六分式方程无理方程

合集下载

解方程的常见方法知识点总结

解方程的常见方法知识点总结

解方程的常见方法知识点总结一、一次方程的解法一次方程是指未知数的指数为1的方程。

解一次方程的常见方法有:1. 相加相减法:通过加减运算来消去未知数的系数,得到方程的解。

2. 乘法法则:通过乘法运算来消去未知数的系数,得到方程的解。

3. 代入法:将一个方程的解代入另一个方程中,求解未知数的值。

4. 变量转移法:通过将未知数的系数移到等号另一边,得到方程的解。

二、二次方程的解法二次方程是指未知数的指数为2的方程。

解二次方程的常见方法有:1. 因式分解法:将二次方程因式分解后,令各因式等于零,得到方程的解。

2. 公式法:使用二次方程的求根公式,直接计算出方程的解。

3. 完全平方式:将二次方程转换为完全平方式,求解方程的解。

4. 提取根号法:通过提取未知数的平方根,得到方程的解。

三、分式方程的解法分式方程是指未知数出现在分式中的方程。

解分式方程的常见方法有:1. 通分法:将分式方程的分母通分,然后进行运算,求解未知数的值。

2. 消元法:通过消去分式方程的分母,将方程转化为一次方程来求解。

3. 变量替换法:通过引入新的变量或替换未知数,将分式方程转化为一次方程或二次方程进行求解。

四、绝对值方程的解法绝对值方程是指方程中含有绝对值符号的方程。

解绝对值方程的常见方法有:1. 分类讨论法:根据绝对值的定义,分别讨论绝对值内外的正负情况,得到方程的解。

2. 去绝对值法:将方程的绝对值拆分成正负两部分,得到多个方程,分别求解并取并集。

五、方程组的解法方程组是指多个方程同时出现的一组方程。

解方程组的常见方法有:1. 消元法:通过消去方程组中的未知数,将方程组转化为简化的方程组来求解。

2. 代入法:通过将一个方程的解代入另一个方程中,求解未知数的值。

3. 变量替换法:通过引入新的变量或替换未知数,将方程组转化为简化的方程组进行求解。

六、无理方程的解法无理方程是指方程中含有无理数(如根号)的方程。

解无理方程的常见方法有:1. 平方去根法:通过平方运算,将方程中的根号消去,得到方程的解。

创新学校中考总复习数学通用辅导材料初三复习基本训练卷--分式方程和无理方程(A)

创新学校中考总复习数学通用辅导材料初三复习基本训练卷--分式方程和无理方程(A)

一. 填空题:1.方程13=+πx _____________分式方程.(填“是”或“不是”) 2.分式方程11510+=x x 的根是___________________. 3.如果代数式31--x x 的值是32,那么x =______________. 4.方程011322=--+-xx x _____________无理方程.(填“是”或“不是”) 5.方程3162=-x 的解是__________________.6.已知线段AB=10cm,点P 是线段AB 的黄金分割点,且AP>BP,则AP=_______cm.7.分式方程1837222-=-++x x x x x 的最简公分母是______________. 8.分式方程112331)2(82222=+-+-+x x x x x x ,如果设y x x x =-+1222,那么原方程可以化为_______________.9.已知:0(180≠=nR R n l π),则R=______________.(用n 、l 的代数式表示R ) 10. 用换元法解无理方程2152522=++-+x x x x ,如果设y x x =++152,则原方程可以化为_______________.11. 在解分式方程时,可以通过去分母或换元法将它转化为整式方程,体现了___________数学思想.12. 无理方程042=+-x 无解的依据是_________________________.13. 已知点P 的坐标为(x ,3),A(4,-1),如果PA=6,那么可得到方程_______________.14. 分式方程111=-⋅-xx x 的解x =________________. 15. 如果04412=+-x x ,那么x2的值是__________________. 16. 已知方程a a x x 11+=+的两根分别为a 、a 1,则方程1111-+=-+a a x x 的根是__________________.17. 在解分式方程时,除了用去分母方法以外,对于某些特殊的分式方程,还可以用______________法来解.18. 如果)(111221R R R R R ≠+=,如果用R 、R 2表示R 1,则R 1=_____________. 19. 当x=____________时,代数式3472--x x x 与534+x 的值互为倒数. 20. 方程02050=+⋅-x x 的根是____________;方程0)20)(50(=+-x x 的根是________________.21. 某数的正的平方根比它的倒数的正的平方根的10倍多3,如设某数为x ,则可列出方程_________________________.22. 已知021=++-y x ,则xy =_________________.23. 解分式方程331-=--x m x x 产生增根,则m=________________. 24. 方程22=-+x x 的根是__________________.25. 方程032=+-x x 的解是___________________.26. 若代数式4162--x x 的值为0,则x=______________. 27. 解分式方程)2(3422x x x x +=+,如果设y x x =+2,原方程则可以化为______. 28. 方程65=+xx 的解是___________________. 二. 选择题:1.方程0242=--xx 的根是 ( ) (A) x 1=2,x 2=-2; (B) x 1=2; (C) x =-2; (D) 以上答案都不对.2.方程2211-=-x x 的根是 ( ) (A) x 1=1,x 2=2; (B) x =1; (C) x =2; (D) x =0.3.下列方程中,有实数解的是 ( ) (A) 012=+-x ;(B) 43-=-x x ;(C) x x -=+2; (D) 015=++-x x .4.设y=x 2+x +1,则方程xx x x +=++2221可化为 ( ) (A) y 2-y -2=0; (B) y 2+y+2=0; (C) y 2+y -2=0; (D) y 2-y+2=0.5.分式方程420960960=+-x x 的解是 ( ) (A) x =60; (B) x =-80; (C) x 1=60,x 2=-80; (D) x 1=-60,x 2=80.三. 简答题:1.解方程06)1(5)1(2=++++x x x x2.解方程12244212=-+-++xx x x3.33=-+x x4.用换元法解方程153322=++-+x x x x5.解方程组⎪⎪⎩⎪⎪⎨⎧=--+=-++346234121341233xy y x y x y x。

