1,则最小角为( )A.π12B.π6C.π4D.π32.△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量p =(a +c ,b ),q = (b -a ,c -a ),若p ∥q ,则角C 的大小为( )A.π6B.π3C.π2D.2π33.在△ABC 中,已知||=4,|AC →|=1,S △ABC =3,则AB →·AC →等于( )A .-2B .2C .±4D .±24.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于() A. 6 B .2 C. 3 D. 25.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C 的值为( )A.85B.58C.53D.356.已知锐角三角形的边长分别为2,4,x ,则x 的取值范围是( )A .1<x < 5 B.5<x <13C .1<x <2 5D .23<x <2 5 7.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( )A .-223 B.223C .-63 D.638.下列判断中正确的是( )A .△ABC 中,a =7,b =14,A =30°,有两解B .△ABC 中,a =30,b =25,A =150°,有一解C .△ABC 中,a =6,b =9,A =45°,有两解D .△ABC 中,b =9,c =10,B =60°,无解9.在△ABC 中,B =30°,AB =3,AC =1,则△ABC 的面积是( )A.34 B.32C.3或32D.32或3410.在△ABC 中,BC =2,B =π3,若△ABC 的面积为32,则tan C 为( )A. 3 B .1 C.33 D.3211.在△ABC 中,如果sin A sin B +sin A cos B +cos A sin B +cos A cos B =2,则△ABC 是( )A .等边三角形B .钝角三角形C .等腰直角三角形D .直角三角形12.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则角C 的度数是( )A .60°B .45°或135°C .120°D .30°题 号1 2 3 4 5 6 7 8 9 10 11 12 答 案13.在△ABC 中,若sin A a =cos B b,则B =________. 14.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为________.15.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔64海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/小时.16.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A =________.三、解答题(本大题共6小题,共70分)17.(10分)如图,H 、G 、B 三点在同一条直线上,在G 、H 两点用测角仪器测得A 的仰角分别为α,β,CD =a ,测角仪器的高是h ,用a ,h ,α,β表示建筑物高度AB .18.(12分)设锐角三角形ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a =2b sin A .(1)求B 的大小.(2)若a =33,c =5,求b .19.(12分)如图所示,已知⊙O 的半径是1,点C 在直径AB 的延长线上,BC =1,点P 是⊙O 上半圆上的一个动点,以PC 为边作等边三角形PCD ,且点D 与圆心分别在PC 的两侧.(1)若∠POB =θ,试将四边形OPDC 的面积y 表示为关于θ的函数;(2)求四边形OPDC 面积的最大值.20.(12分)为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如示意图).飞机能够测量的数据有俯角和A ,B 间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.21.(12分)在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b .(2)若sin B =2sin A ,求△ABC 的面积.22.(12分) 如图所示,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.第一章 解三角形 章末检测 答案 (B)1.B [∵a >b >c ,∴C 最小.∵cos C =a 2+b 2-c 22ab =22+(3)2-122×2×3=32, 又∵0<C <π,∴C =π6.] 2.B [∵p ∥q ,∴(a +c )(c -a )-b (b -a )=0.∴c 2=a 2+b 2-ab ,∵c 2=a 2+b 2-2ab cos C ,∴cos C =12,又∵0<C <π,∴C =π3.] ∴||·|AC →|·sin A=12×4×1×sin A = 3. ∴sin A =32.又∵0°<A <180°, ∴A =60°或120°.·AC →=|AB →|·|AC →|cos A=4×1×cos A =±2.]4.D [由正弦定理得b sin B =c sin C, ∴sin C =c ·sin B b =2sin 120°6=12, ∵c <b ,∴C 为锐角.∴C =30°,∴A =180°-120°-30°=30°.∴a =c = 2.]5.D [由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A , 即72=52+AC 2-10AC ·cos 120°,∴AC =3.由正弦定理得sin B sin C =AC AB =35.] 6.D [由题意,x 应满足条件⎩⎪⎨⎪⎧22+42-x 2>022+x 2-42>0 解得:23<x <2 5.]7.D [由正弦定理得15sin 60°=10sin B. ∴sin B =10·sin 60°15=33. ∵a >b ,A =60°,∴B <60°.∴cos B =1-sin 2B =1-(33)2=63.] 8.B [A :a =b sin A ,有一解;B :A >90°,a >b ,有一解;C :a <b sin A ,无解;D :c >b >c sin B ,有两解.]9.D [由余弦定理AC 2=AB 2+BC 2-2AB ·BC cos B ,∴12=(3)2+BC 2-2×3×BC ×32. 整理得:BC 2-3BC +2=0.∴BC =1或2. 当BC =1时,S △ABC =12AB ·BC sin B =12×3×1×12=34. 当BC =2时,S △ABC =12AB ·BC sin B =12×3×2×12=32.] 10.C [由S △ABC =12BC ·BA sin B =32得BA =1,由余弦定理得 AC 2=AB 2+BC 2-2AB ·BC cos B ,∴AC =3,∴△ABC 为直角三角形,其中A 为直角,∴tan C =AB AC =33.] 11.C [由已知,得cos(A -B )+sin(A +B )=2, 又|cos(A -B )|≤1,|sin(A +B )|≤1,故cos(A -B )=1且sin(A +B )=1,即A =B 且A +B =90°,故选C.]12.B [由a 4+b 4+c 4=2c 2a 2+2b 2c 2,得cos 2C =(a 2+b 2-c 2)2(2ab )2=a 4+b 4+c 4+2a 2b 2-2c 2a 2-2b 2c 24a 2b 2=12⇒cos C =±22.∴角C 为45°或135°.] 13.45°解析 由正弦定理,sin A a =sin B b. ∴sin B b =cos B b.∴sin B =cos B . ∴B =45°.14.10 3解析 设AC =x ,则由余弦定理得:BC 2=AB 2+AC 2-2AB ·AC cos A ,∴49=25+x 2-5x ,∴x 2-5x -24=0.∴x =8或x =-3(舍去).∴S △ABC =12×5×8×sin 60°=10 3. 15.8 6解析 如图所示,在△PMN 中,PM sin 45°=MN sin 120°, ∴MN =64×32=326,∴v =MN 4=86(海里/小时). 16.33解析 由(3b -c )cos A =a cos C ,得(3b -c )·b 2+c 2-a 22bc =a ·a 2+b 2-c 22ab , 即b 2+c 2-a 22bc =33, 由余弦定理得cos A =33. 17.解 在△ACD 中,∠DAC =α-β,由正弦定理,得AC sin β=DC sin (α-β), ∴AC =a sin βsin (α-β)∴AB =AE +EB =AC sin α+h =a sin βsin αsin (α-β)+h . 18.解 (1)∵a =2b sin A ,∴sin A =2sin B ·sin A ,∴sin B =12.∵0<B <π2,∴B =30°. (2)∵a =33,c =5,B =30°.由余弦定理b 2=a 2+c 2-2ac cos B =(33)2+52-2×33×5×cos 30°=7.∴b =7.19.解 (1)在△POC 中,由余弦定理,得PC 2=OP 2+OC 2-2OP ·OC ·cos θ=5-4cos θ,所以y =S △OPC +S △PCD =12×1×2sin θ+34×(5-4cos θ) =2sin ⎝⎛⎭⎫θ-π3+534.