武大高等数学C考试题2006-2

合集下载

2006年普通高等学校招生全国统一考试-数学(理)(四川)

2006年普通高等学校招生全国统一考试-数学(理)(四川)

2006年普通高等学校招生全国统一考试数学(理工农医类)Ⅰ卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A 、B 互斥,那么 球的表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么其中R 表示球的半径 )()()(B P A P B A P ⋅=⋅球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π= n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径 k n k kn n P P C k P --=)1()(一、选择题(1)已知集合}065|{2≤+-=x x x A ,集合}3|12|{>-=x x B ,则集合B A ⋂= (A )}32|{≤≤x x (B )}32|{<≤x x (C )}32|{≤<x x(D )}31|{<<-x x (2)复数3)1(i -的虚部为(A )3(B )-3(C )2(D )-2(3)已知⎩⎨⎧=≠+=1,21,32)(x x x x f ,下面结论正确的是(A )1)(=x x f 在处连续 (B )5)1(=f(C )2)(lim 1=→x f x(D )5)(lim 1=→x f x(4)已知二面角βα--l 的大小为60°,m 、n 为异面直线,且βα⊥⊥n m ,,则m 、n 所 成的角为(A )30° (B )60° (C )90° (D )120°(5)下列函数中,图象的一部分如右图所示的是 (A ))6sin(π+=x y (B ))62sin(π-=x y(C ))34cos(π-=x y (D ))62cos(π-=x y (6)已知两定点A (-2,0)、B (1,0),如果动点P 满足|PA|=2|PB|,则点P 的轨迹所包围的图形的面积等于(7)如图,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量的 数量积中最大的是 (A )3121P P P P ⋅(B )4121P P P P ⋅(C )5121P P P P ⋅(D )6121P P P P ⋅(8)某厂生产甲产品每千克需用原料A 和原料B 分别为a 1、b 1千克,生产乙产品每千克需用原料A 和原料B 分别为a 2、b 2千克. 甲、乙产品每千克可获利润分别为d 1、d 2元. 月 初一次性购进本月用原料A 、B 各c 1、c 2千克.要计划本月生产甲产品和乙产品各多少 千克才能使月利润总额达到最大. 在这个问题中,设全月生产甲、乙两种产品分别为x 千克、y 千克,月利润总额为z 元,那么,用于求使总利润y d x d z 21+=最大的数学模 型中,约束条件为(A )⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+00221121y x cy b x b c y a x a (B )⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00222111y x c y b x a c y b x a(C )⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00221121y x c y b x b c y a x a (D )⎪⎪⎩⎪⎪⎨⎧≥≥=+=+00221121y x c y b x b c y a x a(9)直线3-=x y 与抛物线x y 42=交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为 (A )48 (B )56 (C )64 (D )72(10)已知球O 的半径是1,A 、B 、C 三点都在球面上,A 、B 两点和A 、C 两点的球面距离都是,4πB 、C 两点的球面距离是3π,则二面角B —OA —C 的大小是(A )4π(B )3π (C )2π(D )32π(11)设a 、b 、c 分别是△ABC 的三个内角A 、B 、C 所对的边,则)(2c b b a +=是A=2B 的(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分又不必要条件(12)从0到9这10个数字中任取3个数学组成一个没有重复数字的三位数,这个数不能被 3整除的概率为 (A )5419 (B )5435 (C )5438 (D )6041数 学(理工农医类)第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.(13)在三棱锥O —ABC 中,三条棱OA 、OB 、OC 两两互相垂直,且OA=OB=OC ,M 是(14)设离散型随机变量ξ可能取的值为1,2,3,4.).4,3,2,1()(=+==k b ak k P ξ 又ξ的数学期望E ξ=3,则b a += .(15)如图,把椭圆1162522=+y x 的长轴AB 分成8等分,过每 个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、 P 7七个点,E 是椭圆的一个焦点,则|P 1F|+|P 1F|+…+|P 7F|= .(16)非空集合G 关于运算○+满足:(1)对任意a 、G b ∈,都有a ○+G b ∈;(2)存在G e ∈,使得对一切G a ∈,都有a a e e a =⊕=⊕,则称G 关于运算○+为“融洽集”.现给出下列集合和运算:①G={非负整数},○+为整数的加法. ②G={偶数},○+为整数的乘法. ③G={平面向量},○+为平面向量的加法. ④G={二次三项式},○+为多项式的加法. ⑤G={虚数},○+为复数的乘法. 其中G 关于运算○+为“融洽集”的是 .(写出所有“融洽集”的序号) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知A 、B 、C 是△ABC 的三内角,向量)sin ,(cos ),3,1(A A n m =-=,且m ·n=1. (Ⅰ)求角A ; (Ⅱ)若3sin cos 2sin 122-=-+BB B,求tanC.(18分)(本小题满分12分)某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(Ⅱ)求这三人该课程考核都合格的概率.