2015年考研数学

合集下载

考研数学一真题2015年

考研数学一真题2015年

考研数学一真题2015年(总分:150.00,做题时间:90分钟)一、选择题(总题数:8,分数:32.00)1.设函数f(x)在(-∞,+∞)内连续,其二阶导函数f"(x)的图形如图所示,则曲线y=f(x)的拐点的个数为______。

(分数:4.00)A.0B.1C.2 √D.3解析:[考点] 拐点的判定。

[解析] 若曲线函数在拐点处有二阶导数,则在拐点处二阶导数异号(由正变负或由负变正)或不存在。

因此,由f"(x)由的图形可得,曲线y=f(x)存在两个拐点,故选C项。

2.______。

(分数:4.00)A.a=-3,b=2,c=-1 √B.a=3,b=2,c=-1C.a=-3,b=2,C=1D.a=3,b=2,C=1解析:[考点] 二阶常系数非齐次线性微分方程的反问题——由已知解来确定微分方程的系数。

[解析] 由题意可知,为二阶常系数齐次微分方程y"+ay"+by=0的解,所以由常系数齐次微分方程的解与其特征方程根的关系知2,1为特征方程r 2 +ar+b=0的根,从而a=-(1+2)=-3,b=1×2=2,从而原方程变为y"-3y"+2y=ce x,再将特解y=xe x代入得c=-1,故选A项。

