高考数学异构异模复习第十二章概率与统计12.1.2古典概型课件理

合集下载

2020高考数学二轮复习 第十二章 概率与统计 古典概型与几何概型 理)

2020高考数学二轮复习 第十二章 概率与统计 古典概型与几何概型 理)

2020高考数学二轮复习第十二章概率与统计古典概型与几何概型理理数1. (2020湖北,7,5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A. B. C. D.[答案] 1.D[解析] 1.区域Ω1为直角△AOB及其内部,其面积S△AOB=×2×2=2.区域Ω2是直线x+y=1和x+y=-2夹成的条形区域.由题意得所求的概率P===.故选D.2. (2020陕西,6,5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.[答案] 2.C[解析] 2.根据题意,2个点的距离小于该正方形边长的有4对,故所求概率P=1-=,故选C.3.(2020浙江,9,5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)[答案] 3.A[解析] 3.当i=1时,若从乙盒中抽取的1个球为红球,记从甲盒中取1个球是红球的事件为A1,则P(A1)=.若从乙盒中抽取的1个球为蓝球,记从甲盒中取1个球是红球的事件为A2,则P(A2)=×=,而A1与A2互斥,则p1=P(A1+A2)=P(A1)+P(A2)=.此时,ξ1的取值为1或2,P(ξ1=1)=,P(ξ1=2)=,则E(ξ1)=1×+2×=.当i=2时,若从乙盒中抽取的2个球都为红球,记从甲盒中取1个球是红球的事件为B1,则P(B1)=. 若从乙盒中抽取的2个球为1个红球和1个蓝球,记从甲盒中取1个球是红球的事件为B2,则P(B2)=×.若从乙盒中抽取的2个球都是蓝球,记从甲盒中取1个球是红球的事件为B3,则P(B3)=×.因为B1,B2,B3互斥,则p2=P(B1+B2+B3)=P(B1)+P(B2)+P(B3)====.则p1-p2=>0,即有p1>p2.此时,ξ2的取值为1,2,3.P(ξ2=1)=,P(ξ2=2)=,P(ξ2=3)=,则E(ξ2)=1×+2×+3×==3p2=,则有E(ξ1)<E(ξ2),综上,p1>p2,E(ξ1)<E(ξ2),故选A.4.(2020课表全国Ⅰ,5,5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A. B. C. D.[答案] 4.D[解析] 4.由题意知4位同学各自在周六、周日两天中任选一天参加公益活动有24种情况,而4位同学都选周六有1种情况,4位同学都选周日有1种情况,故周六、周日都有同学参加公益活动的概率为P===,故选D.5. (2020山西忻州一中、康杰中学、临汾一中、长治二中四校高三第三次联考,9) 向边长分别为的三角形区域内随机投一点,则该点与三角形三个顶点距离都大于1的概率为()A. B. C. D.[答案] 5. A[解析] 5. 设△ABC的三边AB=5,BC=6,AC=. 根据余弦定理可得,又因为∠B∈(0,π),所以. 所以△ABC的面积为. 而在△ABC的内部且离点A距离小于等于1的点构成的区域的面积为,同理可得在△ABC的内部且离点B、C距离小于等于1的点构成的区域的面积分别为,,所以在△ABC内部,且与三角形三个顶点距离都大于1的平面区域的面积为,根据几何概型的概率计算公式可得所求概率为.6. (2020河北石家庄高中毕业班复习教学质量检测(二),3) 利用计算机产生0~1之间的均匀随机数, 则使关于的一元二次方程无实根的概率为( )[答案] 6. C[解析] 6. 由,故,选C .7. (2020湖北黄冈高三4月模拟考试,8) 假设在5秒内的任何时刻,两条不相关的短信机会均等地进入同一部手机,若这两条短信进入手机的时间之差小于2秒,手机就会收到干扰,则手机收到干扰的概率为()A.B.C.D.[答案] 7. C[解析] 7. 设两条短信进入手机的时间分别为、,则,作平面区域,如图,由几何概型知,手机受到干扰的概率为.8. (2020贵州贵阳高三适应性监测考试, 11) 在区间[0,2]上随机取两个数, 则0≤≤2的概率是()A.B.C.D.[答案] 8.C[解析] 8.:如图,.9. (2020黑龙江哈尔滨第三中学第一次高考模拟考试,10) 在二项式的展开式中只有第五项的二项式系数最大,把展开式中所有的项重新排成一列,则有理项都互不相邻的概率为()A. B. C. D.[答案] 9. D[解析] 9. 因为展开式中只有第五项的二项式系数最大,所以,其通项公式为,当时,项为有理项,展开式的9项全排列为种,,所有的有理项互不相邻可把6个无理项全排,把3个有理项插入形成的7个空中,有,所以有理项互不相邻的概率为.10.(2020吉林实验中学高三年级第一次模拟,6)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手. 若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为()A.B.C.D.[答案] 10. D[解析] 10. 从18个选手中任选3人的选法有种选法,由数字1,2,3,…,18构成的以3为公差的等差数列其等差中项只能是4、5、…. 、15,每个等差中项对应1个等差数列,所以以3为公差的等差数列共有:12个,所以所求概率为.11.(2020湖北八校高三第二次联考数学(理)试题,9)将一颗骰子连续抛掷三次, 已知它落地时向上的点数恰好依次成等差数列, 那么这三次抛掷向上的点数之和为12的概率为()A. B. C.D.[答案] 11. A[解析] 11. 