(结果保留三位小数)如图,在长方体ABCD—A1B1C1D1中,E、P 分别是BC、A1D1的中点,M、N分别是AE、CD1的中点,AD=AA1=a,AB=2a.(Ⅰ)求证:MN//面ADD1A1;(Ⅱ)求二面角P—AE—C的大小;(Ⅲ)求三棱锥P—DEN的体积.已知数列{a n },其中a 1=1,a 2=3,2 a n = a n+1+ a n -1(n ≥2).记数列{ a n }的前n 项和为S n ,数列}{ln n S 的前n 项和为U n . (Ⅰ)求U n ;(Ⅱ)设∑=''=>=nk k k k n nU n x F x F x F x T x x n n e x F n 122)()(( )()( ),0( )!(2)(为其中的导函数),计算)()(lim 1x T x T n n n +∞→.已知两定点)0,2( ),0,2(21F F -,满足条件2||||12=-PF PF 的点P 的轨迹是曲线 E ,直线1-=kx y 与曲线E 交于A 、B 两点.如果|AB|=36,且曲线E 上存在点C ,使m =+,求m 的值和△ABC 的面积S.已知函数)( ),0( ln 2)(2x f x x a xx x f >++=的导函数是).(x f '对任意两个不相等的正数1x 、2x ,证明:(Ⅰ)当,0时≤a )2(2)()(2121x x f x f x f +>+;(Ⅱ)当4≤a 时,.|||)()(|2121x x x f x f ->'-'2006年普通高等学校招生全国统一考试数学(理工农医类)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分. (1)C (2)D (3)D (4)B (5)D (6)B (7)A (8)C (9)A (10)C (11)A (12)B二、填空题:本题考查基本知识和基本运算.每小题4分,共16分. (13)2arctan (14)101(15)35 (16)① ③ 三、解答题(17)本小题主要考查三角函数概念、同角三角函数的关系、两角和与差的三角函数的公式以及倍角公式,考查应用、分析和计算能力.满分12分. 解:(Ⅰ)∵m ·n=1,∴.1)sin ,(cos )3,1(=⋅-A A 即1cos sin 3=-A A ,,1)21cos 23(sin 2=⋅-⋅A A .21)6sin(=-πA∵6566,0ππππ<-<-<<A A , ∴.66ππ=-A∴.3π=A (Ⅱ)由题知3sin cos cos sin 2122-=-+B B BB ,整理得 .0cos 2cos sin sin 22=--B B B B∵02tan tan ,0cos 2=--∴≠B B B∴2tan =B ,或.1tan -=B (舍去) ∴tanB=2..1135832132tan tan 1tan tan )tan()](tan[tan +=-+-=-+-=+-=+-=B A B A B A B A C π(18)本小题主要考查相互独立事件、互斥事件、对立事件等概率的计算方法,考查运用概率知识解决实际问题的能力.满分12分.解:记“甲理论考核合格”为事件A 1;“乙理论考核合格”为事件A 2;“丙理论考核合格”为事件A 3;记事件i A 的对立事件,i =1,2,3.记“甲实验考核合格”为事件B 1:“乙实验考核合格”为事件B 2;“丙实验考核合格”为事件B 3. (Ⅰ)记“理论考核中至少有两人合格”为事件C ,记C 为事件C 的对立事件. 解法1:.902.0)7.02.01.03.08.01.07.02.09.03.08.09.0)()()()()()(321321321321321321321321=⨯⨯+⨯⨯+⨯⨯+⨯⨯=+++=+++=A A A P A A A P A A A P A A A P A A A A A A A A A A A A P C P解法2:.902.0098.01)7.02.01.03.08.01.03.02.09.03.02.01.0(1)]()()()([1)(1)(1)(321321321321321321321321=-=⨯⨯+⨯⨯+⨯⨯+⨯⨯-=+++-=+++-=-=A A A P A A A P A A A P A A A P A A A A A A A A A A A A P C P C P所以,理论考核中至少有两个合格的概率为0.902. (Ⅱ)记“三人该课程都合格”为事件D.254.0254016.09.07.07.08.08.09.0)()()()()()()()()()]()()[()(33221133211332211≈=⨯⨯⨯⨯⨯=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅=B P A P B P A P B P A P B A P B A P B A P B A B A B A P D P B 所以,这三人该课程考核都合格的概率约为0.254.(19)本小题主要考查长方体的概念、直线和平面、平面和平面的关系等基础知识,以及空间想象能力和推理运算能力.满分12分. 解法一:(Ⅰ)证明:取CD 的中点K ,连结MK 、NK.∵M 、N 、K 分别为AE 、CD 1、CD 的中点, ∴MK//AD ,NK//DD 1.∴MK//面ADD 1A 1,NK//面ADD 1A 1. ∴面MNK//面ADD 1A 1. ∴MN//面ADD 1A 1.∵P 为A 1D 1的中点,∴PF//D 1D ∴PF ⊥面ABCD.作FH ⊥AE ,交AE 于H ,连接PH ,则由三垂线 定理得AE ⊥PH.从而∠PHF 为二面角P —AE —D 的平面角. 在Rt △AEF 中,.217 ,2 ,2===AE a EF a AF .17221722a a aa AE EF AF FH =⋅=⋅= 在Rt △PFH 中,.217tan 1===∠FH DD FH PF PHF 故二面角P —AE —D 的大小是.217arctan (Ⅲ).4544141212221CD 1a a a a CD BC S S P E NEP =+⋅⋅=⋅==∆矩形 作DQ ⊥CD 1,交CD 1交CD 1于Q ,由A 1D 1⊥面CDD 1C 1,得A 1D 1⊥DQ , ∴DQ ⊥面BCD 1A 1. 在Rt △CDD 1中,a a a a CD DD CD DQ 525211=⋅=⋅=,∴.65245313132a a a DQ S V V NEP NEP D DEN P =⋅⋅=⋅==∆-- 解法二:以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴,建立直角坐标系.