3.1 分式方程和无理方程的解法及圆的四心

3.1  分式方程和无理方程的解法及圆的四心

第七讲 分式方程和无理方程的解法及圆的四心初中大家已经学习了可化为一元一次方程的分式方程的解法.本讲将要学习可化为一元二次方程的分式方程的解法以及无理方程的解法.并且只要求掌握(1)不超过三个分式构成的分式方程的解法,会用”去分母”或”换元法”求方程的根,并会验根;(2)了解无理方程概念,掌握可化为一元二次方程的无理方程的解法,会用”平方”或”换元法”求根,并会验根. 一、可化为一元二次方程的分式方程1.去分母化分式方程为一元二次方程 【例1】解方程21421224x x x x +-=+--. 分析:去分母,转化为整式方程. 解:原方程可化为:14212(2)(2)2x x x x x +-=++-- 方程两边各项都乘以24x -:2(2)42(2)4x x x x -+-+=-即2364x x -=-, 整理得:2320x x -+=解得:1x =或2x =.检验:把1x =代入24x -,不等于0,所以1x =是原方程的解;把2x =代入24x -,等于0,所以2x =是增根.所以,原方程的解是1x =.说明:(1) 去分母解分式方程的步骤:①把各分式的分母因式分解; ②在方程两边同乘以各分式的最简公分母; ③去括号,把所有项都移到左边,合并同类项; ④解一元二次方程; ⑤验根.(2) 验根的基本方法是代入原方程进行检验,但代入原方程计算量较大.而分式方程可能产生的增根,就是使分式方程的分母为0的根.因此我们只要检验一元二次方程的根,是否使分式方程两边同乘的各分式的最简公分母为0.若为0,即为增根;若不为0,即为原方程的解. 2.用换元法化分式方程为一元二次方程【例2】解方程 2223()4011x x x x --=--分析:本题若直接去分母,会得到一个四次方程,解方程很困难.但注意到方程的结构特点,设21x y x =-,即得到一个关于y 的一元二次方程.最后在已知y 的值的情况下,用去分母的方法解方程21x y x =-.解:设21x y x =-,则原方程可化为:2340y y --= 解得4y =或1y =-.(1)当4y =时,241x x =-,去分母,得224(1)4402x x x x x =-⇒-+=⇒=;(2)当1y =-时,2221111012x x x x x x x -±=-⇒=-+⇒+-=⇒=-. 检验:把各根分别代入原方程的分母,各分母都不为0.所以,2x =,x =说明:用换元法解分式方程常见的错误是只求出y 的值,而没有求到原方程的解,即x 的值.【例3】解方程 22228(2)3(1)1112x x x x x x+-+=-+. 分析:注意观察方程特点,可以看到分式2221x x x +-与2212x x x-+互为倒数.因此,可以设2221x xy x +=-,即可将原方程化为一个较为简单的分式方程.解:设2221x x y x +=-,则22112x yx x -=+原方程可化为:2338118113018y y y y y y +=⇒-+=⇒==或. (1)当1y =时,22222112121x x x x x x x +=⇒+=-⇒=--; (2)当38y =时,2222223181633516303851x x x x x x x x x x +=⇒+=-⇒++=⇒=-=--或. 检验:把把各根分别代入原方程的分母,各分母都不为0.所以,原方程的解是12x =-,3x =-,15x =-. 说明:解决分式方程的方法就是采取去分母、换元等法,将分式方程转化为整式方程,体现了化归思想.二、可化为一元二次方程的无理方程根号下含有未知数的方程,叫做无理方程. 1.平方法解无理方程【例4】解方程1x -=分析:移项、平方,转化为有理方程求解.解:1x =+ 两边平方得:2721x x x +=++移项,合并同类项得:260x x +-=解得:3x =-或2x =检验:把3x =-代入原方程,左边≠右边,所以3x =-是增根.把2x =代入原方程,左边 = 右边,所以2x =是原方程的根.所以,原方程的解是2x =.说明:含未知数的二次根式恰有一个的无理方程的一般步骤:①移项,使方程的左边只保留含未知数的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.【例5】解方程3+=分析:直接平方将很困难.可以把一个根式移右边再平方,这样就可以转化为上例的模式,再用例4的方法解方程.解:3=两边平方得:3293x x -=-+整理得:1427x x =-⇒=- 两边平方得:29(3)4914x x x +=-+整理得:223220x x -+=,解得:1x =或22x =.检验:把1x =代入原方程,左边=右边,所以1x =是原方程的根.把22x =代入原方程,左边≠右边,所以22x =是增根.所以,原方程的解是1x =.说明:含未知数的二次根式恰有两个的无理方程的一般步骤:①移项,使方程的左边只保留一个含未知数的二次根式;②两边平方,得到含未知数的二次根式恰有一个的无理方程;③一下步骤同例4的说明.2.换元法解无理方程【例6】解方程23152x x ++=分析:本题若直接平方,会得到一个一元四次方程,难度较大.注意观察方程中含未知数的二次根式与其余有理式的关系,可以发现:2231533(51)x x x x ++=++.因此,可y =,这样就可将原方程先转化为关于y 的一元二次方程处理.解:y =,则2222513153(1)x x y x x y ++=⇒+=- 原方程可化为:23(1)22y y -+=, 即23250y y +-=,解得:1y =或53y =-. (1)当1y =215010x x x x =⇒+=⇒=-=或; (2)当53y =-0y =≥,所以方程无解. 检验:把1,0x x =-=分别代入原方程,都适合. 所以,原方程的解是1,0x x =-=.说明:解决根式方程的方法就是采取平方、换元等法,将根式方程转化为有理方程,体现了化归思想.三、圆的“四心”1.外心三解形三条垂直平分线的交点叫做三角形的外心,即外接圆圆心。

《分式方程》 讲义

《分式方程》 讲义

《分式方程》 讲义 一、分式方程的定义 分式方程是指分母里含有未知数或含有未知数整式的有理方程。例如:$\frac{x}{x-1} = 3$,$\frac{1}{x} + 2x = 5$ 等都是分式方程。

与整式方程不同,分式方程的分母中含有未知数,这也是分式方程的重要特征。

二、分式方程的解法 解分式方程的一般步骤如下: 1、 去分母 将方程两边同时乘以各分母的最简公分母,把分式方程化为整式方程。

例如,对于方程 $\frac{x}{x-1} = 3$,最简公分母是 $x 1$,方程两边同时乘以 $x 1$ 得到:

$x = 3(x 1)$ 2、 解整式方程 按照解整式方程的方法求出未知数的值。 对于上面得到的整式方程 $x = 3(x 1)$ ,展开括号得: $x = 3x 3$ 移项得: $3x x = 3$ $2x = 3$ 解得: $x = \frac{3}{2}$ 3、 检验 将求得的未知数的值代入最简公分母,如果最简公分母不等于 0,则这个值是原分式方程的解;如果最简公分母等于 0,则这个值是原分式方程的增根,原分式方程无解。

在上面的例子中,将 $x = \frac{3}{2}$ 代入最简公分母 $x 1$ 得:

$\frac{3}{2} 1 = \frac{1}{2} \neq 0$ 所以,$x = \frac{3}{2}$ 是原分式方程的解。 三、分式方程的增根 增根是分式方程化为整式方程后,产生的使分式方程的分母为 0 的根。

产生增根的原因是在去分母的过程中,方程两边同乘了一个可能为 0 的整式。 例如,方程 $\frac{x}{x 1} \frac{1}{x} = 0$ ,去分母得: $x^2 (x 1) = 0$ $x^2 x + 1 = 0$ 这个方程没有实数根,但在去分母的过程中,当 $x = 0$ 或 $x = 1$ 时,原分式方程的分母为 0,所以 $x = 0$ 和 $x = 1$ 是增根。

初中数学及格赛辅导(初三)

初中数学及格赛辅导(初三)