它落地时向上的点数恰好依次成等差数列的情况有公差为0:有6种情况;公差为1的有4×2=8个;公差为2的有:2×2=4个,而满足这三次抛掷向上的点数之和为12的有:(3,4, 5)、(5,4, 3)、(4,4, 4)、(2,4, 6)、(6,4, 2)共5个,根据古典概型的概率计算可得所求概率为.12. (2020重庆五区高三第一次学生调研抽测,7) 设点()是区域内的随机点,函数在区间[)上是增函数的概率为()A. B. C. D.[答案] 12. C[解析] 12. 表示的区域的面积为. 函数在区间[)上是增函数,则,所以概率. 选C.13.(2020湖北武汉高三2月调研测试,8) 如图,在长方体ABCD-A1B1C1D1中,E,H分别是棱A1B1,D1C1上的点(点E与B1不重合),且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G.设AB=2AA1=2a.在长方体ABCD-A1B1C1D1内随机选取一点,记该点取自于几何体A1ABFE-D1DCGH内的概率为P,当点E,F分别在棱A1B1,BB1上运动且满足EF=a时,则P的最小值为[答案] 13. D[解析] 13. 根据几何概型,===,其中“=” 当且仅当时成立. 故选D.14.(2020吉林高中毕业班上学期期末复习检测, 5) 小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离小于,则周末去踢球,否则去图书馆. 则小波周末去图书馆的概率是()A.B.C.D.[答案] 14. B[解析] 14. 圆的面积为,点到圆心的距离小于的面积为,所以点到圆心的距离大于的面积为,由几何概型小波周末去图书馆的概率为.15. (2020河北衡水中学高三上学期第五次调研考试, 8) 已知菱形的边长为4,,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率()A. B. C. D.[答案] 15.D[解析] 15.如右图,阴影部分M即为点到菱形四个顶点的距离大于1的点的集合,空白部分是半径为的圆,所以.16. (2020兰州高三第一次诊断考试, 9) 下列五个命题中正确命题的个数是( )①对于命题,则,均有②是直线与直线互相垂直的充要条件③已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5) ,则回归直线方程为=1.23x+0.08④若实数,则满足的概率为⑤ 曲线与所围成图形的面积是A. 2B. 3C. 4D. 5[答案] 16. A[解析] 16. 对①,因为命题,则,均有,故①错误;对②,由于直线与直线垂直的充要条件是或0,故②错误;对③,设线性回归方程为,由于样本点的坐标满足方程,则,解得,回归直线方程为,故③正确;对④,有几何概型知,所求概率为,故④错误;对⑤,曲线与所围成图形的面积是,正确.故正确的是③⑤,共2个.17. (2020湖北黄冈高三期末考试) 福彩3D是由3个0~9的自然数组成投注号码的彩票,耀摇奖时使用3台摇奖器,各自独立、等可能的随机摇出一个彩球,组成一个3位数,构成中奖号码,下图是近期的中奖号码(如197,244, 460等),那么在下期摇奖时个位上出现3的可能性为()[答案] 17. A[解析] 17. 古典概型. 依题意,个位上的数字由10种情况,个位上的数去3 只有一种情况,故所求的概率,即个位上出现3的可能性是10%.18. (2020广东,11,5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.[答案] 18.[解析] 18.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数有种选法.要使抽取的七个数的中位数是6,则6,7,8,9必须取,再从0,1,2,3,4,5中任取3个,有种选法,故概率为=.19. (2020福建,14,4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.[答案] 19.[解析] 19.∵y=ex与y=ln x互为反函数,故直线y=x两侧的阴影部分面积相等,只需计算其中一部分即可.如图,S1=exdx=ex=e1-e0=e-1.∴S总阴影=2S阴影=2(e×1-S1)=2[e-(e-1)]=2,故所求概率为P=.20. (2020江西,12,5分)10件产品中有7件正品、3件次品,从中任取4件,则恰好取到1件次品的概率是________.[答案] 20.[解析] 20.从10件产品中任取4件有种取法,取出的4件产品中恰有1件次品有种取法,则所求的概率P==.21.(2020江苏,4,5分)从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.[答案] 21.[解析] 21.从1,2,3,6这4个数中一次随机地取2个数,有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),共6种情况.满足条件的有(2,3),(1,6),共2种情况.故P==.22.(2020辽宁,14,5分)正方形的四个顶点A(-1,-1),B(1,-1),C(1,1),D(-1,1)分别在抛物线y=-x2和y=x2上,如图所示.若将一个质点随机投入正方形ABCD中,则质点落在图中阴影区域的概率是________.[答案] 22.[解析] 22.由对称性可知S阴影=S正方形ABCD-4x2dx=22-4×=,所以所求概率为=.23.(2020重庆一中高三下学期第一次月考,13)(原创)小钟和小薛相约周末去爬尖刀山,他们约定周日早上8点至9点之间(假定他们在这一时间段内任一时刻等可能的到达)在华岩寺正大门前集中前往,则他们中先到者等待的时间不超过15分钟的概率是(用数字作答)。