则A (a , 0, 0),B (a , 2 a , 0),C (0, 2 a , 0),A 1(a , 0, a ),D 1(0, 0, a ). ∵E 、P 、M 、N 分别是BC 、A 1D 1、AE 、CD 1的中点.∴),0,2( ),0,2,2(a a P a a E)2,,0(),0,,43(a a N a a M(Ⅰ)),2,0,43(aa MN -=取n=(0,1,0),显然n ⊥面ADD 1A 1,n MN n MN ⊥∴=⋅ ,0又⊄MN 面ADD 1A 1,∴MN//面ADD 1A 1.(Ⅱ)过P 作PH ⊥AE ,交AE 于H.取AD 的中点F ,则)0,0,2(a F 设).0,,2(),,,2(),0,,(y x a a y x a y x H --=--=则 又)0,2,2(a a -=,由,0=⋅AE HP 及H 在直线AE 上,可得 ⎪⎩⎪⎨⎧=+=-+-.44,02242a y x ay x aa 解得 a y a x 172 ,3433==∴)0,172,178( ),,172,178(a a HF a a a HP --=--=∴0=⋅AE HF 即 .AE HF ⊥∴与所夹的角等于二面角P —AE —D 的大小..212||||=⋅=HF HP故二面角P —AE —D 的大小等于.21212arccos(Ⅲ)设),,(1111z y x n =为平面DEN 的法向量,则.,11n n ⊥⊥又 ).,0,2(),2,,0(),0,2,2(a aa a a a ===∴⎩⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧=+=+.2,4 .022,02211111111y z y x z a ay ay x a即 ∴可取n 1=(4,-1,2).∴P 点到平面DEN 的距离为 2144116|22|||||11aa a n n d =+++=⋅=∵.858==∴.8521=∴,821||||212a S DEN =⋅⋅=∆∴.6214821313132a a a d S V DEN DEN P =⨯⨯=⋅=∆-(20)本小题主要考查等差数列、等比数列的基础知识,以及对数运算、导数运算和极限运算的能力,同时考查分类讨论的思想方法,满分12分.解:(Ⅰ)由题意,}{n a 是首项为1、公差为2的等差数列.前n 项和.ln 2ln ln ,2)1(21122n n S n n n S n n ===⋅-++=).!ln(2)ln 2ln 1(ln 2n n U n =+++=(Ⅱ).2)!(2)!()!(2)(222222n x x n n n x n n e x F n n n U n n =⋅=⋅= 12)(-='n n x x F⎪⎪⎪⎩⎪⎪⎪⎨⎧>--=<<--=='=∑∑=-=).1( 1)1(),1( ),10( 1)1()(22221121x xx x x n x x x x x x F T n n k k n k k n ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧>=--==+<<=--=∞→∞→+∞→+∞→).1( 1)1(1)1(lim),1(11lim ),10(111lim )()(lim 22222221x x x x x x n n x x x x T x T n n n n n nn n n n (21)本小题主要考查双曲线的定义和性质,直线与双曲线的关系,点到直线的距离等知识以及解析几何的基本思想、方法和综合解决问题的能力.满分12分.解:由双曲线的定义可知,曲线E 是以)0,2(),0,2(21F F -为焦点的双曲线的左支,且.1 .1 ,2===b a c 易知故曲线E 的方程为).0(122<=-x y x 设),(),,(2211y x B y x A ,由题意建立方程组 ⎩⎨⎧=--=1122y x kx y 消去y ,得022)1(22=-+-kx x k又已知直线与双曲线左支交于A 、B 两点,有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>--=<--=+>-+=∆≠-.012,012,0)1(8)2(,01221221222k x x k k x x k k k解得.12-<<-k 又||1||212x x k AB -+=.)1()2)(1(2124)12(14)(122222222212212k k k k k k k x x x x k --+=--⨯---⋅+=-+⋅+= 依题意得 .36)1()2)(1(22222=--+k k k 整理后得 025552824=+-k k ∴.45 ,7522==k k 但.25,12-=∴-<<-k k 故直线AB 的方程为.0125=++y x 设),(e e y x C ,由已知),(),(),(,2211e e my mx y x y x OC m OB OA =+=+得,∴)0( ),,(),(2121≠++=m m y y m x x y x e e 又8122122)(,54122222121221=-=--=-+=+-=-=+k k k x x k y y k k x x . ∴点).8,54(mm C - 将点C 的坐标代入曲线E 的方程,得.1648022=-mm得4±=m .但当m=-4时,所得的点在双曲线的右支上,不合题意. ∴m=4. C 点坐标为)2,5(-.C 到AB 距离为.311)25(|12)5(25|22=+++-⨯∴△ABC 的面积3313621=⨯⨯=S(22)本小题主要考查导数的基本性质和应用,函数的性质和平均值不等式等知识及综合分析、推理论证的能力.满分14分. 证明:(Ⅰ)由,ln 2)(2x a xx x f ++=得)ln (ln 2)11()(212)()(2121222121x x a x x x x x f x f +++++=+.ln )(212121212221x x a x x x x x x ++++= .2ln 4)2()2(212122121x x a x x x x x x f +++++=+ 而2212122212221)2(]2)[(41)(21x x x x x x x x +=++>+ ① 又2121222122142)()(x x x x x x x x >++=+∴2121214x x x x x x +>+ ② ∵.2lnln ,221212121x x x x x x x x +<∴+<∵2lnln,02121x x a x x a a +≥∴≤ ③ 由①、②、③,得.2ln 4)2(ln )(2121212212121212221x x a x x x x x x a x x x x x x +++++>++++ 即)2(2)()(2121x x f x f x f +>+(Ⅱ)证法一:由x a x x x f ln 2)(2++=,得 ,22)(2x a x x x f +-='∴|)22()22(||)()(|2222121121x ax x x a x x x f x f +--+-='-' |)(22|||2122212121x x ax x x x x x -++⋅-= .1|)(22||||)()(|212221212121>-++⇔->'-'x x ax x x x x x x f x f 下面证明对任意两个不相等的正数1x 、2x ,有1)(2221222121>-++x x ax x x x 恒成立. 