3.若级数条件收敛,则和x=3______。

(分数:4.00)A.收敛点,收敛点B.收敛点,发散点√C.发散点,收敛点D.发散点,发散点解析:[考点] 幂级数的收敛半径、收敛区间,幂级数的性质。

[解析] 已知条件收敛,即x=2为幂级数的条件收敛点,所以的收敛半径为1,收敛区间为(0,2)。

因幂级数与其导数的收敛区间相同,故的收敛区间还是(0,2),则与x=3依次为幂级数的收敛点,发散点,故选B项。

4.设D是第一象限由曲线2xy=1,4xy=1与直线y=x,围成的平面区域,函数f(x,y)在D上连续,则=______。

A.B.C.D.(分数:4.00)A.B. √C.D.解析:[考点] 将二重积分化成极坐标系下的累次积分和极坐标变换。

2015年考研数一真题及答案解析

2015年考研数一真题及答案解析

2015年考研数学(一)试题解析一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c 【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数1∞=∑n n a 条件收敛,则 3=x 与3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质.【解析】因为1n n a ∞=∑条件收敛,即2x =为幂级数1(1)n n n a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2).而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2).因而3x =与3x =依次为幂级数1(1)n n n na x ∞=-∑的收敛点,发散点.故选(B ).(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,3y x =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A) ()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()1sin 23142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(C) ()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(D) ()1sin 23142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分 【解析】先画出D 的图形,所以(,)Df x y dxdy =⎰⎰1sin 23142sin 2(cos ,sin )d f r r rdr πθπθθθθ⎰⎰,故选(B )(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为 ( ) (A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ωxyo(D) ,a d ∈Ω∈Ω 【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫ ⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D )(6)设二次型()123,,f x x x 在正交变换为=x Py 下的标准形为2221232+-y y y ,其中()123,,=P e e e ,若()132,,=-Q e e e ,则()123,,f x x x 在正交变换=x Qy 下的标准形为( )(A) 2221232-+y y y (B) 2221232+-y y y (C) 2221232--y y y (D) 2221232++y y y 【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-.且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.由已知可得:100001010Q P PC ⎛⎫⎪== ⎪ ⎪-⎝⎭故有200()010001T T TQ AQ C P AP C ⎛⎫ ⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A )(7) 若A,B 为任意两个随机事件,则 ( ) (A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B(C) ()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()()()2P A P B P AB P A P B +≤⋅≤,选(C) .(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( ) (A) 3- (B) 3 (C) 5- (D) 5 【答案】(D)【解析】22[(2)](2)()()2()E X X Y E X XY X E X E XY E X +-=+-=+- 23221225=++⨯-⨯=,选(D) .二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.(9) 2ln cos lim_________.x xx→= 【答案】12-【分析】此题考查0型未定式极限,可直接用洛必达法则,也可以用等价无穷小替换.【解析】方法一:2000sin ln(cos )tan 1cos lim lim lim .222x x x xx x x x x x →→→--===- 方法二:2222200001ln(cos )ln(1cos 1)cos 112lim lim lim lim .2x x x x x x x x x x x x →→→→-+--====- (10) 22sin ()d ________.1cos xx x xππ-+=+⎰【答案】2π4【分析】此题考查定积分的计算,需要用奇偶函数在对称区间上的性质化简.【解析】22202sin 2.1cos 4x x dx xdx xππππ-⎛⎫+== ⎪+⎝⎭⎰⎰(11)若函数(,)=z z x y 由方程cos 2+++=x e xyz x x 确定,则(0,1)d ________.z =【答案】dx -【分析】此题考查隐函数求导.【解析】令(,,)cos 2z F x y z e xyz x x =+++-,则 又当0,1x y ==时1z e =,即0z =.所以(0,1)(0,1)(0,1,0)(0,1,0)1,0(0,1,0)(0,1,0)y x z z F F zz xF yF ''∂∂=-=-=-=''∂∂,因而(0,1).dzdx =-(12)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰【答案】14【分析】此题考查三重积分的计算,可直接计算,也可以利用轮换对称性化简后再计算.【解析】由轮换对称性,得1(23)66zD x y z dxdydz zdxdydz zdz dxdy ΩΩ++==⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中z D 为平面z z =截空间区域Ω所得的截面,其面积为21(1)2z -.所以112320011(23)66(1)3(2).24x y z dxdydz zdxdydz z z dz z z z dz ΩΩ++==⋅-=-+=⎰⎰⎰⎰⎰⎰⎰⎰ (13) n 阶行列式20021202___________.00220012-=-L L M M OM M L L【答案】122n +-【解析】按第一行展开得(14)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<= 【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而 11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分) 设函数()ln(1)sin =+++f x x a x bx x ,3()=g x kx ,若()f x 与()g x 在0→x 是等价无穷小,求,,a b k 的值.【答案】,,.a b k =-=-=-11123【解析】法一:原式()30ln 1sin lim1x x a x bx xkx→+++= 即10,0,123a aa b k+=-== 法二:()3ln 1sin lim1x x a x bx xkx→+++= 因为分子的极限为0,则1a =-()212cos sin 1lim16x b x bx x x kx→--+-+==,分子的极限为0,12b =-()022sin sin cos 13lim 16x b x b x bx xx k →----+==,13k =- (16)(本题满分10分) 设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,由线()=y f x 在点()()00,x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且()02f =,求()f x 的表达式.【答案】f x x=-8()4. 【解析】设()f x 在点()()00,x f x 处的切线方程为:()()()000,y f x f x x x '-=-令0y =,得到()()000f x x x f x =-+',故由题意,()()00142f x x x ⋅-=,即()()()000142f x f x f x ⋅=',可以转化为一阶微分方程, 即28y y '=,可分离变量得到通解为:118x C y =-+,已知()02y =,得到12C =,因此11182x y =-+;即()84f x x =-+.(17)(本题满分10分)已知函数(),=++f x y x y xy ,曲线C :223++=x y xy ,求(),f x y 在曲线C 上的最大方向导数. 【答案】3【解析】因为(),f x y 沿着梯度的方向的方向导数最大,且最大值为梯度的模.()()',1,',1x y f x y y f x y x =+=+,故(){},1,1gradf x y y x =++,模为()()2211y x +++,此题目转化为对函数()()()22,11g x y y x =+++在约束条件22:3C x y xy ++=下的最大值.即为条件极值问题.为了计算简单,可以转化为对()()22(,)11d x y y x =+++在约束条件22:3C x y xy ++=下的最大值.构造函数:()()()()2222,,113F x y y x x y xy λλ=++++++-()()()()222120212030x y F x x y F y y x F x y xy λλλ'⎧=+++=⎪'=+++=⎨⎪'=++-=⎩,得到()()()()12341,1,1,1,2,1,1,2M M M M ----. 所以最大值为93=. (18)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()()(II )设函数()()()12n u x ,u x ,,u x L 可导,n f x u x u x u x =L 12()()()(),写出()f x 的求导公式. 【解析】(I )0()()()()[()()]limh u x h v x h u x v x u x v x h→++-'=(II )由题意得(19)(本题满分 10 分)已知曲线L 的方程为222,,z x y z x ⎧=--⎪⎨=⎪⎩起点为()0,2,0A ,终点为()0,2,0-B ,计算曲线积分()()2222d d ()d L I y z x z x y y x y z =++-+++⎰. 【答案】2π2【解析】由题意假设参数方程cos 2sin cos x y z θθθ=⎧⎪=⎨⎪=⎩,ππ:22θ→-(20) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ. 【答案】【解析】(I)证明: 故123,,βββ为3R 的一个基.(II )由题意知,112233112233,0k k k k k k ξβββαααξ=++=++≠ 即()()()1112223330,0,1,2,3i k k k k i βαβαβα-+-+-=≠=即13213+2,,+0k k ααααα=即101010020k k=,得k=0(21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫⎪⎪ ⎪⎝⎭B =. (I)求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵.. 【解析】(I) ~()()311A B tr A tr B a b ⇒=⇒+=++(II)023100123133010123123001123A E C ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭C 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T 5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫⎪==- ⎪ ⎪⎝⎭P , (22) (本题满分11 分) 设随机变量X 的概率密度为()2ln 2,0,0,0.xx f x x -⎧>⎪=⎨≤⎪⎩对X 进行独立重复的观测,直到2个大于3的观测值出现的停止.记Y 为观测次数. (I)求Y 的概率分布; (II)求EY【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰,从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n =L 为Y 的概率分布; (II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生. 则M Ge n p ~(,),N Ge k n p -(,):(注:Ge 表示几何分布)所以11221618E Y E M N E M E N p p p =+=+=+===()()()(). 法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记212111()()n n S x n n xx ∞-==⋅--<<∑,则2113222211n n n n n n S x n n xn xx x ∞∞∞--==='''=⋅-=⋅==-∑∑∑()()()()(),12213222111()()()()()n n n n xS x n n xx n n x xS x x ∞∞--===⋅-=⋅-==-∑∑, 2222313222111()()()()()nn n n x S x n n x xn n xx S x x ∞∞-===⋅-=⋅-==-∑∑, 所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--, 从而7168E Y S ==()().(23) (本题满分 11 分)设总体X 的概率密度为:其中θ为未知参数,12n x ,x ,,x L 为来自该总体的简单随机样本. (I)求θ的矩估计量.(II)求θ的最大似然估计量.【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得$1121ni i X X X n θ==-=∑,为θ的矩估计量;(II) 似然函数11110,()(;),nni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--. 从而dln d 1L nθθθ=-(),关于θ单调增加, 所以$12min nX X X θ={,,,}L 为θ的最大似然估计量. 文档内容由经济学金融硕士考研金程考研网 整理发布。

考研数学三真题2015年_真题-无答案

考研数学三真题2015年_真题-无答案

考研数学三真题2015年(总分150,考试时间90分钟)一、选择题(下列每题给出的四个选项中,只有一个选项符合题目要求的。

)1. 设{xn}是数列,下列命题中不正确的是______。

A.若,则B.若,则C.若,则D.若,则2. 设函数f(x)在(-∞,+∞)内连续,其二阶导函数f"(x)的图形如图所示,则曲线y=f(x)的拐点个数为______。

A. 0B. 1C. 2D. 33. 设D={(x,y)|x2+y2≤2x,x2+y2≤2y},函数f(x,y)在D上连续,则______。

A.B.C.D.4. 下列级数中发散的是______。

A.B.C.D.5. 设矩阵,若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为______。

A.B.,d∈ΩC.a∈Ω,D.a∈Ω,d∈Ω6. 设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为,其中P=(e1,e2,e3)。

若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为______。

A.B.C.D.7. 若A,B为任意两个随机事件,则______。

A.P(AB)≤P(A)P(B)B.P(AB)≥P(A)P(B)C.D.8. 设总体X~B(m,θ),X1,X2,…,Xn为来自该总体的简单随机样本,为样本均值,则=______。