「精品」高考数学异构异模复习第十二章概率与统计课时撬分练12.1概率理

「精品」高考数学异构异模复习第十二章概率与统计课时撬分练12.1概率理

2018高考数学异构异模复习考案 第十二章 概率与统计 课时撬分练12.1概率 理时间:50分钟基础组1.[2016·枣强中学预测]4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为偶数的概率为( )A.12B.13C.23D.34答案 B解析 因为从4张卡片中任取出2张共有6种情况,其中2张卡片上数字之和为偶数的共有2种情况,所以2张数字之和为偶数的概率为13.2.[2016·冀州中学一轮检测]将一颗骰子抛掷两次,所得向上点数分别为m ,n ,则函数y =23mx3-nx +1在[1,+∞)上为增函数的概率是( )A.12B.56C.34D.23 答案 B解析 ∵y =23mx 3-nx +1,∴y ′=2mx 2-n .令y ′=0得x =± n 2m, ∴x 1=n2m,x 2=- n2m是函数的两个极值点, ∴函数在⎣⎢⎡⎭⎪⎫n 2m ,+∞上是增函数,则 n2m≤1, 即n ≤2m .通过建立关于m ,n 的坐标系可得出满足n ≤2m 的有30个,由古典概型公式可得函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是P =3036=56.故选B.3. [2016·武邑中学一轮检测]设A 为圆周上一点,在圆周上等可能地任取一点与A 连接,则弦长超过半径2倍的概率是( )A.34 B.12 C.13D.35答案 B解析 作等腰直角三角形AOC 和AMC ,B 为圆上任一点,则当点B 在MmC ︵上运动时,弦长|AB |>2R ,∴P =MmC ︵圆的周长=12.故选B.4.[2016·武邑中学月考]ABCD 为长方形,AB =2,BC =1,O 为AB 的中点.在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4C.π8 D .1-π8答案 B解析 如图,根据几何概型概率公式得所求概率为P =阴影部分面积S 长方形ABCD =2-12π·122=1-π4.故选B.5.[2016·衡水中学热身]如图所示方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复.则填入A 方格的数字大于B 方格的数字的概率为( )A.12 B.4 C.34D.38答案 D解析 只考虑A ,B 两个方格的排法.不考虑大小,A ,B 两个方格有4×4=16(种)排法.要使填入A 方格的数字大于B 方格的数字,则从1,2,3,4中选2个数字,大的放入A 格,小的放入B 格,有(4,3),(4,2),(4,1),(3,2),(3,1),(2,1),共6种,故填入A 方格的数字大于B 方格的数字的概率为616=38,选D.6.[2016·冀州中学期末]设p 在[0,5]上随机地取值,则方程x 2+px +p 4+12=0有实数根的概率为________.答案 35解析 一元二次方程有实数根即Δ=p 2-4⎝ ⎛⎭⎪⎫p 4+12=(p +1)(p -2)≥0,解得p ≤-1或p ≥2,故所求概率为5-25=35.7.[2016·衡水中学预测]从分别写有0,1,2,3,4的五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片.则两次取出的卡片上的数字之和恰好等于4的概率是________.答案 15解析 从0,1,2,3,4五张卡片中取出两张卡片的结果有25种,数字之和恰好等于4的结果有(0,4),(1,3),(2,2),(3,1),(4,0),所以数字和恰好等于4的概率是P =15.8.[2016·枣强中学热身]现从甲、乙、丙3人中随机选派2人参加某项活动,则甲被选中的概率为________.答案 23解析 从甲、乙、丙3人中随机选派2人,共有甲乙、甲丙、乙丙三种选法,其中甲被选中有甲乙、甲丙两种选法,所以甲被选中的概率为23.9.[2016·衡水中学猜题]某商场有奖销售中,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C .求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.解 (1)P (A )=11000,P (B )=101000=1100,P (C )=501000=120.(2)因为事件A ,B ,C 两两互斥,所以P (A ∪B ∪C )=P (A )+P (B )+P (C )=11000+1100+120=611000.故1张奖券的中奖概率为611000.(3)P (A ∪B )=1-P (A +B )=1-⎝⎛⎭⎪⎫11000+1100=9891000.故1张奖券不中特等奖且不中一等奖的概率为9891000.10.[2016·衡水中学一轮检测]某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率) 解 (1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A 表示事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”“该顾客一次购物的结算时间为1.5分钟”“该顾客一次购物的结算时间为2分钟”.将频率视为概率得P (A 1)=15100=320,P (A 2)=30100=310,P (A 3)=25100=14.因为A =A 1∪A 2∪A 3,且A 1,A 2,A 3是互斥事件,所以P (A )=P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=320+310+14=710. 故一位顾客一次购物的结算时间不超过2分钟的概率为710.11.[2016·冀州中学模拟]某学校为了增强学生对数学史的了解,提高学生学习数学的积极性,举行了一次数学史知识竞赛,其中一道题是连线题,要求将4名数学家与他们所著的4本著作一对一连线,规定:每连对一条得5分,连错一条得-2分.某参赛者随机用4条线把数学家与著作一对一全部连接起来.(1)求该参赛者恰好连对一条的概率; (2)求该参赛者得分不低于6分的概率.解 4名数学家和他们所著的4本书一对一连线,所有的连线情况有C 14C 13C 12=24(种),其中恰好连对1条的情况有C 14C 12=8(种),恰好连对2条的情况有C 24=6(种).全部连对的情况有1种.(1)恰好连对1条的概率为824=13.(2)得分不低于6分,说明参赛者连对2条或全部连对,所以概率为6+124=724.12.[2016·衡水二中周测]设有关于x 的一元二次方程x 2+2ax +b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.解 设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为P (A )=912=34.(2)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}, 构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },如图. 所以所求的概率为P (A )=3×2-12×223×2=23.能力组13.[2016·枣强中学仿真]现有四所大学进行自主招生,同时向一所高中的已获省级竞赛一等奖的甲、乙、丙、丁四位学生发录取通知书,若这四名学生都愿意进入这四所大学的任意一所就读,则仅有两名学生被录取到同一所大学的概率为( )A.12 B.916 C.1116 D.724答案 B解析 所求概率P =C 24·A 3444=916.14.[2016·衡水二中月考]在半径为1的圆内任取一点,以该点为中点作弦,则所作弦的长度超过3的概率是( )A.15B.14C.13D.12答案 B解析 如图,C 是弦AB 的中点,在直角三角形AOC 中,AC =12AB =32,OA =1,所以OC =12,所以符合条件的点必须在半径为12的圆内.则所作弦的长度超过3的概率是P =S 小圆S 大圆=⎝ ⎛⎭⎪⎫122ππ=14. 15.[2016·武邑中学热身]某次知识竞赛规则如下:主办方预设3个问题,选手能正确回答出这3个问题,即可晋级下一轮.假设某选手回答正确的个数为0,1,2的概率分别是0.1,0.2,0.3.则该选手晋级下一轮的概率为________.答案 0.4解析 记“答对0个问题”为事件A ,“答对1个问题”为事件B ,“答对2个问题”为事件C ,这3个事件彼此互斥,“答对3个问题(即晋级下一轮)”为事件D ,则“不能晋级下一轮”为事件D的对立事件D -,显然P (D -)=P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.1+0.2+0.3=0.6,故P (D )=1-P (D -)=1-0.6=0.4.16.[2016·衡水二中期中]已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36(个); 由a ·b =-1,有-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个;故满足a ·b =-1的概率为3 36=112.(2)若x,y在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x,y)|1≤x≤6,1≤y≤6};满足a·b<0的基本事件的结果为A={(x,y)|1≤x≤6,1≤y≤6且-2x+y<0};画出图形如图,正方形的面积为S正=25,阴影部分的面积为S阴影=25-12×2×4=21,故满足a·b<0的概率为21 25.。