第一讲分式方程(组)的解法分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根.例1解方程解令y=x2+2x-8,那么原方程为去分母得y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0,y2-4xy-45x2=0,(y+5x)(y-9x)=0,所以y=9x或y=-5x.由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1.经检验,它们都是原方程的根.例2 解方程y2-18y+72=0,所以y1=6或y2=12.x2-2x+6=0.此方程无实数根.x2-8x+12=0,所以x1=2或x2=6.经检验,x1=2,x2=6是原方程的实数根.例3解方程分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为整理得去分母、整理得x+9=0,x=-9.经检验知,x=-9是原方程的根.例4解方程分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为即所以((x+6)(x+7)=(x+2)(x+3).例5 解方程分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为整理得去分母得x2+9x-22=0,解得x1=2,x2=-11.经检验知,x1=2,x2=-11是原方程的根.例6解方程次项与常数项符号相反,故可考虑用合比定理化简.原方程变形为所以x=0或2x2-3x-2=2x2+5x-3.例7解方程分析与解形式与上例相似.本题中分子与分母只是一次项的符号相反,故可考虑用合分比定理化简.原方程变形为当x≠0时,解得x=±1.经检验,x=±1是原方程的根,且x=0也是原方程的根.说明使用合分比定理化简时,可能发生增根和失根的现象,需细致检验.例8解方程解将原方程变形为例9解关于x的方程将x1=a-2b或x2=b-2a代入分母b+x,得a-b或2(b-a),所以,当a≠b时,x1=a-2b及x2=b-2a都是原方程的根.当a=b时,原方程无解.例10如果方程只有一个实数根,求a的值及对应的原方程的根.分析与解将原方程变形,转化为整式方程后得2x2-2x+(a+4)=0.①原方程只有一个实数根,因此,方程①的根的情况只能是:(1)方程①有两个相等的实数根,即△=4-4·2(a+4)=0.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为0或2.(i)当x=0时,代入①式得a+4=0,即a=-4.这时方程①的另一个根是x=1(因为2x2-2x=0,x(x-1)=0,x1=0或x2=1.而x1=0是增根).它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×4-2×2+(a+4)=0,即a=-8.这时方程①的另一个根是x=-1(因为2x2-2x-4=0.(x-2)(x+1)=0,所以x1=2(增根),x2=-1).它不使分母为零,确是原方程的唯一根.因此,若原分式方程只有一个实数根时,所求的a的值分别是练习一1.填空:(3)如果关于x的方程有增根x=1,则k=____.2.解方程3.解方程4.解方程5.解方程6.解方程7.m是什么数值时,方程有根?第二讲无理方程的解法未知数含在根号下的方程叫作无理方程(或根式方程),这是数学竞赛中经常出现的一些特殊形式的方程中的一种.解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法、配方法、因式分解法、设辅助元素法、利用比例性质法等.本讲将通过例题来说明这些方法的运用.例1 解方程解移项得两边平方后整理得再两边平方后整理得x2+3x-28=0,所以x1=4,x2=-7.经检验知,x2=-7为增根,所以原方程的根为x=4.说明用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.例2 解方程方公式将方程的左端配方.将原方程变形为所以两边平方得3x2+x=9-6x+x2,两边平方得:3x2+x=x2+6x+9,例3 解方程即所以移项得例4 解方程解三个未知量、一个方程,要有确定的解,则方程的结构必然是极其特殊的.将原方程变形为配方得利用非负数的性质得所以x=1,y=2,z=3.经检验,x=1,y=2,z=3是原方程的根.例5 解方程所以将①两边平方、并利用②得x2y2+2xy-8=0,(xy+4)(xy-2)=0.xy=2.③例6 解方程解观察到题中两个根号的平方差是13,即②÷①便得由①,③得例7 解方程分析与解注意到(2x2-1)-(x2-3x-2)=(2x2+2x+3)-(x2-x+2).设则u2-v2=w2-t2,①u+v=w+t.②因为u+v=w+t=0无解,所以①÷②得u-v=w-t.③②+③得u=w,即解得x=-2.经检验,x=-2是原方程的根.例8 解方程整理得y3-1=(1-y)2,即(y-1)(y2+2)=0.解得y=1,即x=-1.经检验知,x=-1是原方程的根.整理得y3-2y2+3y=0.解得y=0,从而x=-1.例9 解方程边的分式的分子与分母只有一些项的符号不同,则可用合分比定理化简方程.根据合分比定理得两边平方得再用合分比定理得化简得x2=4a2.解得x=±2a.经检验,x=±2a是原方程的根.练习二1.填空:2.解方程3.解方程4.解方程5.解方程6.解关于x的方程第三讲简易高次方程的解法在整式方程中,如果未知数的最高次数超过2,那么这种方程称为高次方程.一元三次方程和一元四次方程有一般解法,但比较复杂,且超过了初中的知识范围,五次或五次以上的代数方程没有一般的公式解法,这由挪威青年数学家阿贝尔于1824年作出了证明,这些内容我们不讨论.本讲主要讨论用因式分解、换元等方法将某些高次方程化为低次方程来解答.例1 解方程x3-2x2-4x+8=0.解原方程可变形为x2(x-2)-4(x-2)=0,(x-2)(x2-4)=0,(x-2)2(x+2)=0.所以x1=x2=2,x3=-2.说明当ad=bc≠0时,形如ax3+bx2+cx+d=0的方程可这样=0可化为bkx3+bx2+dkx+d=0,即(kx+1)(bx2+d)=0.方程ax4+bx3+cx+d=0也可以用类似方法处理.例2 解方程(x-2)(x+1)(x+4)(x+7)=19.解把方程左边第一个因式与第四个因式相乘,第二个因式与第三个因式相乘,得(x2+5x-14)(x2+5x+4)=19.设则(y-9)(y+9)=19,即y2-81=19.说明在解此题时,仔细观察方程中系数之间的特殊关系,则可用换元法解之.例3 解方程(6x+7)2(3x+4)(x+1)=6.解我们注意到2(3x+4)=6x+8=(6x+7)+1,6(x+1)=6x+6=(6x+7)-1,所以利用换元法.设y=6x+7,原方程的结构就十分明显了.令y=6x+7,①由(6x+7)2(3x+4)(x+1)=6得(6x+7)2(6x+8)(6x+6)=6×12,即y2(y+1)(y-1)=72,y4-y2-72=0,(y2+8)(y2-9)=0.因为y2+8>0,所以只有y2-9=0,y=±3.代入①式,解得原方程的根为例4 解方程12x4-56x3+89x2-56x+12=0.解观察方程的系数,可以发现系数有以下特点:x4的系数与常数项相同,x3的系数与x的系数相同,像这样的方程我们称为倒数方程.由例5 解方程解方程的左边是平方和的形式,添项后可配成完全平方的形式.所以经检验,x1=-1,x2=2是原方程的根.例6 解方程(x+3)4+(x+1)4=82.分析与解由于左边括号内的两个二项式只相差一个常数,所以设于是原方程变为(y+1)4+(y-1)4=82,整理得y4+6y2-40=0.解这个方程,得y=±2,即x+2=±2.解得原方程的根为x1=0,x2=-4.说明本题通过换元,设y=x+2后,消去了未知数的奇次项,使方程变为易于求解的双二次方程.一般地,形如(x+a)4+(x+b)4=c例7 解方程x4-10x3-2(a-11)x2+2(5a+6)x+2a+a2=0,其中a是常数,且a≥-6.