即证212121)(2x x x x x x a ++<成立.∵21212121214)(2x x x x x x x x x x +>++,设),0(4)( ,221>+==t tt t u x x t则242)(tt t u -='令32 ,0)(=='t t u 得.列表如下:.)(2212121a x x x x x x >++∴∴对任意两个不相等的正数1x 、2x ,恒有.|||)()(|2121x x x f x f ->'-'证法二:由x a x x x f ln 2)(2++=,得.22)(2x a xx x f +-=' |)22()22(||)()(|2222121121x ax x x a x x x f x f +--+-='-'∴.|)(22|||2122212121x x ax x x x x x -++⋅- 1x 、2x 是两个不相等的正数2132121222121)(42)(22x x a x x x x a x x x x -+>-++∴.4)(4221321x x x x -+≥ 设).0(442)(,12321>-+==t t t t u x x t则)23(4)(-='t t t u ,列表:.127>≥∴u 即 .1)(2221222121>-++x x ax x x x .|||)(22||||)()(|21212221212121x x x x ax x x x x x x f x f ->-++⋅-='-'∴。

2006校级高数竞赛试卷

2006校级高数竞赛试卷

江南大学第三届“联合杯”高等数学竞赛试卷(2006-12)一、单项选择题(每小题5分,共20分).1.对于函数112121xx y -=+,点0x =是 ( )(A )连续点 (B )第一类间断点(C )第二类间断点 (D )可去间断点2.设)(x f 连续,⎰>>=t ss t dx xt f t I0 )0,0( )(,则I 的值( )(A )依赖于s 和t ; (B )依赖于s ,t ,x ;(C )依赖于t ,不依赖于s ; (D )依赖于s ,不依赖于t 。

3.已知当0→x 时,⎰''-=x dt t f t x x F 022)()()(的导数)(x F '与2x 为等价无穷小,则)0(f '' ( ).(A )等于0; (B )等于1; (C )等于21; (D )不存在4、设()f x 可导,()()(1sin )F x f x x =+,若欲使()0F x x =在可导,则必有 ()(A )(0)0f = (B )(0)0f '=(C )(0)(0)0f f '+= (D )(0)(0)0f f '-=二、填空题(每小题5分,共30分)1、4()ln(1),4f x x x n =->时()(0)n f = .2、lim n →∞⎛⎫+= . 3、=+⎰πdx x 10002cos 1__________________.4、设)(x f 的一个原函数为()21ln x x ++,则⎰='_________)(dx x f x .5、{}⎰203,max dx x x =_____________.6、已知⎰∞+-∞→=⎪⎭⎫ ⎝⎛+a x xx dx xe a x x 22lim ,则a =_______________.三、(10分)设)(x f 在0=x 的邻域具有二阶导数,且310)(1 lim e x x f x x x =⎥⎦⎤⎢⎣⎡++→,试求)0(f ,)0(f '及)0(f ''.四、(10分)设2)1arcsin()(-='x x f 及0)0(=f ,求⎰10 )(dx x f .五、(10分)设平面图形A 由222x y x +≤与y x ≥所确定,求图形A 绕直线2x =旋转一周所得的旋转体的体积。

2006年全国硕士研究生入学统一考试数学真题数二

2006年全国硕士研究生入学统一考试数学真题数二

2006年全国硕士研究生入学统一考试数学二试题一、填空题:1~6小题,每小题4分,共24分.把答案填在题中横线上. (1)曲线xx xx ycos 25sin 4-+=的水平渐近线方程为______.【答案】51=y【考点】水平渐近线 【难易度】★★ 【详解】解析:,51cos 25sin 41lim cos 25sin 4lim lim =-+=-+=∞→∞→∞→xx x xx x x x y x x x 所以水平渐近线方程为51=y . (2)设函数⎪⎩⎪⎨⎧==/=⎰,,0,d sin 1)(023x a x t t x x f x在x =0处连续,则a =______.【答案】13【考点】函数连续的概念 【难易度】★★ 【详解】解析:按连续性定义,313sin lim d sin lim)(lim )0(220320=====→→→⎰x x x t t x f f a x xx x . (3)广义积分⎰+∞+022)1(d x xx =______.【答案】12【考点】无穷限的反常积分 【难易度】★★ 【详解】 解析:211121)1(d 21)1(d 02022222=+-=+=++∞∞+∞+⎰⎰x x x x x x(4)微分方程xx y y )1(-='的通解是______. 【答案】xy Cxe -=,C 为∀常数 【考点】变量可分离的微分方程【难易度】★★ 【详解】解析:这是可变量分离的一阶方程,分离变量得x xy y d )11(d -=. 积分得 1ln ln y x x C =-+,即1C x y ex e -=.因此,通解为xy Cxe -=,C 为∀常数. (5)设函数()y y x =由方程1yy xe =-确定,则0|d d =x xy=______. 【答案】e -【考点】隐函数的导数 【难易度】★★ 【详解】解析:在原方程中令0(0)1x y =⇒=.将方程两边对x 求导,并令0x =得y y y e xe y ''=--,(0)(0)y y e e '=-=-.(6)设矩阵⎪⎪⎭⎫⎝⎛-=2112A ,E 为2阶单位矩阵,矩阵B 满足BA =B +2E ,则B =______.