高考数学异构异模复习第十二章概率与统计12.2.1离散型随机变量的分布列均值课件理

高考数学异构异模复习第十二章概率与统计12.2.1离散型随机变量的分布列均值课件理

2019/5/23
最新中小学教MCnN--1M CnN

CmMCnN--mM CnN
为超几何分布列,如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布.
7 离散型随机变量的均值 一般地,若离散型随机变量 X 的概率分布列为
X x1 x2 … xi … xn P p1 p2 … pi … pn 则称___E_(_X_)_=__x_1p_1_+__x_2p_2_+__…__+__x_ip_i_+__…__+__x_np_n________为随机变量 X 的均值或数学期望.它反映了 离散型随机变量取值的__平__均__水__平__.__ 注意点 分布列的性质(2)的应用 分布列的性质(2)的作用:可以用来检查所写出的分布列是否有误,还可以求分布列中的某些参数.
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。 • 作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。 • 二、听文科课要注重在理解中记忆 • 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然 后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间 的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。 • 三、听英语课要注重实践 • 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。

【步步高】高考数学大一轮复习 12.2古典概型名师课件 理 苏教版

【步步高】高考数学大一轮复习 12.2古典概型名师课件 理 苏教版
数学 苏(理)
第十二章 概率、随机变量及其概率分布
§12.2 古典概型
基础知识·自主学习 题型分类·深度剖析 思想方法·感悟提高 练出高分
1.基本事件的特点 (1)任何两个基本事件是 互斥 的. (2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古 典概型. (1)试验中所有可能出现的基本事件 只有有限个 ; (2)每个基本事件的发生都是 等可能 的.
个黑球和3个红球,每球有一个区别 古 典 概 型 的 判 断 依 据 是
于其他球的编号,从中摸出一个球. (1)有多少种不同的摸法?如果把每 个球的编号看作一个基本事件建立
“有限性”和“等可能 性”.
概率模型,该模型是不是古典概型?
思维点拨
解析
题型一 基本事件与古典概型的判断
解 由于共有11个球,且
思维升华
解 由于11个球共有3种颜色, 因此共有3个基本事件,分 别记为A:“摸到白球”,B: “摸到黑球”,C:“摸到 红球”,
又因为所有球大小相同,所以
一次摸球每个球被摸中的可能
性均为
1 11
,而白球有5个,
例1 袋中有大小相同的5个白球,3 个黑球和3个红球,每球有一个区别 于其他球的编号,从中摸出一个球. (2)若按球的颜色为划分基本事件的 依据,有多少个基本事件?以这些 基本事件建立概率模型,该模型是 不是古典概型?
题型三 古典概型与统计的综合应用 例3 (2013·陕西)有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次,根据年龄将大 众评委分为五组,各组的人数如下:
组别 A
B
C
D

高考数学一轮总复习 专题12 概率 12.2 古典概型课件

高考数学一轮总复习 专题12 概率 12.2 古典概型课件
高考数Βιβλιοθήκη (浙江专用)12.2 古典概型
考点清单
考点 古典概型
考向基础 1.基本事件的特点 (1)任何两个基本事件都是互斥的. (2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型: (1)试验中所有可能出现的基本事件① 只有有限个 ; (2)每个基本事件出现的可能性相等.
3.古典概型的概率公式
A包含的基本事件的个数
P(A)=②
基本事件的总数
.
方法技巧
方法 古典概型概率的计算方法
1.求古典概型概率的基本步骤

2020版高考数学新增分大一轮新高考专用课件:第十二章 12.1 随机事件的概率与古典概型

2020版高考数学新增分大一轮新高考专用课件:第十二章 12.1 随机事件的概率与古典概型

内容索引
NEIRONGSUOYIN
基础知识 自主学习 题型分类 深度剖析 课时作业
1 基础知识 自主学习
PART ONE
知识梳理
ZHISHISHULI
1.概率和频率
(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事 nA
件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)= n 为事件A 出现的频率. (2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳 定于概率P(A),因此可以用频率fn(A)来估计概率P(A).
2.事件的关系与运算
定义
符号表示
如果事件A发生,则事件B一定发生,这时
包含关系 称事件B_包__含__事件A(或称事件A包含于事 _B_⊇__A_(或A⊆B)
件B)
相等关系
若B⊇A且A⊇B
_A__=__B_
若某事件发生当且仅当事件A发生或事件B 并事件(和事件) 发生,称此事件为事件A与事件B的_并__事__件_ A∪B(或A+B)
36+25+7+4
最高气温不低于 20 的频率为
90
=0.8.
因此Y大于零的概率的估计值为0.8.
命题点3 互斥事件与对立事件 例3 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球. 从中随机取出1球,求: (1)取出1球是红球或黑球的概率;
(2)取出1球是红球或黑球或白球的概率. 解 方法一 取出1球是红球或黑球或白球的概率为 P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=152+13+16=1112. 方法二 因为A1∪A2∪A3的对立事件为A4, 所以 P(A1∪A2∪A3)=1-P(A4)=1-112=1112.