解这是关于x的四次方程,且系数中含有字母a,直接对x求解比较困难(当然想办法因式分解是可行的,但不易看出),我们把方程写成关于a的二次方程形式,即a2-2(x2-5x-1)a+(x4-10x3+22x2+12x)=0,△=4(x2-5x-1)2-4(x4-10x3+22x2+12x)=4(x2-2x+1).所以所以a=x2-4x-2或a=x2-6x.从而再解两个关于x的一元二次方程,得练习三1.填空:(1)方程(x+1)(x+2)(x+3)(x+4)=24的根为_______.(2)方程x3-3x+2=0的根为_____.(3)方程x4+2x3-18x2-10x+25=0的根为_______.(4)方程(x2+3x-4)2+(2x2-7x+6)2=(3x2-4x+2)2的根为______.2.解方程(4x+1)(3x+1)(2x+1)(x+1)=3x4.3.解方程x5+2x4-5x3+5x2-2x-1=0.4.解方程5.解方程(x+2)4+(x-4)4=272.6.解关于x的方程x3+(a-2)x2-(4a+1)x-a2+a+2=0.第四讲有关方程组的问题在教科书上,我们已经知道了二元一次方程组、三元一次方程组以及简单的二元二次方程组的解法.利用这些知识,可以研究一次函数的图像、二次函数的图像以及与此有关的问题.本讲再介绍一些解方程组的方法与技巧.1.二元二次方程组解二元二次方程组的基本途径是“消元”和“降次”.由一个二次和一个一次方程组成的二元二次方程组的一般解法是代入法,由两个二次方程组成的二次方程组在中学阶段只研究它的几种特殊解法.如果两个方程的二次项的对应系数成比例,可用加减消元法消去二次项.例1 解方程组解②×2-①×3得4x+9y-6=0.方程组中含有某一未知数的对应项的系数的比相等,可用加减消元法消去这个未知数.例2 解方程组解②×(-2)+①得3y2+3y-6=0,所以y1=1,y2=-2.解方程组与得原方程组的解方程组中至少有一个方程可以分解为一次方程的方程组,可用因式分解法解.例3 解方程组解由②得(2x+y)(x-2y)=0,所以2x+y=0或x-2y=0.因此,原方程组可化为两个方程组与解这两个方程组得原方程组的解为如果两个方程都没有一次项,可用加减消元法消去常数项,再用因式分解法求解.例4 解方程组解由①-②×2得x2-2xy-3y2=0,即(x+y)(x-3y)=0,所以x+y=0或x-3y=0.分别解下列两个方程组得原方程组的解为2.二元对称方程组方程中的未知数x,y互换后方程保持不变的二元方程叫作二元对称方程.例如x2-5xy+y2-3x-3y=7,等都是二元对称方程.由二元对称方程组成的方程组叫作二元对称方程组.例如等都是二元对称方程组.我们把叫作基本对称方程组.基本对称方程组通常用代入法或韦达定理求解.例5 解方程组解方程组中的x,y分别是新方程m2-5m+4=0的两个解.解关于m的一元二次方程得m1=1,m2=4,所以原方程组的解是这个方程组亦可用代入法求解(略).由于一般的二元对称式总可以用基本对称式x+y和xy表示,因此在解二元对称方程组时,一定可以用x+y和xy作为新的未知数,通过换元转化为基本对称方程组.例6 解方程组解原方程组可变形为①×2+②得令u=x+y,则即而方程组无实数解.综上所述,方程组的解为例7 解方程组分析本题是一个对称方程组的形式,观察知它可转化为基本对称方程组的形式.解由①得xy=16.④由②,④可得基本对称方程组于是可得方程组的解为例8 解方程组分析本题属于二元轮换对称方程组类型,通常可以把两个方程相减,因为这样总能得到一个方程x-y=0,从而使方程降次化简.解①-②,再因式分解得(x-y)(x+y-10)=0,所以x-y-0或x+x-10=0.解下列两个方程组得原方程组的四组解为例9 解方程组解法1 用换元法.设4x+5=A,4y+5=B,则有即③-④并平方得整理得所以因此A-B=0或分别解下列两个方程组与经检验,A=B=9适合方程③,④,由此得原方程组的解是解法2 ①-②得即所以x-1与y-1同号或同为零.由方程①得所以x-1与y-1不能同正,也不能同负.从而x-1=0,y-1=0.由此解得经检验,x=1,y=1是方程组的解.练习四1.填空:(1)方程组的解有_____组.(2)若x,y是方程组(3)已知3a+b+2c=3,且a+3b+2c=1,则2a+c=_____.(4)已知实数x,y,z满足方程组则xyz=________.2.解方程组:3.设a,b,c,x,y,z都是实数.若4.已知一元二次方程a(x+1)(x+2)+b(x+2)(x+3)+c(x+3)(x+1)=0有两根0,1,求a∶b∶c.5.(1)解方程组第五讲函数的基本概念与性质函数是中学数学中的一条主线,也是数学中的一个重要概念.它使我们从研究常量发展到研究变量之间的关系,这是对事物认识的一大飞跃,而且对于函数及其图像的研究,使我们把数与形结合起来了.学习函数,不仅要掌握基本的概念,而且要把解析式、图像和性质有机地结合起来,在解题中自觉地运用数形结合的思想方法,从图像和性质对函数进行深入的研究.1.求函数值和函数表达式对于函数y=f(x),若任取x=a(a为一常数),则可求出所对应的y值f(a),此时y的值就称为当x=a时的函数值.我们经常会遇到求函数值与确定函数表达式的问题.例1 已知f(x-1)=19x2+55x-44,求f(x).解法1 令y=x-1,则x=y+1,代入原式有f(y)=19(y+1)2+55(y+1)-44=19y2+93y+30,所以f(x)=19x2+93x+30.解法2 f(x-1)=19(x-1)2+93(x-1)+30,所以f(x)=19x2+93x+30.可.例3 已知函数f(x)=ax5-bx3+x+5,其中a,b为常数.若f(5)=7,求f(-5).解由题设f(-x)=-ax5+bx3-x+5=-(ax5-bx3+x+5)+10=-f(x)+10,所以f(-5)=-f(5)+10=3.例4 函数f(x)的定义域是全体实数,并且对任意实数x,y,有f(x+y)=f(xy).若f(19)=99,求f(1999).解设f(0)=k,令y=0代入已知条件得f(x)=f(x+0)=f(x·0)=f(0)=k,即对任意实数x,恒有f(x)=k.所以f(x)=f(19)=99,所以f(1999)=99.2.建立函数关系式例5 直线l1过点A(0,2),B(2,0),直线l2:y=mx+b过点C(1,0),且把△AOB分成两部分,其中靠近原点的那部分是一个三角形,如图3-1.设此三角形的面积为S,求S 关于m的函数解析式,并画出图像.解因为l2过点C(1,0),所以m+b=0,即b=-m.设l2与y轴交于点D,则点D的坐标为(0,-m),且0<-m≤2(这是因为点D在线段OA上,且不能与O点重合),即-2≤m<0.故S的函数解析式为例6 已知矩形的长大于宽的2倍,周长为12.从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边x,试写出梯形面积S关于x的函数关系式.解设矩形ABCD的长BC大于宽AB的2倍.由于周长为12,故长与宽满足4<BC<6,0<AB<2.由题意,有如下两种情形:CE1=x,BE1=BC-x,AB=CD=2(BC-x),所以(2AB+x)+AB=6,所以3.含绝对值的函数一次函数的图像是一条直线,含有绝对值符号的函数所对应的图像是由若干条线段和射线所组成的折线;二次函数的图像是抛物线,而y=|ax2+bx+c|的图像是将y=ax2+bx+c在x 轴下方的图像按x轴为对称轴翻到x轴的上方.对于一些其他的含绝对值符号的函数和方程的图像,需要按区间分段讨论.例7 作函数y=|3-x|+|x-1|的图像.解当x<1时,y=(3-x)+(1-x)=-2x+4;当1≤x<3时,y=(3-x)+(x-1)=2;当x≥3时,y=(x-3)+(x-1)=2x-4.所以它的图像如图3-3所示.例8 作函数y=|x2-5x+6|的图像.解当x≤2或x≥3时,x2-5x+6≥0,于是y=x2-5x+6;当2<x<3时,x2-5x+6<0,于是y=-(x2-5x+6).所以于是,得图像如图3-4所示.例9 点(x,y)满足方程|x-1|+|y+2|=2,求它的图像所围成区域的面积.解当x≥1,y≥-2时,x-1+y+2=2,即y=-x+1.当x≥1,x<-2时,x-1-(y+2)=2,即y=x-5.当x<1,y≥-2时,-x+1+y+2=2,即y=x-1.当x<1,y<-2时,-x+1-(y+2)=2,即y=-x-3.