(2)当θ-π3=π2,即θ=5π6时,y max =2+534. 答 四边形OPDC 面积的最大值为2+534. 20.解 ①需要测量的数据有:A 点到M 、N 点的俯角α1、β1;B 点到M 、N 点的俯角α2、β2;A 、B 的距离d (如图所示).②第一步:计算AM ,由正弦定理AM =d sin α2sin (α1+α2); 第二步:计算AN .由正弦定理AN =d sin β2sin (β2-β1);第三步:计算MN ,由余弦定理MN =AM 2+AN 2-2AM ×AN cos (α1-β1).21.解 (1)由余弦定理及已知条件得 a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,由此得ab =4. 联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧ a =2,b =2. (2)由正弦定理及已知条件得b =2a .联立方程组⎩⎪⎨⎪⎧ a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧ a =233,b =433.所以△ABC 的面积S =12ab sin C =233. 22.解 ∵CP ∥OB ,∴∠CPO =∠POB =60°-θ, ∠OCP =120°.在△POC 中,由正弦定理得OP sin ∠PCO =CP sin θ, ∴2sin 120°=CP sin θ,∴CP =43sin θ. 又OC sin (60°-θ)=2sin 120°,∴OC =43sin(60°-θ). 因此△POC 的面积为S (θ)=12CP ·OC sin 120° =12·43sin θ·43sin(60°-θ)×32 =43sin θsin(60°-θ) =43sin θ⎝⎛⎭⎫32cos θ-12sin θ =2sin θ·cos θ-23sin 2θ =sin 2θ+33cos 2θ-33=233sin ⎝⎛⎭⎫2θ+π6-33 ∴θ=π6时,S (θ)取得最大值为33.。
人教版高中数学必修五 第一章 章末检测(A)

第一章 章末检测(A )一、选择题(本大题共12小题,每小题5分,共60分) 1.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c .若a =52b ,A =2B ,则cos B 等于( )A.53B.54C.55D.56 答案 B解析 由正弦定理得a b =sin Asin B,∴a =52b 可化为sin A sin B =52.又A =2B ,∴sin 2B sin B =52,∴cos B =54.2.在△ABC 中,AB=3,AC=2,BC= 10,则·AC →等于( )A .-32B .-23 C.23 D.32答案 A解析 由余弦定理得cos A =AB 2+AC 2-BC 22AB ·AC =9+4-1012=14.∴·AC →=|AB →|·|AC →|·cos A =3×2×14=32.∴·AC →=-AB →·AC →=-32.3.在△ABC 中,已知a =5,b =15,A =30°,则c 等于( ) A .2 5 B. 5C .25或 5D .以上都不对 答案 C解析 ∵a 2=b 2+c 2-2bc cos A ,∴5=15+c 2-215×c ×32.化简得:c 2-35c +10=0,即(c -25)(c -5)=0, ∴c =25或c = 5.4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解 答案 D解析 A 中,因a sin A =bsin B ,所以sin B =16×sin 30°8=1,∴B =90°,即只有一解;B 中,sinC =20sin 60°18=539,且c >b ,∴C >B ,故有两解;C 中, ∵A =90°,a =5,c =2,∴b =a 2-c 2=25-4=21,即有解,故A 、B 、C 都不正确.5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A.922B.924C.928 D .9 2 答案 C解析 设另一条边为x ,则x 2=22+32-2×2×3×13,∴x 2=9,∴x =3.设cos θ=13,则sin θ=223.∴2R =3sin θ=3223=924,R =928.6.在△ABC 中,cos 2 A 2=b +c2c(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( )A .直角三角形B .等腰三角形或直角三角形C .等腰直角三角形D .正三角形 答案 A解析 由cos 2A 2=b +c 2c ⇒cos A =bc ,又cos A =b 2+c 2-a 22bc,∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A.7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a =c =6+2,且A =75°,则b 等于( )A .2 B.6- 2 C .4-2 3 D .4+2 3 答案 A解析 sin A =sin 75°=sin(30°+45°)=6+24,由a =c 知,C =75°,B =30°.sin B =12.由正弦定理:b sin B =asin A =6+26+24=4.∴b =4sin B =2.8.在△ABC 中,已知b 2-bc -2c 2=0,a =6,cos A =78,则△ABC 的面积S 为( )A.152B.15C.8155 D .6 3答案 A解析 由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即6=4c 2+c 2-4c 2·78.∴c =2,从而b =4.∴S △ABC =12bc sin A =12×2×4×1-⎝⎛⎭⎫782=152. 9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( ) A.21 B.106 C.69 D.154 答案 B解析 设BC =a ,则BM =MC =a2.在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB ,即72=14a 2+42-2×a2×4·cos ∠AMB ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即62=42+14a 2+2×4×a2·cos ∠AMB ②①+②得:72+62=42+42+12a 2,∴a =106.10.若sin A a =cos B b =cos C c,则△ABC 是( )A .等边三角形B .有一内角是30°的直角三角形C .等腰直角三角形D .有一内角是30°的等腰三角形 答案 C解析 ∵sin A a =cos Bb,∴a cos B =b sin A ,∴2R sin A cos B =2R sin B sin A,2R sin A ≠0. ∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3 答案 D解析 ∵(a 2+c 2-b 2)tan B =3ac , ∴a 2+c 2-b 22ac ·tan B =32,即cos B ·tan B =sin B =32.∵0<B <π,∴角B 的值为π3或2π3.12.△ABC 中,A =π3,BC =3,则△ABC 的周长为( )A .43sin ⎝⎛⎭⎫B +π3+3 B .43sin ⎝⎛⎭⎫B +π6+3 C .6sin ⎝⎛⎭⎫B +π3+3 D .6sin ⎝⎛⎭⎫B +π6+3 答案 D解析 A =π3,BC =3,设周长为x ,由正弦定理知BC sin A =AC sin B =ABsin C=2R ,由合分比定理知BCsin A =AB +BC +AC sin A +sin B +sin C,即332=x 32+sin B +sin C. ∴23⎣⎡⎦⎤32+sin B +A +B =x , 即x =3+23⎣⎡⎦⎤sin B +sin ⎝⎛⎭⎫B +π3 =3+23⎝⎛⎭⎫sin B +sin B cos π3+cos B sin π3 =3+23⎝⎛⎭⎫sin B +12sin B +32cos B=3+23⎝⎛⎭⎫32sin B +32cos B=3+6⎝⎛⎭⎫32 sin B +12cos B=3+6sin ⎝⎛⎭⎫B +π6. 二、填空题(本大题共4小题,每小题4分,共16分)13.在△ABC 中,2a sin A -b sin B -csin C=________.答案 014.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值为________.答案 π6解析 ∵a 2+c 2-b 2=3ac ,∴cos B =a 2+c 2-b 22ac =3ac 2ac =32,∴B =π6.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3, A +C =2B ,则sin C =________. 答案 1解析 在△ABC 中,A +B +C =π,A +C =2B .∴B =π3.由正弦定理知,sin A =a sin B b =12.又a <b .∴A =π6,C =π2.∴sin C =1.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.