(全国统考)2022高考数学一轮复习 第十二章 概率 12.2 古典概型与几何概型学案(理,含解

12.2古典概型与几何概型必备知识预案自诊知识梳理1.基本事件在一次试验中,我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为.2.基本事件的特点(1)任何两个基本事件是的.(2)任何事件(除不可能事件)都可以表示成的和.3.古典概型(1)定义:具有以下两个特点的概率模型称为古典概率模型,简称古典概型.①有限性:试验中所有可能出现的基本事件.②等可能性:每个基本事件出现的可能性..(2)古典概型的概率公式P(A)=A包含的基本事件的个数基本事件的总数4.几何概型(1)定义:如果每个事件发生的概率只与构成该事件区域的(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称为几何概型.(2)特点:①无限性:在一次试验中,可能出现的结果有无限多个;②等可能性:每个结果的发生具有等可能性.(3)公式:P(A)=.5.随机模拟方法使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是随机模拟方法.1.任一随机事件的概率都等于构成它的每一个基本事件概率的和.2.求试验的基本事件数及事件A包含的基本事件数的方法有:列举法、列表法和树状图法.3.与面积有关的几何概型,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)在一次古典概型试验中,其基本事件的发生一定是等可能的.()(2)在几何概型定义中的区域可以是线段、平面图形、立体图形.()(3)与面积有关的几何概型的概率与几何图形的形状有关.();如果某个事件A包括的结果有m个,则(4)在古典概型中,每个基本事件的概率都是1n.() P(A)=mn(5)随机模拟方法是以事件发生的频率估计概率. ( ) 2.《西游记》《三国演义》《水浒传》《红楼梦》是我国古典小说四大名著.若在这四大名著中,任取2种进行阅读,则取到《红楼梦》的概率为( )A.23 B.12C.13D.143.如图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中△ABC 为直角三角形,四边形DEFC 为它的内接正方形,已知BC=2,AC=4,在△ABC 上任取一点,则此点取自正方形DEFC 的概率为( )A.19 B.29 C.49D.594.(2020江苏,4)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 .5.在长为10 cm 的线段AB 上任取一点C ,作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于16 cm 2的概率为 .关键能力学案突破考点古典概型的概率【例1】(1)《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹马进行一场比赛,齐王获胜的概率是 ( )A.23B.35C.59D.34(2)在一次比赛中某队共有甲,乙,丙等5位选手参加,赛前用抽签的方法决定出场的顺序,则乙、丙都不与甲相邻出场的概率是()A.110B.15C.25D.310解题心得求有关古典概型的概率问题的解题策略(1)求古典概型的概率的步骤是:①判断本次试验的结果是否是等可能的,设所求的事件为A;②分别计算基本事件的总数n和所求的事件A所包含的基本事件个数m;③利用古典概型的概率公式P(A)=mn,求出事件A的概率.(2)对与顺序相关的问题处理方法为:若把顺序看作有区别,则在求试验的基本事件的总数和事件A包含的基本事件的个数时都看作有区别,反之都看作没区别.(3)基本事件个数的确定方法方法适用条件列表法此法适合于从多个元素中选定两个元素的试验,也可看成是坐标法树状图法树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求对点训练1(1)(2020云南大理高三模拟)掷硬币实验是很常见却又非常有名的一个概率实验,许多著名的科学家都做过这个实验,比如蒲丰、德摩根等.通过掷硬币的实验,可以让人们感受到随机事件的发生,形成概率的观念.若抛掷一枚硬币出现正面向上记为1,反面向上记为0.现抛掷一枚硬币6次,出现两个0和四个1的概率为()A.1564B.516C.916D.58(2)(2020河北保定模拟)我国古代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”.右图是在“赵爽弦图”的基础上创作出的一个“数学风车”,其中正方形ABCD内部为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的.我们将图中阴影所在的四个三角形称为“风叶”,若从该“数学风车”的八个顶点中任取两点,则该两点取自同一片“风叶”的概率为()A.37B.47C.314D.1114考古典概型与统计点的综合应用【例2】某中学组织了一次数学学业水平模拟测试,学校从测试合格的男生、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男生、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解题心得求古典概型与统计问题的一般步骤第一步:根据概率统计的知识确定元素(总体、个体)以及要解决的概率模型;第二步:将所有基本事件列举出来(可用树状图);;第三步:计算基本事件总数n,事件A包含的基本事件数m,代入公式P(A)=mn 第四步:回到所求问题,规范作答.对点训练2某县共有90个农村淘宝服务网点,随机抽取6个网点统计其元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本数据的平均数;(2)若网购金额(单位:万元)不小于18的服务网点定义为优秀服务网点,其余为非优秀服务网点,根据茎叶图推断这90个服务网点中优秀服务网点的个数;(3)从随机抽取的6个服务网点中再任取2个作网购商品的调查,求恰有1个网点是优秀服务网点的概率.考点几何概型(多考向探究)考向1与长度、角度有关的几何概型【例3】(1)(2020广西壮族自治区高三模拟)在区间[-1,1]上随机取一个数k,使直线y=k(x+3)与圆x2+y2=1相交的概率为()A.12B.13C.√24D.