A. (m-1)nθ(1-θ)B. m(n-1)θ(1-θ)C. (m-1)(n-1)θ(1-θ)D. mnθ(1-θ)二、填空题1. ______。

2. 设函数f(x)连续,,若φ(1)=1,φ"(1)=5,则f(1)=______。

3. 若函数z=z(x,y)由方程ex+2y+3z+xyz=1确定,则dz|(0,0)=______。

4. 设函数y=y(z)是微分方程y"+y"-2y=0的解,且在x=0处取得极值3,则y(x)=______。

2015年考研数学真题答案(数二 )

2015年考研数学真题答案(数二 )

2015年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、下列反常积分中收敛的是()(A)2+∞⎰(B )2ln xdx x+∞⎰(C)21ln dx x x+∞⎰(D)2xx dx e +∞⎰【答案】(D)【考点】反常积分的收敛性 【难易度】★★ 【详解】(A)2+∞==+∞⎰,发散,(B )222ln 1(ln )2x dx x x +∞+∞==+∞⎰,发散(C )221ln ln ln dx x x x +∞+∞==+∞⎰,发散 (D )当x 足够大时,21x x e x <,221dx x +∞⎰收敛,2x x dx e+∞⎰收敛 2、函数20sin ()lim(1)x tt tf x x→=+在(,)-∞+∞内()(A )连续 (B )有可去间断点 (C )有跳跃间断点 (D)有无穷间断点 【答案】(B)【考点】极限的计算 【难易度】★★【详解】当0x ≠时,22sin sin 0sin sin ()=lim(1)lim(1)x x t x x tt x tt t ttf x e xx→→+=+=3、设函数1cos ,0()0,0x x f x xx αβ⎧>⎪=⎨⎪≤⎩(0,0)αβ>>,若()f x '在0x =处连续,则() (A )1αβ-> (B)01αβ<-≤ (C)2αβ-> (D)02αβ<-≤ 【答案】(A)【考点】导数的定义、连续的定义 【难易度】★★★【详解】100()(0)1(0)=limlim cos x x f x f f x x xαβ-→→-'=存在 所以10α->,且(0)=0f '1111()=cossin f x x x x x ααβββαβ---'+ 由0lim ()(0)0x f x f →''==,得10αβ-->,1αβ->4、设函数()f x 在(,)-∞+∞连续,其二阶导函数()f x ''的图形如右图所示,则曲线()y f x =的拐点个数为()(A )0 (B)1 (C)2 (D)3 【答案】C【考点】拐点的定义 【难易度】★★★【详解】由图易知,拐点为原点和与x 正半轴的交点,所以拐点数为2 5、设函数(u v)f ,满足22(,)y f x y x y x+=-,则11u v f u ==∂∂与11u v fv ==∂∂依次是() (A )12,0 (B)0,12(C )-12,0 (D)0 ,-12【答案】(C)【考点】链式求导法则 【难易度】★★【详解】法一:,y u x y v x =+=,所以,11u uvx y v v ==++所以222222(1)(,)(1)(1)1u u v u v f u v v v v -=-=+++ 2(1)1f u v u v ∂-=∂+,222(1)fu v v ∂-=∂+ 110u v f u ==∂=∂,1112u v fv==∂=-∂ 法二:22(,)x f x y x y y+=-(1)(1)式对x 求导得,22f y f x u x v ∂∂-=∂∂(2) (1)式对y 求导得,12f f y u x v∂∂+=-∂∂(3) 由1,1u v ==,得12x y ==,代入(2)(3)解得110u v f u ==∂=∂,1112u v fv==∂=-∂ 6、设D 是第一象限中曲线21,41xy xy ==与直线,y x y =围成的平面区域,函数(,)f x y 在D 上连续,则(,)Df x y dxdy ⎰⎰=()(A )12sin 2142sin 2(cos ,sin )d f r r dr πθπθθθθ⎰⎰(B)24(cos ,sin )d f r r dr ππθθθ⎰(C )13sin 2142sin 2(cos ,sin )d f r r dr πθπθθθθ⎰⎰(D)34(cos ,sin )d f r r dr ππθθθ⎰【答案】(D)【考点】二重积分的极坐标变换 【难易度】★★★ 【详解】由y x =得,4πθ=由y =得,3πθ=由21xy =得,22cos sin 1,r r θθ==由41xy =得,24cos sin 1,r r θθ==所以34(,)(cos ,sin )Df x y dxdy d f r r rdr ππθθθ=⎰⎰⎰7、设矩阵A=211112a 14a ⎛⎫ ⎪ ⎪ ⎪⎝⎭,b=21d d ⎛⎫ ⎪⎪ ⎪⎝⎭,若集合Ω=}{1,2,则线性方程组Ax b =有无穷多个解的充分必要条件为()(A ),a d ∉Ω∉Ω (B),a d ∉Ω∈Ω (C),a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】(D)【考点】线性方程组 【难易度】★★【详解】[]()()()()2211111111,12011114001212A b a d a d a d a a d d ⎡⎤⎡⎤⎢⎥⎢⎥=−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦Ax b =有无穷多解⇔R(A)=R(A,b)<31212a a d d ⇔====或且或.8、设二次型123(,,)f x x x 在正交变换x Py =下的标准形为2221232,y y y +-其中123P=(e ,e ,e ),若132(,,)Q e e e =-,则123(,,)f x x x 在正交变换x Py =下的标准形为( )(A)2221232y y y -+ (B) 2221232y y y +- (C) 2221232y y y -- (D) 2221232y y y ++ 【答案】(A) 【考点】二次型 【难易度】★★★【详解】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-且:200010001T P AP ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦100200001,()010010001T T T Q P PC Q AQ C P AP C ⎡⎤⎡⎤⎢⎥⎢⎥====-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦所以222123()2T T T f x Ax y Q AA y y y y ===-+,故选(A)二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. 9、设2231arctan ,3t x t d y dx y t t==⎧=⎨=+⎩则 【答案】48【考点】复合函数的求导法则 【难易度】★★【详解】2222333(1)11dy dy dt t t dx dx dtt +===++, 22222212(1)12(1)11d dy d y t t dt dx t t dx dx t ⎛⎫⎪+⎝⎭===++, 因此,212121448t d y dx==⋅⋅=.10、函数2()2xf x x =在0x =处的n 阶导数()(0)n f =【答案】2(1)(ln 2)n n n --【考点】高阶导数;莱布尼兹公式:()()0()()nn kn k k n k uv C u v -==∑ 【难易度】★★ 【详解】()()()2()2n n x fx x =⋅()(0)n f ⇒()()(2)222(1)222(ln 2)2n x x n n x x n n C x --==-''==⋅⋅⋅2(1)(ln2)n n n -=-.11、设函数()f x 连续,2()(),x x xf t dt ϕ=⎰若(1)ϕ1=,'(1)5ϕ=,则(1)f =【答案】2【考点】变限积分求导 【难易度】★★ 【详解】2220()()()()2()x x x xf t dt x f t dt x x f x ϕϕ'=⇒=+⋅⋅⎰⎰1(1)()2(1)(1)2(1)5(1)2f t dt f f f ϕϕ'=+=+=⇒=⎰.12、设函数()y y x =是微分方程'''20y y y +-=的解,且在0x =处()y x 取值3,则()y x = 【答案】【考点】【难易度】★★【详解】微分方程的通解是212x x y c e c e -=+则12(0)33y c c ==+=,12(0)020y c c '==-+=,121,2c c ⇒==22x x y e e -⇒=+.13、若函数(,)z z x y =由方程231x y ze xyz +++=确定,则(0,0)dz =【答案】1233dx dy --【考点】隐函数求导法则 【难易度】★★★ 【详解】,0z zdz dx dy x x y∂∂=+=∂∂0y =0z = 两边对x 求导23(31)0x y zz zeyz xy x x++∂∂⋅+++=∂∂ 代入0,0x y ==01|3x z x =∂=-∂ 两边对y 求导23(32)0x y zz zexz xy y y++∂∂⋅+++=∂∂ 代入0,0x y ==02|3y z y =∂⇒=-∂(0,0)12|33dz dx dy ⇒=--.14、设3阶矩阵A 的特征值为2,-2,1,2B A A E =-+,其中E 为3阶单位矩阵,则行列式B =【答案】21【考点】矩阵的特征值 【难易度】★★【详解】A 的特征值为2,-2,1,又由于2B A A E =-+,因此矩阵B 的特征值为3,7,1,因此矩阵B 的行列式的值为21三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. 15、(本题满分10分)设函数()ln(1)sin f x x x bx x α=+++,2()g x kx =,若()f x 与()g x 在0x →是等价无穷小,求,,a b k 的值。