【答案】2【考点】抽象型行列式的计算 【难易度】★★★ 【详解】解析:由BA =B +2E 得()2B A E E -=,两边取行列式,有4B A E ⋅-=.因为11211A E -==-,所以2B =. 二、选择题:7~14小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数y =f (x )具有二阶导数,且x x f x f ∆>">',0)(,0)(为自变量x 在点x 0处的增量,∆y 与d y 分别为f (x )在点x 0处对应的增量与微分,若∆x >0,则( ) (A )0<d y <∆y . (B )0<∆y <d y . (C )∆y <d y <0. (D )d y <∆y <0. 【答案】(A )【考点】函数单调性的判别;函数图形的凹凸性 【难易度】★★★ 【详解】解析:方法1:因为()0,f x '>则()f x 严格单调增加()0,f x ''> 则()f x 是凹的又0x >V ,故0dy y <<V .方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+--V V V0()()f x f x x ξ''=-V V0()()f x x ηξ''=-V 其中000,x x x x ξηξ<<+<<V由于()0f x ''>,从而0y dy ->V 又由于0()0dy f x x '=>V ,故选(A )(8)设()f x 是奇函数,除x =0外处处连续,x =0是其第一类间断点,则t t f xd )(0⎰是( )(A )连续的奇函数. (B )连续的偶函数.(C )在x =0间断的奇函数. (D )在x =0间断的偶函数.【答案】(B )【考点】积分上限的函数及其导数 【难易度】★★★ 【详解】解析:方法1(排除法): 设 ()f x =1,00,01,0x x x >⎧⎪=⎨⎪-<⎩此()f x 满足题设条件,它是一个奇函数,除0x =外处处连续,0x =是其第一类间断点.0()()0xxx F x f t dt xx >⎧==⎨-<⎩⎰当当并且0(0)()0F f t dt ==⎰即 0()()000xx x F x f t dt x x x >⎧⎪==>⎨⎪-<⎩⎰当当当 ()F x 是一个连续的偶函数,所以不选(A )、(C )、(D ),只能选(B ).方法2(论证法):由题设条件,()f x 除0x =外,处处连续,在0x =处为第一类间断点,且()f x 为奇函数,从而知,(0)0f =,且00lim ()lim ()0x x f x A f x A A +-→→-≠存在记为,存在, 作函数 (),0)0,0(),0f x A x x x f x A x ϕ->⎧⎪==⎨⎪-<⎩当(当当)x ϕ(为连续的奇函数,0()xt dt ϕ⎰为可导的偶函数.另一方面,00(),0()0,0(),0x x xf t dt Ax x t dt x f t dt Ax x ϕ⎧->⎪⎪==⎨⎪+<⎪⎩⎰⎰⎰当当当所以,00(),0()0,0(),0x xxt dt Ax x f t dt x t dt Ax x ϕϕ⎧->⎪⎪==⎨⎪+<⎪⎩⎰⎰⎰当当当 即()()xxf t dt t dt A x ϕ=+⎰⎰,所以0()xf t dt ⎰为连续的偶函数,故选(B ).(9)设函数()g x 可微,1()()g x h x e +=,(1)1h '=,(1)2g '=,则(1)g 等于( )(A )ln3-1. (B )-ln3-1.(C )-ln2-1.(D )ln2-1.【答案】(C )【考点】复合函数的求导法则 【难易度】★★ 【详解】 解析:由1()()g x h x e +=两边对x 求导,得1()()()g x h x g x e+''=,再以1x =代入,并由已知数值得1(1)12g e+=,于是1(1)ln1ln 212g =-=--.故选(C ). (10)函数212x x xy C e C e xe -=++满足的一个微分方程是( )(A ).e 32xx y y y =-'-" (B ).e 32xy y y =-'-"(C ).e 32xx y y y =-'+" (D ).e 32xy y y =-'+"【答案】(D ) 【考点】线性微分方程解的结构定理;自由项为指数函数的二阶常系数非齐次线性微分方程 【难易度】★★★ 【详解】解析:该方程对应的齐次方程的特征根为1和-2,于是特征方程为2(1)(2)20λλλλ-+=+-=对应的齐次微分方程为 -20y y y '''+= 所以不选(A )与(B ),为了确定是(C )还是(D ),只要将特解xy xe *=代入方程左边,计算得()()-23xy y y e ***'''+=,故选(D ).(11)设f (x ,y )为连续函数,则r r r r f d )sin ,cos (d 14π0θθθ⎰⎰等于( )(A )⋅⎰⎰-y y x f x x xd ),(d 21220(B )⋅⎰⎰-y y x f x x d ),(d 210220(C ).d ),(d 22012x y x f y y y⎰⎰- (D ).d ),(d 210220x y x f y y ⎰⎰-【答案】(C )【考点】交换累次积分的次序与坐标系的转换 【难易度】★★ 【详解】 解析:y x y x f r r r r f Dd d ),(d )sin ,cos (d 14π0⎰⎰⎰⎰=θθθ.D 的极坐标表示是:0≤r ≤1,4π0≤≤θ.见右图.现转换为先x 后y 的积分顺序. 原式x y x f y y yd ),(d 21220⎰⎰-=.因此选(C ).(12)设(,)f x y 与(,)x y ϕ均为可微函数,且0),(=/'y x y ϕ.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是( ) (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【答案】(D )【考点】多元函数极值存在的必要条件;拉格朗日乘数法 【难易度】★★★ 【详解】解析:引入函数(,,)(,)(,)F x y f x y x y λλϕ=+,有(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y f x y x y f x y x y x y λλϕλϕϕ'''⎧+=⎪'''+=⎨⎪'=⎩F =F =F =000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'Q 代入(1)得00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选D.