于是,所得图像如图3-5所示.由此可知,|x-1|+|y+2|=2的图像是一个对角线长为4,边长为例10 m是什么实数时,方程x2-4|x|+5=m有四个互不相等的实数根?解法1 将原方程变形为x2-4|x|+4=m-1.令y=x2-4|x|+4=m-1,则它的图像如图3-6,而y=m-1是一条与x轴平行的直线.原方程有四个互不相等的实根,即直线应与曲线有四个不同的交点.由图像可知,当0<m-1<4,即1<m<5时,直线与曲线有四个不同的交点,所以,当1<m<5时,方程x2-4|x|+5=m有四个互不相等的实数根.说明本题是一个方程问题,我们利用图形来研究,这是一种非常重要的思想方法——数形结合法.当然,本题不用图像也是可以解的,下面给出解法,请读者比较一下.解法2 原方程变形为(|x|-2)2=m-1,练习五1.填空:(1)已知f(x-1)=19x2+55x-44,则f(x)=_______.(2)对所有实数x,f(x2+1)=x4+5x2+3,那么对所有实数x,f(x2-1)=_______.(3)设x与y2成反比例,y与z2成正比例.当x=24时,y=2;当y=18时,z=3,则z=1时,x=_______.(4)已知y=2x2+mx+5的值恒为正,且m为实数,则m的范围是_______.函数,且当x=2,x=3时,y的值都为19,则y的解析式为y=_______.(6)如果y+m与x+n成正比例,且当x=1时,y=2;当x=-1时,y=1,则y与x间的函数关系式是y=_______.2.在平面直角坐标系里,点A的坐标是(4,0),点P是第一象限内一次函数y=-x+6的图像上的点,原点是O,如果△OPA的面积为S,P点坐标为(x,y),求S关于x的函数表达式.3.平面直角坐标上有点P(-1,-2)和点Q(4,2),取点R(1,m),试问当m为何值时,PR+RQ有最小值.试求k的取值范围.5.设y=|x+2|+|x-4|-|2x-6|,且2≤x≤8,试求y的最大值与最小值之和.6.作y=2|x-3|,y=x-a的图像,问a取什么值时,它们可以围出一个平面区域,并求其面积.7.m是什么实数时,方程|x2-4x+3|=m有三个互不相等的实数解.第七讲函数的最大值与最小值我们常常遇到求最大值和最小值的问题,在许多情况下可以归结为求函数的最大值与最小值.这类问题涉及的知识面广,综合性强,解法灵活,因而对于培养学生的数学能力具有重要作用.本讲从四个方面来讨论如何求解函数的最大值与最小值问题.1.一次函数的最大值与最小值一次函数y=kx+b在其定义域(全体实数)内是没有最大值和最小值的,但是,如果对自变量x的取值范围有所限制时,一次函数就可能有最大值和最小值了.例1 设a是大于零的常数,且a≠1,求y的最大值与最小值.大值a.例2 已知x,y,z是非负实数,且满足条件x+y+z=30,3x+y-z=50.求u=5x+4y+2z的最大值和最小值.分析题设条件给出两个方程,三个未知数x,y,z,当然,x,y,z的具体数值是不能求出的.但是,我们固定其中一个,不妨固定x,那么y,z都可以用x来表示,于是u便是x的函数了.解从已知条件可解得y=40-2x,z=x-10.所以u=5x+4y+2z=5x+4(40-2x)+2(x-10)=-x+140.又y,z均为非负实数,所以解得10≤x≤20.由于函数u=-x+140是随着x的增加而减小的,所以当x=10时,u有最大值130;当x=20时,u有最小值120.2.二次函数的最大值与最小值例3 已知x1,x2是方程x2-(k-2)x+(k2+3k+5)=0解由于二次方程有实根,所以△=[-(k-2)]2-4(k2+3k+5)≥0,3k2+16k+16≤0,例4 已知函数有最大值-3,求实数a的值.解因为的范围内分三种情况讨论.-a2+4a-1=-3例5 已知边长为4的正方形截去一个角后成为五边形ABCDE(如图3-12),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.解设矩形PNDM的边DN=x,NP=y,于是矩形PNDM的面积S=xy,2≤X≤4.易知CN=4-x,EM=4-y,且有二次函数S=f(x)的图像开口向下,对称轴为x=5,故当x≤5时,函数值是随x的增加而增加,所以,对满足2≤x≤4的S来说,当x=4时有最大值例6 设p>0,x=p时,二次函数f(x)有最大值5,二次函数g(x)的最小值为-2,且g(p)=25,f(x)+g(x)=x2+16x+13.求g(x)的解析式和p的值.解由题设知f(p)=5,g(p)=25,f(p)+g(p)=p2+16p+13,所以p2+16p+13=30,p=1(p=-17舍去).由于f(x)在x=1时有最大值5,故设f(x)=a(x-1)2+5,a<0,所以g(x)=x2+16x+13-f(x)=(1-a)x2+2(a+8)x+8-a.由于g(x)的最小值是-2,于是解得a=-2,从而g(x)=3x2+12x+10.3.分式函数的最大值与最小值法是去分母后,化为关于x的二次方程,然后用判别式△≥0,得出y的取值范围,进而定出y的最大值和最小值.解去分母、整理得(2y-1)x2+2(y+1)x+(y+3)=0.△≥0,即△=[2(y+1)]2-4(2y-1)(y+3)≥0,解得-4≤y≤1.时,取最小值-4,当x=-2时,y取最大值1.说明本题求最值的方法叫作判别法,这也是一种常用的方法.但在用判别法求最值时,应特别注意这个最值能否取到,即是否有与最值相应的x值.解将原函数去分母,并整理得yx2-ax+(y-b)=0.因x是实数,故△=(-a)2-4·y·(y-b)≥0,由题设知,y的最大值为4,最小值为-1,所以(y+1)(y-4)≤0,即y2-3y-4≤0.②由①,②得所以a=±4,b=3.4.其他函数的最大值与最小值处理一般函数的最大值与最小值,我们常常用不等式来估计上界或下界,进而构造例子来说明能取到这个上界或下界.解先估计y的下界.又当x=1时,y=1,所以,y的最小值为1.说明在求最小(大)值,估计了下(上)界后,一定要举例说明这个界是能取到的,才能说这就是最小(大)值,否则就不一定对了.例如,本题我们也可以这样估计:但无论x取什么值时,y取不到-3,即-3不能作为y的最小值.例10 设x,y是实数,求u=x2+xy+y2-x-2y的最小值.分析先将u看作是x的二次函数(把y看作常数),进行配方后,再把余下的关于y的代数式写成y的二次函数,再配方后,便可估计出下界来.又当x=0,y=1时,u=-1,所以,u的最小值为-1.例11 求函数的最大值,并求此时的x值,其中[a]表示不超过a的最大整数.练习七1.填空:(1)函数y=x2+2x-3(0≤x≤3)的最小值是_____,最大值是_______.(3)已知函数y=x2+2ax+1(-1≤x≤2)的最大值是4,则a=_____.是_______.(5)设函数y=-x2-2kx-3k2-4k-5的最大值是M,为使M最大,k=_____.2.设f(x)=kx+1是x的函数,以m(k)表示函数f(x)=kx+1在-1≤x≤3条件下的最大值,求函数m(k)的解析式和其最小值.3.x,y,z是非负实数,且满足x+3y+2z=3,3x+3y+z=4.求u=3x-2y+4z的最大值与最小值.4.已知x2+2y2=1,求2x+5y2的最大值和最小值.交点间的距离的平方最小,求m的值.6.已知二次函数y=x2+2(a+3)x+2a+4的图像与x轴的两个交点的横坐标分别为α,β,当实数a变动时,求(α-1)2+(β-1)2的最小值.第八讲根与系数的关系及应用如果一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,那么反过来,如果x1,x2满足x1+x2=p,x1x2=q,则x1,x2是一元二次方程x2-px+q=0的两个根.一元二次方程的韦达定理,揭示了根与系数的一种必然联系.利用这个关系,我们可以解决诸如已知一根求另一根、求根的代数式的值、构造方程、证明等式和不等式等问题,它是中学数学中的一个有用的工具.1.已知一个根,求另一个根利用韦达定理,我们可以通过方程的一个根,求出另一个根.例1 方程(1998x)2-1997·1999x-1=0的大根为a,方程x2+1998x-1999=0的小根为b,求a-b的值.解先求出a,b.