答案 32≤a <3解析 由⎩⎪⎨⎪⎧a +a +a +2a2+a +2-a +2<0a 2+a +2-a +22a a +≥-12.解得32≤a <3.三、解答题(本大题共6小题,共74分)17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.解 设我艇追上走私船所需时间为t 小时,则 BC =10t ,AC =14t ,在△ABC 中, 由∠ABC =180°+45°-105°=120°, 根据余弦定理知: (14t )2=(10t )2+122-2·12·10t cos 120°, ∴t =2.答 我艇追上走私船所需的时间为2小时.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且cos A =45.(1)求sin 2 B +C2+cos 2A 的值;(2)若b =2,△ABC 的面积S =3,求a .解 (1)sin 2 B +C 2+cos 2A =1-B +C 2+cos 2A =1+cos A 2+2cos 2 A -1=5950.(2)∵cos A =45,∴sin A =35.由S △ABC =12bc sin A ,得3=12×2c ×35,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得a 2=4+25-2×2×5×45=13,∴a =13.19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2.(1)求cos ∠CBE 的值; (2)求AE .解 (1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴cos ∠CBE =cos(45°-30°)=6+24.(2)在△ABE 中,AB =2,由正弦定理得AE sin ∠ABE =ABsin ∠AEB ,即AE -=2+,故AE =2sin 30°cos 15°=2×126+24=6- 2.20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.解 (1)∵cos B =35>0,且0<B <π,∴sin B =1-cos 2B =45.由正弦定理得a sin A =bsin B,sin A =a sin Bb =2×454=25.(2)∵S △ABC =12ac sin B =4,∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17,∴b =17.21.(12分)(2010·辽宁)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解 (1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,A =120°.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C ,又A =120°,∴sin 2B +sin 2C +sin B sin C =34,∵sin B +sin C =1,∴sin C =1-sin B .∴sin 2B +(1-sin B )2+sin B (1-sin B )=34,即sin 2B -sin B +14=0.解得sin B =12.故sin C =12.∴B =C =30°.所以,△ABC 是等腰的钝角三角形. 方法二 由(1)A =120°,∴B +C =60°, 则C =60°-B ,∴sin B +sin C =sin B +sin(60°-B )=sin B +32cos B -12sin B=12sin B +32cos B =sin(B +60°) =1, ∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.(14分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ), n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即a ·a 2R =b ·b 2R,其中R 是△ABC 外接圆半径,∴a =b . ∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0, 即a (b -2)+b (a -2)=0. ∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴S △ABC =12ab sin C =12×4×sin π3= 3.。
高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5

∴A=60°,C=180°-(A+B)=75°.
探究 2 已知三边(三边关系)解三角形 例 2 (1)在△ABC 中,若 a=7,b=4 3,c= 13,则 △ABC 的最小角为( )
πππ π A.3 B.6 C.4 D.12 (2)在△ABC 中,角 A,B,C 的对边分别为 a,b,c, 已知 a-b=4,a+c=2b,且最大角为 120°,求此三角形的 最大边长. 答案 (2)见解析
2.做一做
(1)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c, 5π
若 a=1,b= 7,c= 3,则 B=____6____. (2) 已知 △ABC 的 三边 分 别为 2,3,4 , 则此 三 角形是
___钝__角___三角形.
π (3)在△ABC 中,若 a2+b2-c2=ab,则角 C 的大小为 ___3_____.
解析 (1)因为 c<b<a,所以最小角为角 C. 所以 cosC=a2+2ba2b-c2=429×+74×8-4 133= 23, 所以 C=π6,故选 B.
(2)已知 a-b=4,且 a>b,且 a=b+4,又 a+c=2b, 则 b+4+c=2b,所以 b=c+4,则 b>c,从而 a>b>c,所以 a 为最大边,A=120°,b=a-4,c=a-8.
解 利用边的关系判断, 由正弦定理,得sinC=c,
sinB b 由 2cosAsinB=sinC,得 cosA=2ssininCB=2cb, 又 cosA=b2+2cb2c-a2,∴2cb=b2+2cb2c-a2,即 a=b.
又(a+b+c)(a+b-c)=3ab,∴(a+b)2-c2=3ab, ∴b=c, 综上 a=b=c,∴△ABC 为等边三角形.
高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。
新版高中数学人教A版必修5习题:第一章解三角形 1.2.1(1)

1.2应用举例第1课时距离问题课时过关·能力提升基础巩固1已知A,B两地相距10 km,B,C两地相距20 km,且∠ABC=120°,则A,C两地相距().A.10 kmB.10√3 kmC.10√5 kmD.10√7 km答案:D2如图,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为().A.a kmB.√3a kmC.√2a kmD.2a km解析:由题意知,在△ABC中,AC=BC=a km,∠ACB=120°,则AB2=AC2+BC2-2AC·BC·cos∠ACB=a2+a2-2a2cos120°=3a2,故AB=√3a km.答案:B3如图,B,C两点在河的两岸,在河岸AC测量BC的距离有下列四组数据,较适宜测量的数据是().A.γ,c,αB.b,c,αC.c,α,βD.b,α,γ答案:D4在△ABC中,B=70°,C=36°,a=4,则c等于().A.4sin36°sin70°B.4sin70°sin36°C.4sin36°sin74°D.4sin74°sin36°答案:C5在△ABC中,已知a=4,b=6,C=120°,则sin A的值为().A.√5719B.√217C.√338D.−√5719解析:c2=a2+b2-2ab cos C=42+62-2×4×6×cos120°=76,则c=2√19.由asinA =csinC,得sin A=asinCc=√5719.答案:A6某人向正东方向走了x km后向右转了150°,然后沿新方向走了3 km,结果离出发点恰好为√3 km,那么x的值为().A.√3B.2√3C.2√3或√3D.3解析:如图,若设出发点为A,则有AC2=AB2+BC2-2AB·BC·cos∠ABC,则(√3)2=x2+9−2x×3cos30°,解得x=2√3或x=√3.答案:C7如图,为了测量河的宽度,在一岸边选定两点A,B,分别在A,B点望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度CD为.解析:tan30°=CDAD ,tan75°=CDDB,又AD+DB=AB=120m,∴AD tan30°=(120-AD)tan75°.∴AD=60√3m.故CD=60m.答案:60 m8一艘船在海上由西向东航行,在A处望见灯塔C在船的东北方向,半小时后在B处望见灯塔C 在船的北偏东30°方向,航速为30海里/时,当船到达D处时望见灯塔C在船的西北方向,求A,D两点间的距离.解如图,在△ABC中,A=45°,∠ABC=120°,AB=15,∠ACB=15°,由正弦定理,得ACsin120°=15sin15°,∴AC=3√2+√62×15.∴AD=√2AC=15(3+√3)(海里).