(13)设12,,,s αααL 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是( ) (A )若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性相关. (B )若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性无关. (C )若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性相关. (D )若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性无关. 【答案】(A )【考点】向量组线性相关的判别法 【难易度】★★ 【详解】解析:方法1:若12,,,s αααL 线性相关,则存在不全为0的数12s ,,,k k k L 使得11220s s k k k ααα+++=L用A 左乘等式两边,得11220s s k A k A k A ααα+++=L于是12,,,s A A A αααL 线性相关. 方法2:因为:1.12,,,s αααL 线性相关⇔ 12(,,,)s r s ααα<L .2.()()r AB r B <. 所以有:矩阵1212(,,,)(,,,)s s A A A A αααααα=L L ,因此1212(,,,)(,,,)s s r A A A r s αααααα≤<L L由此可判断答案应为A .(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010011P ,则( ) (A )1C P AP -=. (B )1C PAP -=.(C )T C P AP =.(D )TC PAP =.【答案】(B )【考点】矩阵的初等变换;逆矩阵的计算 【难易度】★★ 【详解】解析:将A 的第2行加到第1行得B ,即 110010001B A ⎛⎫ ⎪= ⎪ ⎪⎝⎭=PA将B 的第1列的-1倍加到第2列得C ,即110010001C B -⎛⎫ ⎪= ⎪ ⎪⎝⎭记 BQ因PQ =110010001⎛⎫ ⎪ ⎪ ⎪⎝⎭110010001-⎛⎫⎪ ⎪ ⎪⎝⎭E =,故1Q P -=从而 11C BP PAP --== ,故选(B ).三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)试确定常数A ,B ,C 的值,使得23(1)1()x e Bx Cx Ax o x ++=++,其中3()o x 是当0x →时比3x 高阶的无穷小.【考点】高阶无穷小;泰勒公式;洛必达法则 【难易度】★★★ 【详解】解析:方法一:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得11021026B A C B B C ⎧⎪+=⎪⎪++=⎨⎪⎪++=⎪⎩由此可解得13A =, 23B =-,16C =方法二:用洛必达法则.由23(1)1()x e Bx Cx Ax o x ++=++,(0x →)⇒ )(记J0)1(e )1(lim 320=+-++-→x Ax Cx Bx x x ⇒ 203])1[(e 2limx Ax A Cx B x x +-++-→ (要求分子极限为0,即1+B -A =0,否则J =∞)⇒ xAx A C J x x 6)12(e 2lim0--+=-→ (要求分子极限为0,即2A +2C -1=0,否则J =∞),⇒ 06316)31(e lim0=-=+-=-→AAx A J x x ,即1-3A =0. 解 ⎪⎩⎪⎨⎧=-=-+=-+,031,0122,01A C A A B 得61,32,31=-==C B A . (16)(本题满分10分)求.d e e sin arc x xx⎰【考点】不定积分的分部积分法;不定积分的第二类换元法 【难易度】★ 【详解】解析:x x xx x x x xx x x 2e1d e ee sin arc e de e sin arc d e e sin arc -+-=-=---⎰⎰⎰ 1)e (de e sin arc e 2---=---⎰x x xx其中,22sec tan sec sec ln sec tan ln ()1tan ()1x x x x x t te t dt tdt t t C e e C te -----===++=+-+-⎰⎰⎰因此,x x xd ee sin arc ⎰.|1e e |ln e sin arc e 2C x x x x +-+--=--- (17)(本题满分10分)设区域{}22(,)1,0D x y x y x =+≤≥,计算二重积分⎰⎰⋅+++-=Dy x y x xyI d d 1122【考点】二重积分的计算;利用极坐标计算二重积分 【难易度】★★★ 【详解】解析:D 为右半单位圆,它关于x 轴对称,于是0d d 122=++⎰⎰y x y x xyD, 从而 ⎰⎰⎰⎰++=++=122221d d 2d d 11D Dy x yx y x yxI . 又 {}10D D y =⋂≥,如图,作极坐标变换,cos x r θ=,sin y r θ=, 则 10,2π0:1≤≤≤≤r D θ.因此 2ln 2π)1ln(2πd 11d 21221022π0=+=+=⎰⎰r r r r I θ.(18)(本题满分12分)设数列{}n x 满足10x π<<,1sin n n x x +=(1,2,n =L ). (Ⅰ)证明n n x ∞→lim 存在,并求该极限;(Ⅱ)计算.)(lim 211n x nn n x x +∞→【考点】函数极限与数列极限的关系;单调有界准则【难易度】★★★★ 【详解】解析:(Ⅰ)由于0x π<<时,0sin x x <<,于是10sin n n n x x x +<=≤ 说明数列{}n x 单调减少且0n x >.由单调有界准则知lim n n x →∞存在.记为A递推公式两边取极限得 sin ,0A A A =∴=(Ⅱ)原式21sin lim(),n x n n nx x →∞=为∞"1"型 由于离散型不能直接用洛比达法则先考虑22011sin lim ln()0sin lim()t ttt t t t e t→→=用洛比达法则2323203311(cos sin )1110()0()lim 26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt t t ttteeeee →→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====g g(19)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++. 