由观察知,1是方程(1998x)2-1997·1999x-1=0的根,于是由韦达又从观察知,1也是方程x2+1998x-1999=0的根,此方程的另一根为-1999,从而b=-1999.所以a-b=1-(-1999)=2000.例2 设a是给定的非零实数,解方程解由观察易知,x1=a是方程的根.又原方程等价于2.求根的代数式的值在求根的代数式的值的问题中,要灵活运用乘法公式和代数式的恒等变形技巧.例3 已知二次方程x2-3x+1=0的两根为α,β,求:(3)α3+β3;(4)α3-β3.解由韦达定理知α+β=3,αβ=1.(3)α3+β3=(α+β)(α2-αβ+β2)=(α+β)[(α+β)2-3αβ]=3(9-3)=18;(4)α3-β3=(α-β)(α2+αβ+β2)=(α-β)[(α+β)2-αβ]例4 设方程4x2-2x-3=0的两个根是α和β,求4α2+2β的值.解因为α是方程4x2-2x-3=0的根,所以4α2-2α-3=0,即4α2=2α+3.4α2+2β=2α+3+2β=2(α+β)+3=4.例5 已知α,β分别是方程x2+x-1=0的两个根,求2α5+5β3的值.解由于α,β分别是方程x2+x-1=0的根,所以α2+α-1=0,β2+β-1=0,即α2=1-α,β2=1-β.α5=(α2)2·α=(1-α)2α=(α2-2α+1)α=(1-α-2α+1)α=-3α2+2α=-3(1-α)+2α=5α-3,β3=β2·β=(1-β)β=β-β 2=β-(1-β)=2β-1.所以2α5+5β3=2(5α-3)+5(2β-1)=10(α+β)-11=-21.说明此解法的关键在于利用α,β是方程的根,从而可以把它们的幂指数降次,最后都降到一次,这种方法很重要.例6 设一元二次方程ax2+bx+c=0的两个实根的和为s1,平方和为s2,立方和为s3,求as3+bs2+cs1的值.解设x1,x2是方程的两个实根,于是所以as3+bs2+cs1=0.说明本题最“自然”的解法是分别用a,b,c来表示s1,s2,s3,然后再求as3+bs2+cs1的值.当然这样做运算量很大,且容易出错.下面我们再介绍一种更为“本质”的解法.另解因为x1,x2是方程的两个实根,所以同理将上面两式相加便得as3+bs2+cs1=0.3.与两根之比有关的问题例7 如果方程ax2+bx+c=0(a≠0)的根之比等于常数k,则系数a,b,c必满足:kb2=(k+1)2ac.证设方程的两根为x1,x2,且x1=kx2,由韦达定理由此两式消去x2得即kb2=(k+1)2ac.例8 已知x1,x2是一元二次方程4x2-(3m-5)x-6m2=0解首先,△=(3m-5)2+96m2>0,方程有两个实数根.由韦达定理知从上面两式中消去k,便得即m2-6m+5=0,所以m1=1,m2=5.4.求作新的二次方程例9 已知方程2x2-9x+8=0,求作一个二次方程,使它的一个根为原方程两根和的倒数,另一根为原方程两根差的平方.解设x1,x2为方程2x2-9x+8=0的两根,则设所求方程为x2+px+q=0,它的两根为x'1,x'2,据题意有故所以,求作的方程是36x2-161x+34=0.例10 设x2-px+q=0的两实数根为α,β.(1)求以α3,β3为两根的一元二次方程;(2)若以α3,β3为根的一元二次方程仍是x2-px+q=0,求所有这样的一元二次方程.解(1)由韦达定理知α+β=p,αβ=q,所以α3+β3=(α+β)[(α+β)2-3αβ]=p(p2-3q),α3·β3=(αβ)3=q3.所以,以α3,β3为两根的一元二次方程为x2-p(p2-3q)x+q3=0.(2)由(1)及题设知由②得q=0,±1.若q=0,代入①,得p=0,±1;若q=-1,代入①,以,符合要求的方程为x2=0,x2-x=0,x2+x=0,x2-1=0.5.证明等式和不等式利用韦达定理可以证明一些等式和不等式,这常常还要用判别式来配合.例11 已知实数x,y,z满足x=6-y,z2=xy-9,求证:x=y.证因为x+y=6,xy=z2+9,所以x,y是二次方程t2-6t+(z2+9)=0的两个实根,于是这方程的判别式△=36-4(z2+9)=-4z2≥0,即z2≤0.因z为实数,显然应有z2≥0.要此两式同时成立,只有z=0,从而△=0,故上述关于t的二次方程有等根,即x=y.例12 若a,b,c都是实数,且a+b+c=0,abc=1,证由a+b+c=0及abc=1可知,a,b,c中有一个正数、两个负数,不妨设a是正数,由题意得于是根据韦达定理知,b,c是方程的两个根.又b,c是实数,因此上述方程的判别式因为a>0,所以a3-4≥0,a3≥4,例13 知x1,x2是方程4ax2-4ax+a+4=0的两个实根.解(1)显然a≠0,由△=16a2-16a(a+4)≥0,得a<0.由韦达定理知所以所以a=9,这与a<0矛盾.故不存在a,使(2)利用韦达定理所以(a+4)|16,即a+4=±1,±2,±4,±8,±16.结合a<0,得a=-2,-3,-5,-6,-8,-12,-20.练习八1.选择:(1)若x0是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式△=b2-4ac与平方式M=(2ax0+b)2的关系是[ ](A)△>M (B)△=M(C)△=<M (D)不确定(2)方程x2+px+1997=0恰有两个正整数根x1,x2,则[ ](A)-4(B)8 (C)6 (D)0为[ ](A)3(B)-11 (C)3或-11(D)112.填空:(1)如果方程x2+px+q=0的一根为另一根的2倍,那么,p,q满足的关系式是______.(2)已知关于x的一元二次方程ax2+bx+c=0没有实数根,甲由于看错了二次项系数,误求得两根为2和4,乙由于看错了某一项系数的符号,1993+5a2+9a4=_______.(4)已知a是方程x2-5x+1=0的一个根,那么a4+a-4的末位数是______.另一根为直角边a,则此直角三角形的第三边b=______.3.已知α,β是方程x2-x-1=0的两个实数根,求α4+3β的值.4.作一个二次方程,使它的两个根α,β是正数,并且满足关系式5.如果关于x的方程x2+ax+b=0的两个实数根之比为4∶5,方程的判别式的值为3,求a,b的值.第九讲判别式及其应用一元二次方程的根的判别式(△)是重要的基础知识,它不仅能用于直接判定根的情况,而且在二次三项式、二次不等式、二次函数等方面有着重要的应用,是初中数学中的一个重要内容,在高中数学中也有许多应用.熟练掌握它的各种用法,可提高解题能力和知识的综合应用能力.1.判定方程根的情况例1 已知方程x2-2x-m=0没有实数根,其中m是实数.试判定方程x2+2mx+m(m+1)=0有无实数根.解因为方程x2-2x-m=0无实数根,所以△1=(-2)2-4×(-m)=4+4m<0,即m<-1.因为△2=(2m)2-4m(m+1)=-4m>0,所以方程x2+2mx+m(m+1)=0有两个不相等的实根.例2 已知常数a为实数,讨论关于x的方程(a-2)x2+(-2a+1)x+a=0的实数根的个数情况.实根.当a≠2时,原方程为一元二次方程,其判别式△=(-2a+1)2-4(a-2)a=4a+1,说明对于一个二次项系数含参数的方程,要按照二次项系数为零或不为零来讨论根的情况,前者为一次方程,后者为二次方程,不能一上来就用判别式.2.确定方程中系数的值或范围例3 关于x的一元二次方程有实根,其中a是实数,求a99+x99的值.解因为方程有实根,所以即-a2-2a-1≥0.因为-(a+1)2≥0,所以a+1=0,a=-1.当a=-1时,原方程为x2-2x+1=0,x=1,所以a99+x99=(-1)99+199=0.例4 若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,求a,b的值.解因为方程有实根,所以它的判别式△=4(1+a)2-4(3a2+4ab+4b2+2)≥0,化简后得2a2+4ab+4b2-2a+1≤0,所以(a+2b)2+(a-1)2≤0,说明在本题中,只有一个不等式而要求两个值,通常是通过配方把这个不等式变形为“若干个非负数之和小于等于零”,从而可以得到一个方程组,进而求出要求的值.例5 △ABC的一边长为5,另两边长恰是方程2x2-12x+m=0的两个根,求m的取值范围.解设△ABC的三边分别为a,b,c,且a=5,由。