答:A,D两点间的距离是15(3+√3)海里.9海上某货轮在A处看灯塔B在货轮北偏东75°,距离为12√6 n mile;在A处看灯塔C,在货轮的北偏西30°,距离为8√3 n mile;货轮向正北由A处航行到D处时看灯塔B在北偏东120°,求:(1)A处与D处之间的距离;(2)灯塔C与D处之间的距离.解由题意,画出示意图.(1)在△ABD中,由已知得∠ADB=60°,B=45°,AB=12√6nmile.由正弦定理得AD=ABsin60°sin45°=24(nmile).(2)在△ADC中,由余弦定理得CD2=AD2+AC2-2AD·AC cos30°=242+(8√3)2−2×24×8√3×√32=192,故CD=8√3(n mile).答:A处与D处之间的距离为24nmile,灯塔C与D处之间的距离为8√3nmile.能力提升1在△ABC中,已知B=60°,最大边与最小边的比为√3+12,则三角形的最大角为().A.60°B.75°C.90°D.115°解析:设最大边为a,最小边为c,则最大角为A,最小角为C,且sinAsinC=sin(120°-C)sinC=√3+12,整理得tan C=1.又0°<C<120°,∴C=45°.∴A=180°-(B+C)=180°-(60°+45°)=75°.答案:B2如图,某炮兵阵地位于A点,两个观察所分别位于C,D两点.已知△ACD为等边三角形,且DC=√3 km,当目标出现在B点时,测得∠CDB=45°,∠BCD=75°,则炮兵阵地与目标的距离约是().A.1.1 kmB.2.2 kmC.2.9 kmD.3.5 km解析:∠CBD=180°-∠BCD-∠CDB=60°.在△BCD 中,由正弦定理,得BD =CDsin75°sin60°=√6+√22.在△ABD 中,∠ADB=45°+60°=105°. 由余弦定理,得AB 2=AD 2+BD 2-2AD ·BD cos105°=3+(√6+√2)24+2×√3×√6+√22×√6-√24=5+2√3.则AB =√5+2√3≈2.9(km).故炮兵阵地与目标的距离约是2.9km. 答案:C3已知A 船在灯塔C 北偏东80°,且A 到C 的距离为2 km,B 船在灯塔C 北偏西40°,A ,B 两船的距离为3 km,则B 到C 的距离为 .解析:如图所示,在△ABC 中,∠ACB=40°+80°=120°,AB=3km,AC=2km.设BC=a km.由余弦定理,得cos ∠ACB =BC 2+AC 2-AB 22BC ·AC, 即cos120°=a 2+4-94a, 解得a =√6−1或a=−√6−1(舍去),即B 到C 的距离为(√6−1)km. 答案:(√6−1)km★4某观测站C 在A 城的南偏西20°的方向,由A 城出发有一条公路,公路走向是南偏东40°,在公路上测得距离C 31 km 的B 处有一人正沿公路向A 城走去,走了20 km 后到达D 处,此时C ,D 之间相距21 km,问此人还要走多远才能到达A 城?解如图,∠CAB=60°,BD=20,CB=31,CD=21.在△BCD 中,由余弦定理,得cos ∠BDC =BD 2+CD 2-CB 22BD ·CD=202+212-3122×20×21=−17,则sin ∠BDC =4√37.在△ACD 中,∠ACD=∠BDC-∠CAD=∠BDC-60°.由正弦定理,可得AD =CDsin∠ACDsin60°. ∵sin ∠ACD=sin(∠BDC-60°)=sin ∠BDC cos60°-cos ∠BDC sin60°=5√314, ∴AD =21×5√314√32=15(km).答:此人还要走15km 才能到达A 城.★5如图,一人在C 地看到建筑物A 在正北方向,另一建筑物B 在北偏西45°方向,此人向北偏西75°方向前进√30 km 到达D,看到A 在他的北偏东45°方向,B 在他的北偏东75°方向,试求这两座建筑物之间的距离.解由题意得,DC=√30,∠ADB=∠BCD=30°=∠BDC,∠DBC=120°,∠ADC=60°,∠DAC=45°.在△BDC中,由正弦定理可得,BC=DCsin∠BDCsin∠DBC =√30sin30°sin120°=√10.在△ADC中,由正弦定理可得,AC=DCsin∠ADCsin∠DAC =√30sin60°sin45°=3√5.在△ABC中,由余弦定理可得AB2=AC2+BC2-2AC·BC cos∠ACB=(3√5)2+(√10)2−2×3√5×√10×cos45°=25,解得AB=5.答:这两座建筑物之间的距离为5km.。
人教版高中数学必修五章末检测第一章解三角形测试题
章末检测一、选择题1.在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,若A +C =2B ,有a =1,b =3,则S △ABC 等于( ) A. 2 B. 3 C.32 D .2 答案 C解析 由A +C =2B ,解得B =π3.由余弦定理得(3)2=1+c 2-2c cos π3,解得c =2或c =-1(舍去).于是,S △ABC =12ac sin B =12×1×2sin π3=32. 2.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( ) A.⎝⎛⎭⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝⎛⎦⎤0,403 答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403. 3.在△ABC 中,若a =52b ,A =2B ,则cos B 等于( ) A.53 B.54 C.55 D.56答案 B解析 由正弦定理得a b =sin A sin B ,∴a =52b 可化为sin A sin B =52. 又A =2B ,∴sin 2B sin B =52,∴cos B =54. 4.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若C =120°,c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定答案 A解析 由余弦定理得c 2=a 2+b 2-2ab cos C ,又C =120°,∴2a 2=a 2+b 2+ab ,∴a 2=b 2+ab >b 2,∴a >b ,故选A.5.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( )A .(2,+∞)B .(-∞,0)C .(-12,0)D .(12,+∞)答案 D解析 由正弦定理得:a =mk ,b =m (k +1),c =2mk (m >0),∵⎩⎪⎨⎪⎧ a +b >c a +c >b 即⎩⎪⎨⎪⎧m (2k +1)>2mk 3mk >m (k +1),∴k >12. 6.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( ) A.922 B.924 C.928 D .9 2答案 C解析 设另一条边为x ,则x 2=22+32-2×2×3×13,∴x 2=9,∴x =3.设cos θ=13,则sin θ=223.∴2R =3sin θ=3223=924,R =928.7.在△ABC 中,sin A =sin C ,则△ABC 是( )A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形答案 B解析 ∵sin A =sin C 且A 、C 是三角形内角,∴A =C 或A +C =π(舍去).∴△ABC 是等腰三角形.8.在锐角△ABC 中,BC =1,∠B =2∠A ,则AC 的取值范围是() A .[-2,2] B .[0,2] C .(0,2] D .(2,3)答案 D解析 由题意得⎩⎨⎧ 0<π-3∠A <π2,0<2∠A <π2⇒π6<∠A <π4,由正弦定理ACsin B =BCsin A 得AC =2cos A .∵∠A ∈⎝⎛⎭⎫π6,π4,∴AC ∈(2,3).9.根据下列情况,判断三角形解的情况,其中正确的是( )A .a =8,b =16,A =30°,有两解B .b =18,c =20,B =60°,有一解C .a =5,c =2,A =90°,无解D .a =30,b =25,A =150°,有一解答案 D解析 A 中,因asin A =bsin B ,所以sin B =16×sin 30°8=1,∴B =90°,即只有一解;B 中,sinC =20sin 60°18=539,且c >b ,∴C >B ,故有两解;C 中,∵A =90°,a =5,c =2,∴b =a 2-c 2=25-4=21,即有解;故A 、B 、C 都不正确.用排除法应选D.10.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于() A.21 B.106 C.69 D.154答案 B解析 设BC =a ,则BM =MC =a2.在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB , 即72=14a 2+42-2×a2×4·cos ∠AMB ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即62=42+14a 2+2×4×a2·cos ∠AMB ②①+②得:72+62=42+42+12a 2,∴a =106.二、填空题11.已知△ABC 中,3a 2-2ab +3b 2-3c 2=0,则cos C 的大小是________.答案 13解析 由3a 2-2ab +3b 2-3c 2=0,得c 2=a 2+b 2-23ab .根据余弦定理,得cos C =a 2+b 2-c 22ab=a 2+b 2-a 2-b 2+23ab 2ab =13,所以cos C =13.12.