【考点】函数单调性的判别 【难易度】★★★ 【详解】证明:令()sin 2cos f x x x x x π=++ 只需证明0x π<<时,()f x 单调增加(严格)()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+ ()cos sin cos sin 0f x x x x x x x ''=--=-<()f x '∴ 单调减少(严格)又()cos 0f ππππ'=+=,故0()0()x f x f x π'<< >时则单调增加(严格)()()b a f b f a >>由则,即sin 2cos sin 2cos b b b b a a a a ππ++>++.(20)(本题满分12分)设函数()f u 在(0,)+∞内具有二阶导数,且)(22y x f z +=满足等式.02222=∂∂+∂∂yzx z (Ⅰ)验证;0)()(='+"uu f u f (Ⅱ)若1)1(,0)1(='=f f ,求函数()f u 的表达式. 【考点】多元复合函数的求导法;变量可分离的微分方程 【难易度】★★★ 【详解】解析:(I)z zf fx y∂∂''==∂∂()22222z xf fx x y x y ∂'''=+∂++()()22322222x yf fx y x y '''=+++()() 22232 22222z y xf fy x y x y∂'''=+∂++同理222200()()0z zfx yf uf uu∂∂''+==∂∂'''∴+=代入得成立(II)令(),f u p'=于是上述方程成为dp pdu u=-,则dp ducp u=-+⎰⎰ln ln,()cp u c f u pu'=-+∴==22(1)1,1,()ln||,(1)0,0()ln||f c f u u c f c f u u'===+===由得,于是22(1)1,1,()ln||,(1)0,0()ln||f c f u u c f c f u u'===+==∴=由,(21)(本题满分12分)已知曲线L的方程为)0(4,122≥⎪⎩⎪⎨⎧-=+=tttytx,(Ⅰ)讨论L的凹凸性;(Ⅱ)过点(-1,0)引L的切线,求切点(x0,y0),并写出切线的方程;(Ⅲ)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.【考点】导数的几何意义;由参数方程所确定的函数的导数;平面图形的面积【难易度】★★★【详解】解析:(Ⅰ)4222,42,12dx dy dy tt tdt dt dx t t-==-==-222312110(0)2dydd y dxtdxdx dt t t tdt⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<>⎪⎝⎭处∴曲线L (在0t >处)是凸.(Ⅱ)切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则 2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+⎪⎝⎭得 200000020,(1)(2)001t t t t t t +-=-+=>∴=Q点为(2,3),切线方程为1y x =+(Ⅲ)设L 的方程()x g y =, 则 ()3()(1)S g y y dy =--⎡⎤⎣⎦⎰(2240221t t y x -+==±=±+解出t 得由于(2,3)在L上,由(23221()y x x g y ===-+=得可知(309(1)S y y d y ⎡⎤=----⎣⎦⎰33(102)4y dy y =--⎰33332202(10)4(4)214(4)3y y y y =-+-=+⨯⨯-8642213333=+-=-(22)(本题满分9分)已知非齐次线性方程组⎪⎩⎪⎨⎧=+++-=-++-=+++13,1534,1432143214321bx x x ax x x x x x x x x有3个线性无关的解.(Ⅰ)证明方程组系数矩阵A 的秩()2r A =;(Ⅱ)求a ,b 的值及方程组的通解.【考点】非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系;非齐次线性方程组的通解 【难易度】★★★ 【详解】解析:(Ⅰ)设123,,ααα是方程组的3个线性无关的解,则2131,αααα--是0Ax =的两个线性无关的解.于是0Ax =的基础解系中解的个数不少于2,即4()2r A -≥,从而()2r A ≤.又因为A 的行向量是两两线性无关的,所以()2r A ≥. 两个不等式说明()2r A =.(Ⅱ)对方程组的增广矩阵作初等行变换:[]A b = 1111|11111|14351|10115|3,13|1004245|42a b a a b a --⎡⎤⎡⎤⎢⎥⎢⎥--→--⎢⎥⎢⎥⎢⎥⎢⎥-+--⎣⎦⎣⎦由()2r A =,得出 2,a = 3b =-.代入后继续作初等行变换:1024|20115|3.0000|0-⎡⎤⎢⎥→---⎢⎥⎢⎥⎣⎦得同解方程组 1342342-24-3-5x x x x x x =+⎧⎨=+⎩求出一个特解(2,3,0,0)T-和0Ax =的基础解系(2,1,1,0)T-,(4,5,0,1)T-.得到方程组的通解: 12(2,3,0,0)(2,1,1,0)(4,5,0,1)T T Tc c -+-+-,12,c c 任意.(23)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量1(1,2,1)T α=--,2(0,1,1)Tα=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得Q T AQ =Λ.【考点】矩阵的特征值的计算;矩阵的特征向量的计算;施密特正交化;相似对角矩阵 【难易度】★★★ 【详解】解析:(Ⅰ) 由A 的每行元素之和为3,有(1,1,1)(3,3,3)T TA =故,0(1,1,1)Tα=是A 的特征向量,特征值为3.又12,αα都是0AX =的解说明它们也都是A 的特征向量,特征值为0.由于12,αα线性无关, 特征值0的重数大于1. 于是A 的特征值为3,0,0.属于3的特征向量:0c α, c 0≠.属于0的特征向量: 1122c c αα+,12,c c 不都为0. (Ⅱ)将0α单位化,得0333(, , )333T η=. 对12,αα作施密特正交化,得122(0, , )22T η=-,2666( )366Tη=--. 作123(,,)Q ηηη=,则Q 是正交矩阵,并且-13 0 00 0 00 0 0T Q AQ Q AQ ⎛⎫ ⎪== ⎪ ⎪⎝⎭。