2015考研数学二真题及答案

2015考研数学二真题及答案

2015考研数学二真题及答案一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1) 下列反常积分收敛的是 ( )(A)2+∞⎰(B)2ln x dx x +∞⎰(C)21ln dx x x +∞⎰ (D)2x x dx e +∞⎰【答案】(D) 【解析】(1)x x xdx x e e-=-+⎰,则2222(1)3lim (1)3x x x x x dx x e e x e e e +∞+∞----→+∞=-+=-+=⎰. (2) 函数()2sin lim(1)x tt t f x x→=+在(,)-∞+∞内 ( )(A) 连续 (B) 有可去间断点 (C) 有跳跃间断点 (D) 有无穷间断点 【答案】(B)【解析】220sin lim 0sin ()lim(1)t x t x x t x tt t f x e e x→→=+==,0x ≠,故()f x 有可去间断点0x =.(3)设函数()1cos ,00,0x x x f x x αβ⎧>⎪=⎨⎪≤⎩(0,0)αβ>>,若()'f x 在0x =处连续则:( )(A)0αβ-> (B)01αβ<-≤ (C)2αβ-> (D)02αβ<-≤ 【答案】(A)【解析】0x <时,()0f x '=()00f -'=()1001cos010lim lim cos x x x x f x x xαβαβ++-+→→-'== 0x >时,()()()11111cos 1sin f x x x x x xααβββαβ-+'=+-- 1111cossin x x x xααβββαβ---=+ ()f x '在0x =处连续则:()()10100lim cos 0x f f x x αβ+--+→''===得10α->()()++1100110lim =lim cos sin =0x x f f x x x x x ααβββαβ---→→⎛⎫''=+ ⎪⎝⎭得:10αβ-->,答案选择A(4)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0(B) 1 (C) 2(D) 3【答案】(C)【解析】根据图像观察存在两点,二阶导数变号.则拐点个数为2个。

2015年考研数学二真题及答案解析

2015年考研数学二真题及答案解析

2015年全国硕士研究生入学统一考试数学二试题与答案解析一、选择题:(1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

) (1)下列反常积分中收敛的是 (A)∫√x2 (B)∫lnxx+∞2dx(C)∫1xlnx+∞2dx (D) ∫xe x+∞2dx【答案】D 。

【解析】题干中给出4个反常积分,分别判断敛散性即可得到正确答案。

∫√x2=2√x|2+∞=+∞;∫lnx x +∞2dx =∫lnx +∞2d(lnx)=12(lnx)2|2+∞=+∞;∫1xlnx+∞2dx =∫1lnx+∞2d(lnx)=ln (lnx)|2+∞=+∞;∫x e x +∞2dx =−∫x +∞2de −x =−xe −x |2+∞+∫e −x +∞2dx =2e −2−e −x |2+∞=3e −2, 因此(D)是收敛的。

综上所述,本题正确答案是D 。

【考点】高等数学—一元函数积分学—反常积分 (2)函数f (x )=lim t→0(1+sin t x)x 2t在(-∞,+∞)内(A)连续 (B)有可去间断点 (C)有跳跃间断点 (D)有无穷间断点 【答案】B【解析】这是“1∞”型极限,直接有f (x )=lim t→0(1+sin t x)x 2t=e lim t→0x 2t (1+sin tx−1)=e x lim t→0sint t=e x(x≠0),f(x)在x=0处无定义,且limx→0f(x)=limx→0e x=1,所以 x=0是f(x)的可去间断点,选B。