在△ABC 中,若b +c =2a,3sin A =5sin B ,则角C =________.答案 2π3解析 由已知3sin A =5sin B ,利用正弦定理可得3a =5b .由3a =5b ,b +c =2a ,利用余弦定理得cos C =a 2+b 2-c 22ab =-12.C ∈(0,π),C =23π. 13.在△ABC 中,已知cos A =35,cos B =513,b =3,则c =________. 答案 145解析 在△ABC 中,∵cos A =35>0,∴sin A =45. ∵cos B =513>0,∴sin B =1213. ∴sin C =sin [π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45×513+35×1213=5665. 由正弦定理知b sin B =c sin C ,∴c =b sin C sin B =3×56651213=145. 14.太湖中有一小岛C ,沿太湖有一条正南方向的公路,一辆汽车在公路A 处测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 到达B 处后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析 如图,∠CAB =15°,∠CBA =180°-75°=105°,∠ACB =180°-105°-15°=60°,AB =1 (km).由正弦定理得BC sin ∠CAB =AB sin ∠ACB, ∴BC =1sin 60°·sin 15°=6-223(km). 设C 到直线AB 的距离为d ,则d =BC ·sin 75°=6-223·6+24=36 (km). 三、解答题15.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35. (1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.解 (1)∵cos B =35>0,且0<B <π,∴sin B =1-cos 2B =45. 由正弦定理得a sin A =b sin B ,sin A =a sin B b =2×454=25. (2)∵S △ABC =12ac sin B =4,∴12×2×c ×45=4,∴c =5. 由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17,∴b =17. 16.如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/时的速度追击,求我艇追上走私船所需要的时间.解 设我艇追上走私船所需时间为t 小时,则BC =10t ,AC =14t ,在△ABC 中,由∠ABC =180°+45°-105°=120°,根据余弦定理知(14t )2=(10t )2+122-2·12·10t cos 120°,∴t =2(t =-34舍去). 答 我艇追上走私船所需要的时间为2小时.17.在△ABC 中,a =3,b =26,∠B =2∠A .(1)求cos A 的值;(2)求c 的值.解 (1)因为a =3,b =26,∠B =2∠A ,所以在△ABC 中,由正弦定理得3sin A =26sin 2A. 所以2sin A cos A sin A =263.故cos A =63. (2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B =2∠A ,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =223. 在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =539.所以c =a sin C sin A=5. 18.已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即a ·a 2R =b ·b 2R, 其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三角形.(2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab ,即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴S △ABC =12ab sin C =12×4×sin π3= 3.附赠材料答题六注意 :规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。
2014年高中数学 第一章 解三角形测试卷A 新人教A版必修5
第一章 解三角形检测题A本试卷分第Ⅰ卷和第Ⅱ卷两部分.时间:120分钟,分数:150分.第Ⅰ卷(选择题,共60分)一、选择题 (本大题共12小题,每小题5分,共60分)1.在ABC △,已知11,20,130a b A ===︒,则此三角形( ) A .无解 B .只有一解 C .有两解 D .解的个数不确定2. ABC △中,已知2()()a c a c b bc +-=+,则A =( )A. 030B. 060C.0120D.01503. ABC △中,已知5,60,ABC b A S ==︒=△a =( )A .4B .16C .21D 4.在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论:①6:5:4::=c b a ②6:5:2::=c b a ③cm c cm b cm a 3,5.2,2=== ④6:5:4::=C B A其中成立的个数是 ( ) A .0个 B .1个 C .2个 D .3个5. 在ABC △中,A 、B 、C 为三角形的内角,60B =︒,b ac =,则A 的值为( ) A. 045 B.030 C.090 D.0606. 已知A 、B 为锐角三角形的两内角,则点(cos sin ,sin cos )P B A B A --在第( )象限 A .一 B .二 C .三 D 四.7.已知三角形ABC 的面积4222c b a s -+=,则C ∠的大小是( )A. 045 B.030 C.090 D.01358.在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b c =B =( )A. π6B. 5π6C.5π6或π6D.π39. 在ABC △中,若223coscos 222C A a c b +=,那么,,a b c 的关系是( ) A .a b c += B .2a c b += C .2b c a +=D .a b c == 10.圆内接四边形ABCD 中,3,4,5,6,AB BC CD AD ====则cos A =( )A .16 B .112 C .119 D .12111.在△ABC 中,sin b a C =,cos c a B =,则△ABC 一定是( )A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形12.某观察站C 与两灯塔A 、B 的距离分别为300米和500米,测得灯塔A 在观察站C 北偏东30,灯塔B 在观察站C 南偏东30处,则两灯塔A 、B 间的距离为( ) A .400米 B .500米 C .800米 D . 700米第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题4分,共16分)13.在ABC ∆中,60A ∠=︒,最大边和最小边边长是方程2327320x x -+=的两实根,则BC 边长等于______。
高中数学必修五第一章《解三角形》单元测试卷及答案
高中数学必修五第一章《解三角形》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.在ABC △中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A >B ,则一定有( ) A .cos A >cos BB .sin A >sin BC .tan A >tan BD .sin A <sin B3.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,2sin sin cos a A B b A +,则ba =( )A .B .C D4.在△ABC 中,∠A =60°,a =,b =4.满足条件的△ABC ( ) A .无解B .有一解C .有两解D .不能确定5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222a b c =-, 则角B 的大小是( ) A .45°B .60°C .90°D .135°6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -,sin C B =,则A =( ) A .30°B .60°C .120°D .150°7.在△ABC 中,∠A =60°,b =1,△ABC sin aA为( )A B C D .8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .0,6π⎛⎤ ⎥⎝⎦B .,6π⎡⎫π⎪⎢⎣⎭C .0,3π⎛⎤ ⎥⎝⎦D .,3π⎡⎫π⎪⎢⎣⎭9.在△ABC 中,已知B =45°,c =,b =A 的值是( ) A .15°B .75°C .105°D .75°或15°10.在锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( )A .1<a <3B .1a <<C a <D .不确定11.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 22A b cc+=,则 △ABC 的形状为( ) A .直角三角形B .等腰直角三角形C .等腰或直角三角形D .等边三角形12.如图所示,在△ABC 中,已知∠A ∶∠B =1∶2,角C 的平分线CD 把三角形面积分为3∶2两部分,则cos A 等于( )A .13B .12C .34D .0二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.等腰三角形的底边长为6,腰长为12,其外接圆的半径为________. 14.在△ABC 中,若a 2+b 2<c 2,且3sin C ,则∠C =________. 15.在△ABC 中,a =3,26b =B =2∠A ,则cos A =________.16.某人在C 点测得塔AB 在南偏西80°,仰角为45°,沿南偏东40°方向前进10 m 到O ,测得塔A 仰角为30°,则塔高为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知()cos cos 3sin cos 0C A A B +=.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.18.(12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .(1)若sin 2cos 6A A π⎛⎫+= ⎪⎝⎭,求A 的值;(2)若1cos 3A =,b =3c ,求sin C 的值.19.(12分)在△ABC 中,角A 、B 、C 对应的边分别是a 、b 、c ,已知cos2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =b =5,求sin B sin C 的值.20.(12分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c +=. (1)求C ;(2)设cos cos A B =,()()2cos cos cos A B ααα++,求tan α的值.21.(12分)在△ABC 中,2C A π-=,1sin 3B =. (1)求sin A 的值;(2)设6AC =,求△ABC 的面积.22.(12分)如图,已知扇形AOB ,O 为顶点,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 相交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.答 案一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.【答案】C 【解析】6A π=,3B π=,2C π=,132::sin :sin :sin 3222a b c A B C ===,故选C . 2.【答案】B【解析】∵A B >,∴a b >,由正弦定理,得sin sin A B >,故选B .3.【答案】D【解析】本小题考查内容为正弦定理的应用.∵2sin sin cos a A B b A +=,∴22sin sin sin cos A B B A A +=,sin B A =,∴b =,∴ba.故选D . 4.【答案】A【解析】4sin 60⨯︒=<a <b sin A ,∴△ABC 不存在. 故选A . 5.【答案】A【解析】∵222a b c =-,∴222a c b +-=,由余弦定理,得222cos 2a c b B ac +-===0°<B <180°,所以B =45°. 故选A . 6.【答案】A【解析】由sin C B =及正弦定理,得c =,∴2226a b b -=, 即a 2=7b 2.由余弦定理,2222222cos2b c a A bc +-===,又∵0°<A <180°,∴A =30°.故选A . 7.【答案】B【解析】由1sin 2bc A =c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =13,故a =sin a A ==B . 8.【答案】C【解析】本题主要考查正余弦定理,∵sin 2A ≤sin 2B +sin 2C -sin B sin C , ∴由正弦定理得:a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,由余弦定理得:2221cos 222b c a bc A bc bc +-==≥=,∴03A π<≤,故选C .9.【答案】D 【解析】∵sin sin b cB C =,∴sin sin c B C b ==. ∵0°<C <180°.∴C =60°或120°,∴A =75°或15°.故选D . 10.【答案】C【解析】∵b <c ,△ABC 为锐角三角形,∴边c 与边a 所对的角的余弦值大于0,即b 2+a 2-c 2>0且b 2+c 2-a 2>0,∴22140140a a ⎧+->⎪⎨+->⎪⎩.∴3<a 2<5,∴35a <<. 故选C . 11.【答案】A【解析】由21cos cos 222A A b c c ++==,整理得cos bA c=.又222cos 2b c a A bc +-=, 联立以上两式整理得c 2=a 2+b 2,∴C =90°.故△ABC 为直角三角形.故选A . 12.【答案】C【解析】在△ABC 中,设∠ACD =∠BCD =β,∠CAB =α,由∠A ∶∠B =1∶2,得∠ABC =2α.∵∠A <∠B ,∴AC >BC ,∴S △ACD >S △BCD ,∴S △ACD ∶S △BCD =3∶2,∴1sin 3212sin 2AC DC BC DC ββ⋅⋅⋅=⋅⋅⋅,∴32AC BC =.由正弦定理得sin sin AC BC B A =,sin 2sin 2sin cos sin AC BC AC BCααααα=⇒=, ∴133cos 2224AC BC α==⨯=,即3cos 4A =.故选C .二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.815【解析】设△ABC 中,AB =AC =12,BC =6,由余弦定理222222121267cos 2212128AB AC BC A AB AC +-+-===⋅⨯⨯.∵()0,A ∈π,∴15sin A =,∴外接圆半径8152sin BC r A == 14.【答案】23π【解析】∵a 2+b 2<c 2,∴a 2+b 2-c 2<0,即cos C <0.又3sin C ,∴23C π∠=. 15.6【解析】∵a =3,26b =,∠B =2∠A ,由正弦定理326sin sin 2A A=, ∴2sin cos 26sin 3A A A =,∴6cos 3A =. 16.【答案】10 m【解析】画出示意图,如图所示,CO =10,∠OCD =40°,∠BCD =80°,∠ACB =45°, ∠AOB =30°,AB ⊥平面BCO ,令AB =x ,则BC =x ,3BO x ,在△BCO 中,由余弦定理得)()223100210cos 8040xx x =+-⨯⨯︒+︒,整理得25500x x -=-,解得10x =,5x =-(舍去),故塔高为10 m .三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3B π=;(2)112b ≤<. 【解析】(1)由已知得()cos cos cos 3cos 0A B A B A B -++-=, 即有sin sin 3sin cos 0A B A B =. 因为sin A ≠0,所以sin 30B B =. 又cos B ≠0,所以tan 3B =.又0<B <π,所以3B π=. (2)由余弦定理,有b 2=a 2+c 2-2ac cos B . 因为a +c =1,1cos 2B =,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有2114b ≤<,即有112b ≤<. 18.【答案】(1)3A π=;(2)1sin 3C =. 【解析】(1)由题设知sin cos cos sin 2cos 66A A A ππ+=.从而sin 3A A ,所以cos A ≠0,tan A =.因为0<A <π,所以3A π=. (2)由1cos 3A =,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2, 故△ABC 是直角三角形,且2B π=.所以1sin cos 3C A ==. 19.【答案】(1)3A π=;(2)5sin sin 7B C =. 【解析】(1)由cos2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得1cos 2A =或cos A =-2(舍去). 因为0<A <π,所以3A π=.(2)由11sin sin 223S bc A bc π====bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =. 又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.20.【答案】(1)34C π=;(2)tan α=1或tan α=4.