什么叫分式方程

什么叫分式方程

什么叫分式方程代数方程分为有理方程和无理方程,而有理方程又分为整式方程与分式方程两大类,所以从方程的分类中可以看出,分式方程属于有理方程。

像在初中阶段研究的一元一次方程、一元二次方程、二元一次方程等都是整式方程,分母中含有未知数的有理方程叫做分式方程,像方程2/x+1/(x-3)2=4就是分式方程,而像方程2√x=5是无理方程。

去分母,方程两边同乘各分母的最简公分母。

去括号,系数分别乘以括号里的数。

移项,含有未知数的式子移动到方程左边,常数移动到方程右边。

合并同类项。

系数化为1,方程的基本性质就是同时乘以或除以一个数,方程不变。

1怎么解分式方程第一步,去分母,方程两边同乘各分母的最简公分母,解3÷(x+1)=5÷(x+3)。

同乘(x+1)(x+3)就可以去掉分母了。

第二步,去括号,系数分别乘以括号里的数。

第三步,移项,含有未知数的式子移动到方程左边,常数移动到方程右边。

第四步,合并同类项第五步,系数化为1,方程的基本性质就是同时乘以或除以一个数,方程不变,和天平一样的。

这里除以-2。

第六步,检验,把方程的解代入分式方程,检验是否正确。

2解分式方程的方法分式方程的解题思想:基本思想是把分式方程化为整式方程,解出整式方程后,再把整式方程的解代入原方程检验,确定是否是原分式方程的解。

分式方程转化为整式方程的基本方法:一、将方程两边都乘各分母的最简公分母;二、换元法。

由于把分式方程转化为整式方程后,有时会产生不适合原方程的增根,所以解分式方程一定要检验,把不符合方程的根舍去。

对于含有字母系数的方程,要根据字母系数的限制条件,对字母的取值进行分类讨论,然后表示方程的解。

分母中含有未知数的方程叫分式方程。

使分母为0的未知数的值是增根。

《认识方程》ppt课件


利润问题
其他问题
利用二元一次方程组表示进价、售价和利润 之间的关系,求解最大利润等问题。
如浓度问题、配套问题等,都可以通过设立 二元一次方程组进行求解。
04
一元二次方程
一元二次方程形式
一般形式
01
$ax^2 + bx + c = 0$,其中 $a neq 0$
标准形式
02
$(x-p)^2 = q$
含有绝对值的情况
需要根据绝对值的性质,分别讨论绝对值内部表达式的正负情况, 从而转化为常规的无理方程进行求解。
含有参数的情况
需要根据参数的不同取值范围,分别讨论方程的解的情况,从而 得到参数对方程解的影响。
06
方程在实际问题中应用
行程问题建模与求解
路程、速度和时间关系建模
通过方程表达路程、速度和时间之间的数学关系,如s=vt(s为路 程,v为速度,t为时间)。
标准形式
$x + a = b$,通过移项可将一般 形式转化为标准形式。
解一元一次方程方法
等式性质法
利用等式性质(等式两边 同时加上或减去同一个数, 等式仍成立)来解方程。
移项法
将方程中的未知数项移到 等式的一边,常数项移到 等式的另一边,从而解出 未知数。
合并同类项法
将方程中的同类项合并, 简化方程后求解。
不等式
用不等号连接的式子称为不等式,表示左右两边不 相等。
不等式性质
不等式两边同时加上或减去同一个数,不等式性质 不变;不等式两边同时乘以或除以同一个正数,不 等式性质不变;不等式两边同时乘以或除以同一个 负数,不等式反向。
02
一元一次方程
一元一次方程形式
一般形式

分式方程ppt课件

•分式方程基本概念•分式方程解法•分式方程应用举例•分式方程与实际问题结合目•分式方程求解技巧与注意事项•分式方程练习题与答案解析录01分式方程基本概念分式方程是方程中的一种,且分母里含有未知数的(有理)方程叫做分式方程。