综上所述,本题正确答案是B。

【考点】高等数学—函数、极限、连续—两个重要极限(3)设函数f(x)={xαcos1xβ,x>0,0,x≤0(α>0,β>0).若f′(x)在x=0处连续,则(A)α−β>1 (B)0<α−β≤1 (C)α−β>2 (D)0<α−β≤2【答案】A【解析】易求出f′(x)={αxα−1cos 1xβ+βxα−β−1sin1xβ,x>0,0,x≤0再有 f+′(0)=limx→0+f(x)−f(0)x=limx→0+xα−1cos1xβ={0, α>1,不存在,α≤1,f−′(0)=0于是,f′(0)存在⟺α>1,此时f′(0)=0.当α>1时,limx→0xα−1cos1xβ=0,lim x→0βxα−β−1sin1xβ={0, α−β−1>0,不存在,α−β−1≤0,因此,f′(x)在x=0连续⟺α−β>1。

2015【考研数学三】真题及答案解析

2015年全国硕士研究生入学统一考试数学(三)试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)设是数列,下列命题中不正确的是:(A) 若,则(B) 若, 则(C) 若,则(D) 若,则(2)设函数在内连续,其2阶导函数的图形如下图所示,则曲线的拐点个数为:(A) (B) (C) (D)(3)设,函数在上连续,则(A)(B)(C)(D)(4)下列级数中发散的是:(A) (B) (C) (D)(5)设矩阵,.若集合,则线性方程组有无穷多解的充分必要条件为:(A) (B) (C) (D)(6)设二次型在正交变换为下的标准形为,其中,若,则在正交变换下的标准形为:(A) (B) (C)(D)(7)若为任意两个随机事件,则:(A)(B)(C) (D)(8)设总体为来自该总体的简单随机样本, 为样本均值,则(A) (B)(C)(D)二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)(10)设函数连续,若则(11)若函数由方程确定,则(12)设函数是微分方程的解,且在处取得极值3,则(13)设阶矩阵的特征值为,其中E为阶单位矩阵,则行列式(14)设二维随机变量服从正态分布,则三、解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分)设函数,,若与在是等价无穷小,求的值.(16) (本题满分10 分)计算二重积分,其中(17) (本题满分10分)为了实现利润的最大化,厂商需要对某商品确定其定价模型,设为该商品的需求量,为价格,M C 为边际成本,为需求弹性.(I) 证明定价模型为;(II) 若该商品的成本函数为,需求函数为,试由(I)中的定价模型确定此商品的价格.(18) (本题满分10分)设函数在定义域上的导数大于零,若对任意的,由线在点处的切线与直线及轴所围成区域的面积恒为4,且,求的表达式.(19) (本题满分 10分)(I) 设函数可导,利用导数定义证明(II) 设函数可导,,写出的求导公式.(20) (本题满分11分)设矩阵,且.(I) 求的值;(II)若矩阵满足,其中为3阶单位矩阵,求.(21) (本题满分11分)设矩阵相似于矩阵.(I)求的值;(II)求可逆矩阵,使为对角矩阵.(22) (本题满分11分)设随机变量的概率密度为对进行独立重复的观测,直到个大于的观测值出现的停止.记为观测次数.(I) 求的概率分布;(II) 求(23) (本题满分11分)设总体的概率密度为其中为未知参数,为来自总体的简单随机样本.(I) 求的矩估计量.(II) 求的最大似然估计量.2015年全国硕士研究生入学统一考试数学(三)答案(1)【答案】(D)【考查分析】本题考查数列极限与子列极限的关系.【详解】数列收敛,那么它的任何无穷子数列均收敛,所以(A)与(C)正确;一个数列存在多个无穷子列并集包含原数列所有项,且这些子列均收敛于同一个值,则原数列是收敛的.(B)正确,(D)错,故选(D).(2)【答案】(C)【考查分析】本题考查曲线的拐点.【详解】拐点出现在二阶导数等于零,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由的图形可得,曲线存在两个拐点.故选(C).(3)【答案】(B)【考查分析】本题考查直角坐标和极坐标的转换.【详解】在极坐标系下该二重积分要分成两个积分区域所以,选(B).(4)【答案】(C)【考查分析】本题考查数项级数的敛散性.【详解】选项(A),为正项级数,因为,所以根据正项级数的比值判别法收敛;选项(B),为正项级数,因为,根据级数收敛准则,知收敛;选项(C),,根据莱布尼茨判别法知收敛,发散,所以根据级数收敛定义知,发散;选项(D),为正项级数,因为,所以根据正项级数的比值判别法收敛,所以选(C).(5)【答案】(D)【考查分析】本题考查非齐次线性方程组解的判定【详解】对增广矩阵进行初等行变换,得到由,故或,同时或.故选(D).(6)【答案】(A)【考查分析】本题考查二次型的正交变换.【详解】由,故.且.所以.选(A).(7)【答案】(C)【考查分析】本题考查概率的性质.【详解】由于,按概率的基本性质,我们有且,从而,选(C).(8)【答案】(B)【考查分析】本题考查统计量的数字特征.【详解】根据样本方差的性质,而,从而,选(B).(9)【答案】【考查分析】本题考查型未定式极限.【详解】方法一:方法二:(10)【答案】【考查分析】本题考查变上限积分函数求导.【详解】因为连续,所以可导,所以;因为,所以又因为,所以故(11)【答案】【考查分析】本题考查隐函数的全微分.【详解】当,时代入,得.对两边求微分,得把,,代入上式,得所以(12)【答案】【考查分析】本题考查二阶常系数齐次线性微分方程的解的结构和性质.【详解】的特征方程为,特征根为,,所以该齐次微分方程的通解为,因为可导,所以为驻点,即,,所以,,故(13)【答案】【考查分析】本题考查抽象型行列式的计算.【详解】的所有特征值为的所有特征值为所以.(14)【答案】【考查分析】本题考查二维正态分布的性质.【详解】由题设知,,且相互独立,从而. (15)【答案】【考查分析】本题考查利用等价无穷小的定义求参数.【详解】方法一:利用泰勒公式.即方法二:利用洛必达法则.因为分母的极限为,则分子的极限为,即,分母的极限为,则分子的极限为,即,则.(16)【答案】【考查分析】本题考查利用简化性质计算二重积分.【详解】(17)【答案】(I)略(II) .【考查分析】本题考查导数的经济应用.【详解】(I)由于利润函数,两边对求导,得.当且仅当时,利润最大,又由于,所以, 故当时,利润最大.23(II)由于,则代入(I)中的定价模型,得,从而解得.(18)【答案】.【考查分析】本题考查导数的几何应用和一阶微分方程求解.【详解】设在点处的切线方程为:令,得到.由题意,,即,转化为一阶微分方程,分离变量得到通解为:,已知,得到,因此;即.(19)【考查分析】本题考查导数的定义和导数的四则运算法则.【详解】(I)(II) 由题意得(20)【答案】【考查分析】本题结合矩阵方程考查矩阵的运算.【详解】(I)(II)由题意知,(21)【答案】(I) .(II),则.【考查分析】本题考查相似矩阵和矩阵的相似对角化.【详解】(I) 则即.即整理得到(II)的特征值.当时,的基础解系为当时,的基础解系为,则的特征值为.令,则.(22)【答案】(I) ,. (II) .【考查分析】本题考查离散型随机变量的概率分布和数学期望.【详解】(I) 记为观测值大于的概率,则.的概率分布为,(II)记,则,从而.(23)【答案】(I).(II) .【考查分析】本题考查矩估计和最大似然估计.【详解】(I) .令,即,解得.为的矩估计量,其中;(II) 似然函数当时,,取对数,得到.求导,得到,则越大,似然函数越大,但是,所以当时,似然函数最大.为的最大似然估计量.。