【解析】(1)因为222a b c +=,由余弦定理有222cos 2a b c C ab +-===34C π=. (2)由题意得()()2sin sin cos cos sin sin cos cos cos A A B B ααααα--,因此()()tan sin cos tan sin cos A A B B αα--=,()2tan sin sin tan sin cos cos sin cos cos A B A B A B A B αα-++=,()2tan sin sin tan sin cos cos A B A B A B αα-++=因为34C π=,4A B π+=,所以()sin A B +=因为cos(A +B )=cos A cos B -sin A sin B ,即sin sin 52A B -=,解得sin sin 5210A B =-=.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. 21.【答案】(1)sin A ;(2)ABC S =△. 【解析】(1)由2C A π-=和A +B +C =π,得22A B π=-,04A π<<. ∴cos2A =sinB ,即2112sin 3A -=,∴sin A =.(2)由(1)得cos A sin sin BC AC A B =,∴sin 31sin 3AC ABC B===∵2C A π-=,∴2C A π=+,∴sin sin cos 2C A A π⎛⎫=+== ⎪⎝⎭,∴11sin 22ABC S AC BC C =⋅⋅==△. 22.【答案】当θ=30°时,S (θ). 【解析】∵CP ∥OB ,∴∠CPO =∠POB =60°-θ,∠OCP =120°. 在△OCP 中,由正弦定理,得sin sin OP CP OCP θ=∠,即2sin120sin CPθ=︒,∴CP θ.又()2sin 60sin120CO θ=︒-︒,∴()60OC θ=︒-.故△POC 的面积是()1sin1202S CP CO θ=⋅⋅︒()()160sin si 2n 60θθθθ=︒-︒-()1sin sin 21cos 2602θθθθ⎫⎤=-︒=-⎪-⎥⎪⎝⎦⎭,()0,60θ∈︒︒, ∴当θ=30°时,S (θ)单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在ABC △中,若90C =︒,6a =,30B =︒,则c b -等于( )A .1B .1-C .D .-2.在ABC △中,3AB =,2AC =,BC =BA ·AC 等于( )A .32-B .23-C .23D .323.在△ABC 中,已知a =,b =A =30°,则c 等于( )A .BC .D .以上都不对4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A B C D .6.在△ABC 中,2cos 22A b cc+⋅=(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a c =A =75°,则b 等于( )A .2B -C .4-D .4+8.在△ABC 中,已知b 2-bc -2c 2=0,a =7cos 8A =,则△ABC 的面积S 为( )A B C D .9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( )A B C D10.若sin cos cos A B Ca b c==,则△ABC 是( ) A .等边三角形 B .有一内角是30°的直角三角形 C .等腰直角三角形D .有一内角是30°的等腰三角形11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()222tan 3a c b B ac +-=,则角B 的值为( ) A .6π B .3π C .6π或56π D .3π或23π12.△ABC 中,3A π=,BC =3,则△ABC 的周长为( ) A .43sin 33B π⎛⎫++ ⎪⎝⎭B .43sin 36B π⎛⎫++ ⎪⎝⎭C .6sin 33B π⎛⎫++ ⎪⎝⎭D .6sin 36B π⎛⎫++ ⎪⎝⎭二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.在△ABC 中,2sin sin sin a b cA B C--=________. 14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c b ac +-=, 则角B 的值为________.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,3b =, A +C =2B ,则sin C =________.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且4cos 5A =. (1)求2sin cos22B CA ++的值; (2)若b =2,△ABC 的面积S =3,求a .19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,3cos 5B =. (1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.21.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.22.(12分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(),a b m =, ()sin ,sin B A =n ,()2,2b a --p =.(1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,角3C π=,求△ABC 的面积.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】C【解析】tan 30ba=︒,tan30b a =︒=2c b ==,c b -= 故选C . 2.【答案】A【解析】由余弦定理得22294101cos 2124AB AC BC A AB AC +-+-===⋅.∴13cos 3242AB AC AB AC A ⋅=⋅⋅=⨯⨯=.∴32BA AC AB AC ⋅=-⋅=-.故选A .3.【答案】C【解析】∵a 2=b 2+c 2-2bc cos A ,∴2515c c =+-. 化简得:2100c -+=,即(0c c -=,∴c =c = 故选C . 4.【答案】D 【解析】A 中,因sin sin a b A B =,所以16sin30sin 18B ⨯︒==,∴90B =︒,即只有一解;B 中,20sin 60sin 18C ︒==c b >,∴C B >,故有两解; C 中,∵A =90°,a =5,c =2,∴b = 故A 、B 、C 都不正确.故选D . 5.【答案】C【解析】设另一条边为x ,则2221232233x =+-⨯⨯⨯,∴29x =,∴3x =.设1cos 3θ=,则sin θ=.∴32sinR θ==,R =C . 6.【答案】A【解析】由2cos cos 22A b c b A c c+⋅=⇒⋅=,又222cos 2b c a A bc +-⋅=, ∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A . 7.【答案】A【解析】()sin sin 75sin 3045A =︒=︒+︒, 由a =c 知,C =75°,B =30°.1sin 2B =.由正弦定理:4sin sin b aB A===.∴b =4sin B =2.故选A .8.【答案】A【解析】由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即22276448c c c =+-⋅.∴c =2,从而b =4.∴11sin 4222ABCS bc A ==⨯⨯△A . 9.【答案】B【解析】设BC =a ,则2aBM MC ==. 在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB ,即22217424cos 42aa AMB =+-⨯⨯⋅∠ ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即22216424cos 42aa AMB =++⨯⨯⋅∠ ②①+②得:22222176442a +=++,∴a =B .10.【答案】C 【解析】∵sin cos A Ba b=,∴a cos B =b sin A , ∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.故C 选项正确. 11.【答案】D【解析】∵()222tan a c b B +-,∴222tan 2a c b B ac +-⋅=,即cos tan sin B B B ⋅=0<B <π,∴角B 的值为3π或23π.故选D . 12.【答案】D 【解析】3A π=,BC =3,设周长为x ,由正弦定理知2sin sin sin BC AC ABR A B C ===, 由合分比定理知sin sin sin sin BC AB BC ACA ABC ++=++,=,∴()sin sin B A B x ⎤+++=⎥⎦,即3sin sin 3sin sin cos cos sin 333x B B B B B π⎤ππ⎛⎫⎫=+++=+++ ⎪⎪⎥⎝⎭⎭⎦133sin sin 3sin 22B B B B B ⎫⎫=+++=++⎪⎪⎪⎪⎭⎭136cos 36sin 26B B B ⎫π⎛⎫=++=++⎪ ⎪⎪⎝⎭⎝⎭.