√23(2)如图,四边形ABCD为矩形,AB=√3,BC=1,以A为圆心,1为半径作四分之一个圆弧DE⏜,在∠DAB内任作射线AP,则射线AP与线段BC有公共点的概率为.解题心得解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.(1)当考察对象为点,点的活动范围在线段上时用线段长度之比计算;(2)当考察对象为线时,一般用角度之比计算.对点训练3(1)某学校星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间随机到达教室,则他听第二节课的时间不少于20分钟的概率为()A.15B.14C.13D.12(2)如图所示,在平面直角坐标系内,射线OT落在30°角的终边上,任作一条射线OA,则射线OA落在∠yOT内的概率为.考向2与面积、体积有关的几何概型【例4】(1)(2020山东潍坊高三检测)七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如三角形、不规则多边形、各种人物、动物、建筑物等,若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为()A.14B.17C.18D.116(2)(2020河南南阳高三模拟)灯笼是传统的照明工具,在传统节日各家庭院中挂上各种彩灯更显得吉祥喜庆,某庭院挂着一盏表面积为4π平方分米的西瓜灯(看成球),灯笼中蜡烛的灯焰可以近似看成底面半径为2厘米,高为4厘米的圆锥,若在该灯笼内任取一点,则该点取自灯焰内的概率为()A.0.004B.0.012C.0.024D.0.036解题心得求与面积、体积有关的几何概型的基本思路:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A对应的区域,在图形中画出事件A对应的区域,然后用公式P(A)=构成事件A的区域面积(或体积)试验的全部结果所组成的区域面积(或体积)求出概率.对点训练4(1)(2020江西南昌二中高三月考)如图是折扇的示意图,A为OB的中点,若在整个扇形区域内随机取一点,则此点取自扇面(扇环)部分的概率是()A.14B.12C.58D.34(2)已知在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是正方形,PA=AB=2,现在该四棱锥内部或侧面任取一点O,则四棱锥O-ABCD的体积不小于23的概率为.考向3与线性规划有关的几何概型【例5】(2020湖南衡阳八中高三月考)若不等式组{x +2y -3≤0,2x -y +4≥0,y ≥0表示的区域为Ω,不等式x 2+y 2-2x-2y+1≤0表示的区域为T ,则在区域Ω内任取一点,则此点落在区域T 中的概率为( )A.π4B.π8C.π5D.π10解题心得几何概型与线性规划的交汇问题:先根据约束条件作出可行域,再确定形状,求面积大小,进而代入公式求概率.对点训练5两位同学约定下午5:30~6:00在图书馆见面,且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学需等待,15分钟后还未见面便离开,则两位同学能够见面的概率是( )A.1136B.14C.12D.34考点随机模拟方法【例6】从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nmB.2nmC.4mnD.2mn解题心得将π看作未知数表示出四分之一的圆面积,根据几何概型的概率公式,四分之一的圆面积与正方形面积之比等于m 与n 之比,从而用m ,n 表示出π的近似值.对点训练6(2020湖北金字三角高三线上联考)“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长、面积以及圆周率的基础.刘徽把圆内接正多边形的面积一直算到了正3 072边形,并由此求得了圆周率为3.141 5和3.141 6这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.826 9,那么通过该实验计算出来的圆周率近似值为()(参考数据:√30.8269≈2.094 6)A.3.141 9B.3.141 7C.3.141 5D.3.141 312.2 古典概型与几何概型必备知识·预案自诊知识梳理1.基本事件2.(1)互斥 (2)基本事件3.(1)①只有有限个 ②相等4.(1)长度 (3)构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)考点自诊1.(1)√ (2)√ (3)× (4)√ (5)√2.B 4本名著选两本共有C 42=6种,选取的两本中含有《红楼梦》的共有C 31=3种,所以任取2种进行阅读,则取到《红楼梦》的概率为36=12.故选B .3.C 由图形得,△ABC 为直角三角形,四边形DEFC 为它的内接正方形,已知BC=2,AC=4,设CD=x ,由DE ∥BC 则有AD AC=DE CB,即4-x 4=x 2,解得x=43,设在△ABC 上任取一点,则此点取自正方形DEFC 为事件A ,由几何概型中的面积比得P (A )=S 正方形DEFC S △ABC=(43)212×4×2=49.故选C .4.19 本题考查古典概型.第1,2次向上的点数分别记为a ,b ,每个样本点记为(a ,b ),则所有的样本点为 (1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共36个,其中,点数和为5的样本点为(1,4),(2,3),(3,2),(4,1),故所求概率为436=19.5.25 设线段AC 的长为x cm,则线段CB 长为(10-x )cm,那么矩形面积为x (10-x )<16,解得x<2或x>8,又0<x<10, 所以该矩形面积小于16cm 2的概率为P=410=25.关键能力·学案突破例1(1)A (2)B (1)因为双方各有3匹马,所以“从双方的马匹中随机选一匹马进行一场比赛”的事件数为9种,满足“齐王获胜”的这一条件的情况为:齐王派出上等马,则获胜的事件数为3;齐王派出中等马,则获胜的事件数为2;齐王派出下等马,则获胜的事件数为1;故满足“齐王获胜”这一条件的事件数为6种,根据古典概型公式可得,齐王获胜的概率P=69=23,故选A .