2015年考研数学一真题与答案解析

2021 年全国硕士研究生入学统一考试数学〔一〕试题一、选择题:18小题,每题4分,共32分。

以下每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。

(1)设函数f(x)在,内连续,其中二阶导数f(x)的图形如下列图,那么曲线yf(x)的拐点的个数为()(A)0(B)1(C)2(D)3【答案】〔C〕【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。

因此,由f(x)的图形可得,曲线yf(x)存在两个拐点.应选〔C〕.(2)设112xxye(x)e是二阶常系数非齐次线性微分方程23xyaybyce的一个特解,那么()(A)a3,b2,c1(B)a3,b2,c1(C)a3,b2,c1(D)a3,b2,c1【答案】〔A〕【分析】此题考察二阶常系数非齐次线性微分方程的反问题——解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和构造来求解,也就是下面演示的解法.【解析】由题意可知,122xe、13xe为二阶常系数齐次微分方程yayby0的解,所以2,1为特征方程20rarb的根,从而a(12)3,b122,从而原方程变为x y3y2yce,再将特解xyxe代入得c1.应选〔A〕(3)假设级数a条件收敛,那么x3与x3依次为幂级数nn na(x1)的()nn1n1(A)收敛点,收敛点(B)收敛点,发散点(C)发散点,收敛点(D)发散点,发散点【答案】〔B〕【分析】此题考察幂级数收敛半径、收敛区间,幂级数的性质。