故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0 14.【答案】6π【解析】∵222a cb +-=,∴222cos 2a c b B ac +-==6B π=. 15.【答案】1【解析】在△ABC 中,A +B +C =π,A +C =2B .∴3B π=. 由正弦定理知,sin 1sin 2a B A b ==.又a <b .∴6A π=,2C π=.∴sin 1C =. 16.【答案】332a ≤< 【解析】由()()()()()()22222212120121212a a a a a a a a a a a ⎧⎪++>+⎪⎪++-+<⎨⎪++-+⎪≥-⎪+⎩,解得332a ≤<.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】2小时.【解析】设我艇追上走私船所需时间为t 小时, 则BC =10t ,AC =14t ,在△ABC 中, 由∠ABC =180°+45°-105°=120°,根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°,∴2t =. 答:我艇追上走私船所需的时间为2小时. 18.【答案】(1)5950;(2)a = 【解析】(1)()221cos 1cos 59sin cos2cos22cos 122250B C B C A A A A -++++=+=+-=. (2)∵4cos 5A =,∴3sin 5A =.由1sin 2ABC S bc A =△,得133225c =⨯⨯,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得24425225135a =+-⨯⨯⨯=,∴a = 19.【答案】(1;(2)AE=.【解析】(1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴()cos cos 4530CBE ∠=︒-︒= (2)在△ABE 中,AB =2,由正弦定理得sin sin AE ABABE AEB=∠∠, 即()()2sin 4515sin 9015AE =︒-︒︒+︒,故122sin 30cos15AE ⨯︒===︒20.【答案】(1)2sin 5A =;(2)b =5c =. 【解析】(1)∵3cos 05B =>,且0<B <π,∴4sin 5B ==. 由正弦定理得sin sin a bA B=,42sin 25sin 45a B Ab ⨯===. (2)∵1sin 42ABC S ac B ==△,∴142425c ⨯⨯⨯=,∴5c =.由余弦定理得2222232cos 25225175b a c ac B =+-=+-⨯⨯⨯=,∴b =21.【答案】(1)120A =︒;(2)△ABC 为等腰钝角三角形. 【解析】(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故1cos 2A =-,120A =︒.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C , 又A =120°,∴223sin sin sin sin 4B C B C ++=, ∵sin B +sin C =1,∴sin C =1-sin B . ∴()()223sin 1sin sin 1sin 4B B B B +-+-=, 即21sin sin 04B B -+=.解得1sin 2B =.故1sin 2C =.∴B =C =30°. 所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°,则C =60°-B , ∴sin B +sin C =sin B +sin(60°-B) 11sin sin sin 22B B B B B =-==sin(B +60°)=1, ∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.【答案】(1)见解析;(2)ABC S =△ 【解析】(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即22a ba b R R⋅=⋅, 其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴11sin 4sin 223ABC S ab C π==⨯⨯=△.。
高中数学新人教A版必修5第一章解三角形章末归纳整合课件
在△ABC 中,已知 a=5,b=5 3,A=30°,解
三角形. 【解析】在△ABC 中,据正弦定理sina A=sinb B,得 sin B
=5
3sin 5
30°=
3 2.
∵b>a,∴B>A=30°,∴B=60°或 120°.
当 B=60°时,C=180°-(A+B)=180°-(30°+60°)=90°,
2.(202X年山东)在△ABC中,角A,B,C的对边分别为
a,b,c.若△ABC为锐角三角形,且满足sin B(1+2cos C)=2sin
Acos C+cos Asin C,则下列等式成立的是( )
A.a=2b
B.b=2a
C.A=2B
D.B=2A
【答案】A
【解析】由题意知sin(A+C)+2sin Bcos C=2sin A·cos C
B.15 km
C.10 2 km
D.15 2 km
【答案】C
【解析】在△ABC 中,BC=40×0.5=20 km,∠ABC=140°
-110°=30°,∠ACB=65°+(180°-140°)=105°,∴∠BAC=
45°. 根 据 正 弦 定 理 可 得
AC
=
BC·sin ∠ABC sin ∠BAC
1.(2018 年新课标Ⅱ)在△ABC 中,cosC2= 55,BC=1,
AC=5,则 AB=( )
A.4 2
B. 30
C. 29
D.2 5
【答案】A
【解析】cos C=2× 552-1=-35,由余弦定理,得 AB= BC2+AC2-2BC·AC·cos C= 1+25+2×1×5×35=4 2.
C=387×34+18× 47=5167.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旗开得胜
读万卷书 行万里路
1
章末检测
一、选择题
1.在△ABC中,角A、B、C所对应的边分别为a、b、c,若A+C=2B,有a=1,b=3,
则S△ABC等于( )
A.2 B.3 C.32 D.2
答案 C
解析 由A+C=2B,解得B=π3.由余弦定理得(3)2=1+c2-2ccos π3,解得c=2或c=
-1(舍去).于是,S△ABC=12acsin B=12×1×2sin π3=32. 3.在△ABC中,若a=52b,A=2B,则cos B等于( ) 读万卷书 行万里路 A.(2,+∞) B.(-∞,0) C.(-12,0) D.(12,+∞) ∵ a+b>ca+c>b即 m2k+1>2mk3mk>mk+1,∴k>12. ∴x2=9,∴x=3.设cos θ=13,则sin θ=223. 读万卷书 行万里路 7.在△ABC中,sin A=sin C,则△ABC是( ) 解析 由题意得 0<π-3∠A<π2,0<2∠A<π2⇒π6<∠A<π4,
2.在△ABC中,sin A=34,a=10,则边长c的取值范围是( )
A.152,+∞ B.(10,+∞) C.(0,10) D.0,403
答案 D
解析 ∵csin C=asin A=403,∴c=403sin C.∴0
A.53 B.54 C.55 D.56
答案 B
解析 由正弦定理得ab=sin Asin B,∴a=52b可化为sin Asin B=52.
旗开得胜
1
又A=2B,∴sin 2Bsin B=52,∴cos B=54.
4.在△ABC中,角A,B,C所对的边长分别为a,b,c.若C=120°,c=2a,则( )
A.a>b B.a<b
C.a=b D.a与b的大小关系不能确定
答案 A
解析 由余弦定理得c2=a2+b2-2abcos C,
又C=120°,∴2a2=a2+b2+ab,∴a2=b2+ab>b2,∴a>b,故选A.
5.已知△ABC中,sin A∶sin B∶sin C=k∶(k+1)∶2k,则k的取值范围是( )
答案 D
解析 由正弦定理得:a=mk,b=m(k+1),c=2mk(m>0),
6.△ABC的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )
A.922 B.924 C.928 D.92
答案 C
解析 设另一条边为x,则x2=22+32-2×2×3×13,
旗开得胜
1
∴2R=3sin θ=3223=924,R=928.
A.直角三角形 B.等腰三角形
C.锐角三角形 D.钝角三角形
答案 B
解析 ∵sin A=sin C且A、C是三角形内角,
∴A=C或A+C=π(舍去).
∴△ABC是等腰三角形.
8.在锐角△ABC中,BC=1,∠B=2∠A,则AC的取值范围是( )
A.[-2,2] B.[0,2] C.(0,2] D.(2,3)
答案 D
由正弦定理ACsin B=BCsin A得AC=2cos A.
∵∠A∈π6,π4,∴AC∈(2,3).
9.根据下列情况,判断三角形解的情况,其中正确的是( )
A.a=8,b=16,A=30°,有两解
B.b=18,c=20,B=60°,有一解
C.a=5,c=2,A=90°,无解