(2)在一次比赛中某队共有甲,乙,丙等5位选手参加,赛前用抽签的方法决定出场的顺序,基本事件总数n=A 55=120,“乙、丙都不与甲相邻出场”包含的基本事件个数m=A 22A 33+A 22A 32=24,所以“乙、丙都不与甲相邻出场”的概率p=mn =24120=15.故选B .对点训练1(1)A (2)A (1)抛掷一枚硬币6次的基本事件总数n=26=64,这六次恰好有两个0和四个1包含的基本事件的个数为m=C 62=15,所以概率是P=mn =1564.(2)由题意,从“数学风车”的八个顶点中任取两个顶点的基本事件有C 82=28(种),其中这两个顶点取自同一片“风叶”的基本事件有4C 32=12,根据古典概型的概率计算公式,可得所求概率为1228=37.例2解(1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30, 女生优秀人数为100×(0.015+0.03)×10=45.(2)因为样本容量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.则从5人中任意选取2人共有C 52=10种,抽取的2人中没有男生有C 32=3(种),则至少有一名男生有C 52−C 32=7(种).故至少有一名男生的概率为710,即选取的2人中至少有一名男生的概率为710. 对点训练2解(1)由题意知,样本数据的平均数x =4+6+12+12+18+206=12.(2)样本中优秀服务网点有2个,频率为26=13,由此估计这90个服务网点中优秀服务网点有90×13=30(个).(3)样本中优秀服务网点有2个,分别记为a 1,a 2,非优秀服务网点有4个,分别记为b 1,b 2,b 3,b 4,从随机抽取的6个服务网点中再任取2个的可能情况有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,b 4),(b 1,b 2),(b 1,b 3),(b 1,b 4),(b 2,b 3),(b 2,b 4),(b 3,b 4),共15种,记“恰有1个是优秀服务网点”为事件M ,则事件M 包含的可能情况有:(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,b 4),共8种,故所求概率P (M )=815.例3(1)C (2)13(1)因为圆心(0,0),半径r=1,直线与圆相交,所以圆心到直线y=k (x+3)的距离d=|3k |√1+k2≤1,解得-√24≤k ≤√24,所以所求的概率为√222=√24,故选C.(2)连接AC ,如图所示,tan ∠CAB=CB AB =1√3=√33,所以∠CAB=π6,直线AP 在∠CAB 内时,直线AP 与线段BC 有公共点,所以所求事件的概率为π6π2=13.对点训练3(1)B (2)16 (1)由题意可知,第二节课的上课时间为8:40~9:20,时长40分钟.若听第二节课的时间不少于20分钟,则需在8:50~9:00之间到达教室,时长10分钟. 所以听第二节课的时间不少于20分钟的概率为1040=14,故选B .(2)因为射线OA 在坐标系内是等可能分布的,所以射线OA 落在∠yOT 内的概率为60°360°=16.例4(1)C (2)A (1)设包含7块板的正方形边长为4,其面积为4×4=16.则雄鸡的鸡尾面积为标号为6的板块,其面积为S=2×1=2.所以在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为216=18. (2)设该灯笼的半径为R ,则4πR 2=4π,解得R=1(分米),所以该灯笼的体积V=4π×133=4π3(立方分米)=4000π3(立方厘米),该灯笼内的灯焰的体积V 1=13×π×22×4=16π3(立方厘米),所以该点取自灯焰内的概率为V 1V =16π34000π3=0.004.对点训练4(1)D (2)2764 (1)设扇形的圆心角为α,大扇形的半径长为R ,小扇形的半径长为r ,则S 大扇形=α2R 2,S 小扇形=α2r 2,R=2r.根据几何概型,可得此点取自扇面(扇环)部分的概率为α2R 2-α2r 2α2R 2=R 2-r 2R 2=3r 24r 2=34.(2)当四棱锥O-ABCD 的体积为23时,设点O 到平面ABCD 的距离为h ,则13×22×h=23,解得h=12.如图所示,在四棱锥P-ABCD 内作平面EFGH 平行于底面ABCD ,且平面EFGH 与底面ABCD 的距离为12.因为PA ⊥底面ABCD ,且PA=2,所以PH PA=34,所以四棱锥O-ABCD 的体积不小于23的概率为V 四棱锥P -EFGHV四棱锥P -ABCD=PH PA 3=343=2764. 例5D 作出不等式组{x +2y -3≤0,2x -y +4≥0,y ≥0表示的区域Ω,不等式x 2+y 2-2x-2y+1≤0化为(x-1)2+(y-1)2≤1,它表示的区域为T ,如图所示:则区域Ω表示△ABC ,由{2x -y +4=0,x +2y -3=0,解得点B (-1,2).又A (-2,0),C (3,0), ∴S △ABC =12×(3+2)×2=5,又区域T 表示圆面,且圆心M (1,1)在直线x+2y-3=0上,在△ABC 内的面积为12π×12=π2, ∴所求的概率为π25=π10.对点训练5D 因涉及两人见面时间,故考虑到是几何概型,建立平面直角坐标系列出满足条件的式子,计算出最终的概率.因为两人谁也没有讲好确切的时间,故样本点由两个数(甲、乙各自到达的时刻)组成;以5:30作为时间的起点建立如图所示的平面直角坐标系:设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω={(x ,y )|0≤x ≤30,0≤y ≤30},画成图为一正方形;会面的充要条件为|x-y|≤15,即事件A 可以会面所对应的区域是图中的阴影部分,故由几何概型公式知所求概率为面积之比,即P (A )=302-152302=34,故选D .例6C如图,两数的平方和小于1的数对所在的区域为图中阴影部分(不含边界),n 个数对所在的区域为边长为1的正方形.由题意利用几何概型可知,14S 圆S 正方形=14π×1212≈m n,所以π≈4m n.故选C .对点训练6A 设圆的半径为r ,则圆的面积为πr 2,正六边形的面积为6×12×r×√32r=3√32r 2,因而所求该实验的频率为3√32r 2πr 2=3√32π=0.8269,则π=3√32×0.8269≈3.1419.。