【解析】因为a条件收敛,即x2为幂级数nna(x1)的条件收敛点,所以nna(x1)nn1n1n1的收敛半径为1,收敛区间为(0,2)。

而幂级数逐项求导不改变收敛区间,故nna(x1)的收nn1敛区间还是(0,2)。

因而x3与x3依次为幂级数nna(x1)的收敛点,发散点.应选〔B〕。

2015~2016年考研数学(一)真题含答案详解

2015年全国硕士研究生入学统一考试数学(一)一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3 (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c(C) 3,2,1=-==a b c (D) 3,2,1===a b c(3) 若级数1∞=∑nn a条件收敛,则 3=x 与3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,3y x =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()sin 23142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(C)()13sin 2142sin 2cos ,sin d f r r drπθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为 ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω(6)设二次型()123,,f x x x 在正交变换为=x Py 下的标准形为2221232+-y y y ,其中()123,,=P e e e ,若()132,,=-Q e e e ,则()123,,f x x x 在正交变换=x Qy 下的标准形为( )(A) 2221232-+y y y(B) 2221232+-y y y(C) 2221232--y y y(D) 2221232++y y y(7) 若A,B 为任意两个随机事件,则 ( ) (A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B(C) ()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C) 5- (D) 5二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln cos lim_________.x xx→=(10)22sin ()d ________.1cos x x x x ππ-+=+⎰(11)若函数(,)=z z x y 由方程cos 2+++=xe xyz x x 确定,则(0,1)d ________.z=(12)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰(13) n 阶行列式20021202___________.00220012-=-L LM M OM M L L(14)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<=三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分) 设函数()ln(1)sin =+++f x x a x bx x ,3()=g x kx ,若()fx 与()g x 在0→x 是等价无穷小,求,,a b k 的值.(16)(本题满分10分) 设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,由线()=y f x 在点()()0,x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且()02f =,求()f x 的表达式.(17)(本题满分10分) 已知函数(),=++fx y x y xy ,曲线C :223++=x y xy ,求(),f x y 在曲线C 上的最大方向导数.(18)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()() (II )设函数()()()12n u x ,u x ,,u x L 可导,n f x u x u x u x =L 12()()()(),写出()f x 的求导公式.(19)(本题满分 10 分)已知曲线L的方程为,z z x ⎧=⎪⎨=⎪⎩起点为()A,终点为()0,B ,计算曲线积分()()2222d d ()d LI y z x z x y y x y z =++-+++⎰.(20) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ.(21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫ ⎪⎪ ⎪⎝⎭B =.(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵..(22) (本题满分11 分) 设随机变量X 的概率密度为()2ln 2,0,0,0.xx f x x -⎧>⎪=⎨≤⎪⎩对X 进行独立重复的观测,直到2个大于3的观测值出现的停止.记Y 为观测次数. (I)求Y 的概率分布; (II)求EY(23) (本题满分 11 分)设总体X 的概率密度为:x f x θθθ⎧≤≤⎪=-⎨⎪⎩1,1,(,)10,其他. 其中θ为未知参数,12n x ,x ,,x L 为来自该总体的简单随机样本. (I)求θ的矩估计量. (II)求θ的最大似然估计量.答案解析(1)【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解xy xe =代入得1c =-.故选(A )(3)【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质.【解析】因为1nn a∞=∑条件收敛,即2x =为幂级数1(1)nn n a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2).而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2).因而x =3x =依次为幂级数1(1)n n n na x ∞=-∑的收敛点,发散点.故选(B ).(4)【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分 【解析】先画出D 的图形,所以(,)Df x y dxdy =⎰⎰34(cos ,sin )d f r r rdr ππθθθ⎰,故选(B ) (5)【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D ) (6)【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-. 且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.由已知可得:100001010Q P PC ⎛⎫⎪== ⎪ ⎪-⎝⎭故有200()010001T T TQ AQ C P AP C ⎛⎫⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A ) (7)【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()2P A P B P AB +≤≤,选(C) .(8)【答案】(D)【解析】22[(2)](2)()()2()E X X Y E X XY X E X E XY E X +-=+-=+-2()()()()2()D X E X E X E Y E X =++⋅-23221225=++⨯-⨯=,选(D) .(9)【答案】12-【分析】此题考查型未定式极限,可直接用洛必达法则,也可以用等价无穷小替换. 【解析】方法一:2000sin ln(cos )tan 1cos lim lim lim .222x x x xx x x x x x →→→--===-方法二:2222200001ln(cos )ln(1cos 1)cos 112lim lim lim lim .2x x x x x x x x x x x x →→→→-+--====- (10)【答案】2π4【分析】此题考查定积分的计算,需要用奇偶函数在对称区间上的性质化简.【解析】22202sin 2.1cos 4x x dx xdx x ππππ-⎛⎫+== ⎪+⎝⎭⎰⎰(11)【答案】dx -【分析】此题考查隐函数求导.【解析】令(,,)cos 2zF x y z e xyz x x =+++-,则(,,)1sin ,,(,,)z x y z F x y z yz x F xz F x y z e xy '''=+-==+又当0,1x y ==时1z e =,即0z =.所以(0,1)(0,1)(0,1,0)(0,1,0)1,0(0,1,0)(0,1,0)y x z z F F zz xF yF ''∂∂=-=-=-=''∂∂,因而(0,1).dzdx =-(12)【答案】14【分析】此题考查三重积分的计算,可直接计算,也可以利用轮换对称性化简后再计算. 【解析】由轮换对称性,得1(23)66zD x y z dxdydz zdxdydz zdz dxdy ΩΩ++==⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中z D 为平面z z =截空间区域Ω所得的截面,其面积为21(1)2z -.所以 112320011(23)66(1)3(2).24x y z dxdydz zdxdydz z z dz z z z dz ΩΩ++==⋅-=-+=⎰⎰⎰⎰⎰⎰⎰⎰(13)【答案】122n +- 【解析】按第一行展开得1111200212022(1)2(1)220220012n n n n n D D D +----==+--=+-L L LL L221222(22)2222222n n n n D D ---=++=++=+++L 122n +=-(14)【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而{0}{(1)0}{10,0}{10,0}P XY Y P X Y P X Y P X Y -<=-<=-><+-<>11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=. (15)【答案】,,.a b k =-=-=-11123【解析】法一:原式()3ln 1sin lim1x x a x bx xkx →+++=()()2333330236lim 1x x x x x a x o x bx x o x kx→⎛⎫⎛⎫+-+++-+ ⎪ ⎪⎝⎭⎝⎭==()()234331236lim1x a a b a x b x x x o x kx→⎛⎫++-+-+ ⎪⎝⎭== 即10,0,123a aa b k+=-==111,,23a b k ∴=-=-=-法二:()3ln 1sin lim1x x a x bx xkx →+++=21sin cos 1lim13x ab x bx x x kx →++++==因为分子的极限为0,则1a =-()212cos sin 1lim16x b x bx x x kx→--+-+==,分子的极限为0,12b =-()022sin sin cos 13lim 16x b x b x bx xx k →----+==,13k =- 111,,23a b k ∴=-=-=-(16)【答案】f x x=-8()4. 【解析】设()f x 在点()()00,x f x 处的切线方程为:()()()000,y f x f x x x '-=-令0y =,得到()()000f x x x f x =-+',故由题意,()()00142f x x x ⋅-=,即()()()000142f x f x f x ⋅=',可以转化为一阶微分方程,即28y y '=,可分离变量得到通解为:118x C y =-+,已知()02y =,得到12C =,因此11182x y =-+;即()84f x x =-+.(17)【答案】3【解析】因为(),f x y 沿着梯度的方向的方向导数最大,且最大值为梯度的模.()()',1,',1x y f x y y f x y x =+=+,故(){},1,1gradf x y y x =++此题目转化为对函数(),g x y =在约束条件22:3C x y xy ++=下的最大值.即为条件极值问题.为了计算简单,可以转化为对()()22(,)11d x y y x =+++在约束条件22:3C x y xy ++=下的最大值.构造函数:()()()()2222,,113F x y y x x y xy λλ=++++++-()()()()222120212030x y F x x y F y y x F x y xy λλλ'⎧=+++=⎪'=+++=⎨⎪'=++-=⎩,得到()()()()12341,1,1,1,2,1,1,2M M M M ----. ()()()()12348,0,9,9d M d M d M d M====3=.(18)【解析】(I )0()()()()[()()]limh u x h v x h u x v x u x v x h→++-'=0()()()()()()()()limh u x h v x h u x h v x u x h v x u x v x h→++-+++-=0()()()()lim ()lim ()h h v x h v x u x h u x u x h v x h h→→+-+-=++ ()()()()u x v x u x v x ''=+(II )由题意得12()[()()()]n f x u x u x u x ''=L121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++L L L L(19)【答案】π2【解析】由题意假设参数方程cos cos x y z θθθ=⎧⎪=⎨⎪=⎩,ππ:22θ→-π22π2[cos )sin 2sin cos (1sin )sin ]d θθθθθθθθ--++++⎰π222π2sin cos (1sin )sin d θθθθθθ-=+++⎰π220sin d π2θθ==(20)【答案】 【解析】(I)证明:()()()()12313213123,,2+2,2,+1201,,020201k k k k βββαααααααα=+⎛⎫⎪= ⎪ ⎪+⎝⎭20121224021201k k k k ==≠++ 故123,,βββ为3R 的一个基. (II )由题意知,112233112233,0k k k k k k ξβββαααξ=++=++≠即()()()1112223330,0,1,2,3i k k k k i βαβαβα-+-+-=≠=()()()()()()()11312223133113223132+22++10+2+0k k k k k k k k k k ααααααααααααα-+-+-=++=有非零解即13213+2,,+0k k ααααα=即101010020k k=,得k=0 11223121300,0k k k k k k ααα++=∴=+=11131,0k k k ξαα=-≠(21)【解析】(I) ~()()311A B tr A tr B a b ⇒=⇒+=++23120133001231--=⇒--=-A B b a14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b (II)023100123133010123123001123A E C ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫ ⎪∴= ⎪ ⎪⎝⎭P AP(22)【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰, 从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n =L 为Y 的概率分布; (II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生.则M Ge n p ~(,),N Ge k n p -(,):(注:Ge 表示几何分布)所以11221618E Y E M N E M E N p p p =+=+=+===()()()(). 法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记212111()()n n S x n n xx ∞-==⋅--<<∑,则2113222211n n n n n n S x n n xn xx x ∞∞∞--==='''=⋅-=⋅==-∑∑∑()()()()(),12213222111()()()()()n n n n xS x n n xx n n x xS x x ∞∞--===⋅-=⋅-==-∑∑,2222313222111()()()()()nn n n x S x n n x xn n xx S x x ∞∞-===⋅-=⋅-==-∑∑,所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--,从而7168E Y S ==()().(23)【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得$1121ni i X X X n θ==-=∑,为θ的矩估计量;(II) 似然函数11110,()(;),n ni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--. 从而dln d 1L nθθθ=-(),关于θ单调增加, 所以$12min nX X X θ={,,,}L 为θ的最大似然估计量. 2016年全国硕士研究生入学统一考试数学(一)一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y x y x =+-=++是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩K ,则( ) (A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似(C )T A A +与T B B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明:(I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112 A a B aa a--⎛⎫⎛⎫ ⎪ ⎪==⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a为何值时,方程AX B=无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。