分母中含有未知数(或含有未知数整式的有理方程)叫做分式方程。

分式方程是指分母里含有未知数的有理方程。

分式方程与整式方程区别方程形式不同未知数位置不同分式方程是分式的形式,而整式方程是整式的形式。

解法不同02分式方程解法通过通分,将分式方程转化为整式方程。

注意去分母后,整理得到的整式方程的解需要检验,以排除增根。

适用于分子、分母均为多项式的分式方程。

去分母法通过引入新的变量,将分式方程转化为整式方程。

换元法可以简化复杂的分式方程,降低求解难度。

适用于具有特定结构的分式方程,如分子或分母含有根式、指数等。

换元法判别式法因式分解法将分式方程的分子或分母进行因式分解,从而简化方程。

因式分解法可以方便地找到分式方程的解,特别是当分子或分母含有公因式时。

适用于分子、分母均可因式分解的分式方程。

03分式方程应用举例千米,一辆汽车从甲地开千米。

问这辆汽车需要多少小时才能到达乙地?01020304利润= 售价-进价利润率= 利润÷进价×100%售价= 进价×(1 +利润率)进价= 售价÷(1 +利润率)举例:某商店以每双6.5元的价格购进一批凉鞋,售价为7.4元。

卖到还剩5双时,除成本外还获利44元。

这批凉鞋共有多少双?04分式方程与实际问题结合实际问题转化为分式方程通过分析实际问题的数量关系,建立分式方程模型。

将实际问题中的已知量和未知量用字母表示,根据问题中的等量关系列出分式方程。

注意分式方程中分母不能为0的条件,确保方程的合法性。

分式方程求解实际问题通过去分母、去括号、移项、合并同类项等步骤,将分式方程化为整式方程。

解整式方程,求得未知数的值。

检验求得的解是否符合实际问题的要求,确保解的合理性。

分式方程与无理方程半小时检测卷


参考答案见P , 役矗
时 , 式- , 时 , 式 - 故 三 + 原 2 当 原 2
( ) 二次方程 根与系数 关系 三 一元


去分母整理 , 得 +- 2, n ①
衔接训练
的值 为2J或2 Ⅲ

7一 F 3 F1 y .A .A 4.C 一 ; .A 5 5 一 2
5 方 专 + 有 . 程 2 若 = 增
根. 则 = .
周完成 , 工钱 5 需 . 元 ; 甲 公 司 2万 若
单独 做 4周 后 .剩 下 的 由乙公 司来
时.
l .I 读 F 材 料 . 0 l 蒯 列
6 J当 k的取 值范 围 为
关 于 的 方 程 :

做 , 需 9周 才 能 完 成 , 工 钱 48 还 需 . 万 元.若 只选 一 个公 司 单独 完成 , 从
或l 4, 9 或l 4 ,
m= 2 方程有 两 实根 , - 一 , , O时, O  ̄m A< ,
所 以  ̄ 2
原 方 程 无 实根
1.( )l , ~ 0 1 m ( ) 方 程 可 化 为 1 一 2原 _+ ' +
& △= 4 4 |, m< , 已 知 - m+ > 得 D l由
( ) 4— + 1

右 边 的形 式 与 左边 完 全 相 同 .只 是 把 其 中 的未 知 数 换 成 了某 个 常 数 .
2 分 的 为 . 式乏 使 值0
的 的值 是 ( )
那 么这样 的方 程 可 以直接 得解 .
A 3c D . . . 4 号 手
【= I9; t ̄ 0 y-
分式方程与无理Leabharlann 程半小时检测卷 1C 2 C 3 O 2 4 一 或 1 . . . 或 . 2

分式方程教案 分式方程数学教案(精选6篇)

分式方程教案分式方程数学教案(精选6篇)解分式方程练习题篇一分式方程的教学设计分式方程的教学设计教学目标1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;2.通过列分式方程解应用题,渗透方程的思想方法。

教学重点和难点重点:列分式方程解应用题。

难点:根据题意,找出等量关系,正确列出方程。

教学过程设计一、复习例解方程:(1)2x+xx+3=1; (2)15x=2×15 x+12;(3)2(1x+1x+3)+x-2x+3=1.解(1)方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

(2)方程两边都乘以x(x+12),约去分母,得15(x+12)=30x。

解这个整式方程,得x=12.检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

(3)整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,即2x+xx+3=1.方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3),即2x+6+x2=x2+3x,亦即2x-3x=-6.解这个整式方程,得x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

二、新课例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍。

若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?请同学根据题意,找出题目中的等量关系。

答:骑车行进路程=队伍行进路程=15(千米);骑车的速度=步行速度的2倍;骑车所用的时间=步行的时间-0。

5小时。

请同学依据上述等量关系列出方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

好好学习
1
六 分式方程 无理方程
一. 填空题:

1.方程13x_____________分式方程.(填“是”或“不是”)

2.分式方程11510xx的根是___________________.
3.如果代数式31xx的值是32,那么x=______________.

4.方程011322xxx_____________无理方程.(填“是”或“不是”)
5.方程3162x的解是__________________.
6.已知线段AB=10cm,点P是线段AB的黄金分割点,且AP>BP,则AP=_______cm.
7.分式方程1837222xxxxx的最简公分母是______________.

8.分式方程112331)2(82222xxxxxx,如果设yxxx1222,那么原方程可以化为
_______________.
9.已知:0(180nRRnl),则R=______________.(用n、l的代数式表示R)

10. 用换元法解无理方程2152522xxxx,如果设yxx152,则原方
程可以化为_______________.
11. 在解分式方程时,可以通过去分母或换元法将它转化为整式方程,体现了
___________数学思想.

12. 无理方程042x无解的依据是_________________________.
13. 已知点P的坐标为(x,3),A(4,-1),如果PA=6,那么可得到方程_______________.
14. 分式方程111xxx的解x=________________.

15. 如果04412xx,那么x2的值是__________________.
16. 已知方程aaxx11的两根分别为a、a1,则方程1111aaxx的根是
__________________.
17. 在解分式方程时,除了用去分母方法以外,对于某些特殊的分式方程,还可以用
______________法来解.

18. 如果)(111221RRRRR,如果用R、R2表示R1,则R1=_____________.

19. 当x=____________时,代数式3472xxx与534x的值互为倒数.
好好学习
2
20. 方程02050xx的根是____________;方程0)20)(50(xx的根是
________________.
21. 某数的正的平方根比它的倒数的正的平方根的10倍多3,如设某数为x,则可列
出方程_________________________.

22. 已知021yx,则xy=_________________.

23. 解分式方程331xmxx产生增根,则m=________________.
24. 方程22xx的根是__________________.
25. 方程032xx的解是___________________.

26. 若代数式4162xx的值为0,则x=______________.
27. 解分式方程)2(3422xxxx,如果设yxx2,原方程则可以化为______.
28. 方程65xx的解是___________________.
二. 选择题:

1.方程0242xx的根是 ( )
(A) x1=2,x2=-2; (B) x1=2; (C) x=-2; (D) 以上答案都不对.
2.方程2211xx的根是 ( )
(A) x1=1,x2=2; (B) x=1; (C) x=2; (D) x=0.
3.下列方程中,有实数解的是 ( )

(A) 012x;(B) 43xx;(C) xx2; (D) 015xx.

4.设y=x2+x+1,则方程xxxx2221可化为 ( )
(A) y2-y-2=0; (B) y2+y+2=0; (C) y2+y-2=0; (D) y2-y+2=0.
5.分式方程420960960xx的解是 ( )
(A) x=60; (B) x=-80; (C) x1=60,x2=-80; (D) x1=-60,x2=80.
三. 简答题:

1.解方程06)1(5)1(2xxxx
好好学习

3
2.解方程12244212xxxx

3.33xx
4.用换元法解方程153322xxxx

5.解方程组346234121341233xyyxyxyx

相关文档
最新文档