高考数学异构异模复习第十二章概率与统计12.2.2离散型随机变量及其分布列均值与方差课件理


当日需求量 n<16 时,利润 y=10n-80.
所以 y 关于 n 的函数解析式为
10n-80 y=
80
n<16, n≥16,
(n∈N).
(2)花店记录了 100 天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量 n 14 15 16 17 18 19 20
频数
10 20 16 16 15 13 10
一盒中装有 9 张各写有一个数字的卡片,其中 4 张卡片上的数字是 1,3 张卡片上的数字是 2,2 张卡 片上的数字是 3.从盒中任取 3 张卡片.
(1)求所取 3 张卡片上的数字的分布列与数学期望. (注:若三个数 a,b,c 满足 a≤b≤c,则称 b 为这三个数的中位数)
X
1
2
3
P
17 42
43 84
1 12
从而 E(X)=1×1472+2×8443+3×112=4278.
[错解]
[错因分析] 求错了当 x=2 时对应事件的概率,最后也未根据分布列中各概率和为 1 进行检验,从而 导致错误.
[心得体会]
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
第十二章 概率与统计
第2讲 离散型随机变量及其分布列、均值与方差
考点二 离散型随机变量的分布列、均值、方差的应用
撬点·基础点 重难点
1 离散型随机变量的方差与标准差 若离散型随机变量 X 的分布列为
X x1 x2 … xi … xn P p1 p2 … pi … pn 称 D(X)=___i=∑_n_1__(_x_i-__E__(X__))_2_p_i ___为随机变量 X 的方差,它刻画了随机变量 X 与其均值 E(X)的平均偏 离程度,其算术平方根___D__X____为随机变量 X 的标准差,记作 σ(X). 2 均值与方差的性质 若 Y=aX+b,其中 a,b 是常数,X 是随机变量,则 (1)E(aX+b)=__a_E_(_X_)_+__b_.__ 证明:E(Y)=(ax1+b)p1+(ax2+b)p2+…+(axi+b)pi+…+(axn+b)pn=a(x1p1+x2p2+…+xipi+…+ xnpn)+b(p1+p2+…+pi+…+pn)=aE(X)+b.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章 概率与统计
第1讲 基本事件 一次试验中可能出现的每一个结果称为一个基本事件.基本事件有如下特点: (1)任何两个基本事件都是互斥的; (2)任何事件(除不可能事件)都可以表示成基本事件的和. 2 古典概型的概念及特点 我们将具有下面两个特点的概率模型称为古典概率模型,简称古典概型: (1)有限性,即在一次试验中,基本事件的个数是有限的; (2)等可能性,即每个基本事件出现的可能性是相等的.
2.下面关于古典概型的说法正确的是( )
①我们所说的试验都是古典概型;②“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,
其基本事件是“发芽与不发芽”;③掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这
三个结果是等可能事件;④在古典概型中,如果事件 A 中基本事件构成集合 A,且 A 中的元素个数为 n,
(3)有两人同时参加 A 岗位服务的概率 P2=CC2525AA3344=14,所以仅有一人参加 A 岗位服务的概率 P1=1-P2 =34.
【解题法】 求古典概型概率的步骤 (1)反复阅读题目,收集题目中的各种信息,理解题意. (2)判断试验是否为古典概型,并用字母表示所求事件. (3)利用列举法或排列组合知识求出总的基本事件的个数 n 及事件 A 中包含的基本事件的个数 m. (4)计算事件 A 的概率 P(A)=mn .
所有的基本事件构成集合 I,且 I 中元素个数为 m,则事件 A 的概率为mn .
A.①②
B.③④
C.②
D.④
解析 ①错误.在一次试验中,可能出现的结果是有限个,并且每个试验结果的可能性是均等的,这 样的试验才是古典概型.②错误.它不符合古典概型的定义中每个基本事件发生的可能性相等.③错误.掷 一枚硬币两次,出现“正、正”“正、反”“反、正”“反、反”,这四个事件是等可能事件.④正确.由 古典概型的概率公式可知,该说法正确.
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/7/12
最新中小学教学课件
14
谢谢欣赏!
2019/7/12
最新中小学教学课件
15
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知识 逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等等,这些 用语往往体现了老师的思路。来自:学习方法网
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
① 根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上提出的问 题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。
3 古典概型的概率公式
A包含的基本事件的个数
P(A)=
基本事件的总数
.
注意点 如何判断一个试验为古典概型
(1)一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性.
(2)古典概型的概率计算结果与模型的选择无关.
1.思维辨析 (1)某袋中装有大小均匀的三个红球、两个黑球、一个白球,那么每种颜色的球被摸到的可能性相 同.( × ) (2)从-3,-2,-1,0,1,2 中任取一数,取到的数小于 0 与不小于 0 的可能性相同.( √ ) (3)分别从 3 名男同学、4 名女同学中各选一名作代表,那么每个同学当选的可能性相同.( × ) (4)利用古典概型的概率公式求“在边长为 2 的正方形内任取一点,这点到正方形中心距离小于或等于 1”的概率.( × ) (5)从长为 1 的线段 AB 上任取一点 C,求满足 AC≤13的概率是多少”是古典概型.( × )
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
3.从装有 3 个红球、2 个白球的袋中任取 3 个球,则所取的 3 个球中至少有 1 个白球的概率是( )
1
3
A.10
B.10
3
9
C.5
D.10
解析 “所取的 3 个球中至少有 1 个白球”的对立事件是:“所取的 3 个球都不是白球”,因而所求 概率 P=1-CC3335=1-110=190.
撬法·命题法 解题法
[解] (1)记“甲、乙两人同时参加 A 岗位服务”为事件 EA,那么 P(EA)=CA25A33 44=410,即甲、乙两人同 时参加 A 岗位服务的概率是410.
(2)记“甲、乙两人同时参加同一岗位服务”为事件 E,那么 P(E)=CA25A44 44=110,所以甲、乙两人不在同 一岗位服务的概率是 P( E )=1-P(E)=190.
[考法综述] 古典概型是概率知识的基础,常与计数原理、排列、组合等知识相结合,以实际或数 学其他领域的材料为背景考查,难度容易或中等.
命题法 求古典概型的概率 典例 在某项大型活动中,甲、乙等五名志愿者被随机地分到 A,B,C,D 四个不同的岗位服务, 每个岗位至少有一名志愿者. (1)求甲、乙两人同时参加 A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率; (3)求五名志愿者中仅有一人参加 A 岗位服务的概率.
相关文档
最新文档