2015年考研数学二真题试卷及答案解析

新东方2015考研数学二真题一、选择题(1) 下列反常积分中收敛的是() (A)2+∞⎰(B)2x+∞⎰ (C) 21lnxdx x +∞⎰( D) 2x x dx e+∞⎰(2)函数20sin ()lim(1)x tt t f x x→+在∞∞(-,+)内(A )连续 (B )有可去间断点 (C)有跳跃间断点 ( D)有无穷间断点(3)设函数1cos ,0(0,0x f x xx αβ⎧>⎪=⎨⎪≤⎩ (0,0)αβ>> 若()f x '在0x =处连续,则 (A )1αβ-> (B )01αβ<-≤ (C) 2αβ-> ( D) 02αβ<-≤(4)设函数()f x 在∞∞(-,+)连续,其2阶导函数()f x ''的图形如右图所示,则曲线()y f x =的拐点个数为:(A )0 (B )1 (C) 2 ( D) 3(5)设函数(,)f u v 满足2(,)yf x y x y x +=-,则11|u v f u ==∂∂与11|u v f v ==∂∂依次是(A )12,0 (B )0,12(C) 1,02- ( D) 10,2-(6)设D 是第一象限中曲线21,1xy xy ==与直线,y x y ==围成的平面区域,函数(,)f x y 在D 上连续,则(,)Df x y dxdy =⎰⎰(A )13sin 2142sin 2(cos ,sin )d f r r rdr πθπθθθθ⎰⎰(B)34(cos ,sin )d f r r rdrππθθθ⎰(C)13sin 2142sin 2(cos ,sin )d f r r dr πθπθθθθ⎰⎰( D)34(cos ,sin )d f r r dr ππθθθ⎰(7)设矩阵211111A a ⎛ =⎪ ⎝,21b d ⎛⎫⎪= ⎪⎪⎝⎭,若集合{1,2}Ω=,则线性方程组Ax b =有无穷多个解的充分必要条件为(A ),a d ∉Ω∉Ω (B ),a d ∉Ω∈Ω(C ),a d ∈Ω∉Ω(D ),a d ∈Ω∈Ω(8)设二次型123(,,)f x x x 在正交变换x Py =下的标准形为2221232y y y +-,其中123(,,)P e e e =,若132(,,)Q e e e =-,则123(,,)f x x x 在正交变换x Qy =下的标准形为(A )2221232y y y -+ (B )2221232y y y +- (C )21232y y y -- (D )21232y y y ++二、填空题(9)设3arctan 3t y t t=⎧⎨+⎩,则212t d ydx ==(10)函数2()2x f x x =⋅在0x =处的n 阶导数((0)n f =(11)设函数()f x 连续,20()()x x xf t dt ϕ=⎰,若(1)1ϕ=,'(1)5ϕ=,则(1)f =(12)设函数()y f x =是微分方程'''20y y y +-=的解,且在0x =处()y x 取得极值3,则()y x =(13)若函数(,)z z x y =由方程21x y z e xyz +++确定,则(0,0)dz=(14)设3阶矩阵A 的特征值为2,-2,1,2B A A E =-+,其中E 为3阶单位矩阵,则行列式B =三、解答题(15)设函数()ln(1)sin f x x a x bx x =+++⋅,2()g x kx =,若()f x 与()g x 在0x →是等价无穷小,求a ,b ,k 值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年考研数学(二)考试大纲 2015年数学二考试大纲 考试科目:高等数学、线性代数

考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 二、答题方式 答题方式为闭卷、笔试. 三、试卷内容结构 高等教学 约78% 线性代数 约22% 四、试卷题型结构 单项选择题 8小题,每小题4分,共32分 填空题 6小题,每小题4分,共24分 解答题(包括证明题) 9小题,共94分

高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系. 6.掌握极限的性质及四则运算法则. 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数. 5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用. 8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.

三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用 考试要求 1.理解原函数的概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式和简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式. 5.了解反常积分的概念,会计算反常积分. 6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.

四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题. 5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).

五、常微分方程 考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用 考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程. 3.会用降阶法解下列形式的微分方程: 和 . 4.理解二阶线性微分方程解的性质及解的结构定理. 5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程. 6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程. 7.会用微分方程解决一些简单的应用问题. 线性代数 一、行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.

三、向量 考试内容 向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法 考试要求 1.理解 维向量、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系. 5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

四、线性方程组 考试内容 线性方程组的克拉默(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解 考试要求 1.会用克拉默法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组的解的结构及通解的概念. 5.会用初等行变换求解线性方程组

五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵 考试要求 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. 2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵. 3.理解实对称矩阵的特征值和特征向量的性质.

六、二次型 考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念. 2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,并掌握其

相关文档
最新文档