2006年湖北高考理科数学试卷及答案

2006年湖北高考理科数学试卷及答案

2006年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知向量()1,3=a ,b 是不平行于x 轴的单位向量,且3=⋅b a ,则b =A. ⎪⎪⎭⎫⎝⎛21,23 B. ⎪⎪⎭⎫⎝⎛23,21 C.⎪⎪⎭⎫⎝⎛433,41 D. ()0,1 2.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a ,则a =A.4B.2C.-2D.-4 3.若△ABC 的内角A 满足322sin =A ,则=+A A cos sin A.315B. 315-C. 35D. 35- 4.设()x x x f -+=22lg,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为A. ()()4,00,4 -B. ()()4,11,4 --C. ()()2,11,2 --D. ()()4,22,4 --5.在2431⎪⎪⎭⎫⎝⎛+x x 的展开式中,x 的幂的指数是整数的项共有 A.3项 B.4项 C.5项 D.6项 6.关于直线m 、n 与平面α、β,有下列四个命题:①βα//,//n m 且βα//,则n m //; ②βα⊥⊥n m ,且βα⊥,则n m ⊥; ③βα//,n m ⊥且βα//,则n m ⊥; ④βα⊥n m ,//且βα⊥,则n m //. 其中真命题的序号是:A. ①、②B. ③、④C. ①、④D. ②、③ 7.设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若PA BP 2=,且1=⋅AB OQ ,则P 点的轨迹方程是A. ()0,0123322>>=+y x y x B. ()0,0123322>>=-y x y x C. ()0,0132322>>=-y x y x D. ()0,0132322>>=+y x y x8.有限集合S 中元素个数记作card ()S ,设A 、B 都为有限集合,给出下列命题: ①φ=B A 的充要条件是card ()B A = card ()A + card ()B ; ②B A ⊆的必要条件是card ()≤A card ()B ; ③B A ⊄的充分条件是card ()≤A card ()B ; ④B A =的充要条件是card ()=A card ()B .其中真命题的序号是A. ③、④B. ①、②C. ①、④D. ②、③ 9.已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=m ( )A. 2-B. 1-C. 1D. 4 10.关于x 的方程()011222=+---k x x ,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中假命题的个数是A. 0B. 1C. 2D. 3二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上. 11.设x 、y 为实数,且ii y i x 315211-=-+-,则x +y =___________. 12.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为___________.(精确到0.01)13.已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为___________. 14.某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后进行,又工程丁必须在丙完成后立即进行,那么安排这6项工程的不同的排法种数是___________.(用数字作答) 15.将杨辉三角中的每一个数rn C 都换成分数()rnC n 11+, 就得到一个如右图所示的分数三角形,称为莱布尼茨三角形. 从莱布尼茨三角形可以看出()()rn x n r n nC C n C n 111111-=+++,其中x =_______. 令()22111160130112131nn nC n nC a +++⋅⋅⋅++++=-,则n n a ∞→lim=_______.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分) 设函数()()c b a x f +⋅=,其中向量()()x x b x x a cos 3,sin ,cos ,sin -=-=()R x x x c ∈-=,sin ,cos .(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .17.(本小题满分13分)已知二次函数()x f y =的图像经过坐标原点,其导函数为()26-='x x f .数列{}n a 的前n 项和 为n S ,点()()*,N n S n n ∈均在函数()x f y =的图像上.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设13+=n n n a a b ,n T 是数列()n b 的前n 项和,求使得20m T n <对所有*N n ∈都成立的最小正整数m .18.(本小题满分12分)如图,在棱长为1的正方体1111D C B A ABCD -中,p 是侧棱1CC 上的一点,m CP =.(Ⅰ)试确定m ,使得直线AP 与平面11B BDD 所成角的正切值为23;(Ⅱ)在线段11C A 上是否存在一个定点Q ,使得对任意的m ,Q D 1在平面1APD 上的射影垂直于AP . 并证明你的结论. 19.(本小题满分10分)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布()100,70N .已 知成绩在90分以上(含90分)的学生有12名. (Ⅰ)试问此次参赛的学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可供查阅的(部分)标准正态分布表()()00x x P x <=φ20.(本小题满分14分)设A 、B 分别为椭圆()0,12222>=+b a b y a x 的左、右顶点,椭圆长半轴的长等于焦距,且4=x 为它的右准线. (Ⅰ)求椭圆的方程;(Ⅱ)设P 为右准线上不同于点(4,0)的任意一点,若直线AP 、BP 分别与椭圆相交于异于A 、B 的点M 、N ,证明点B 在以MN 为直径的圆内. 21.(本小题满分14分)设3=x 是函数()()()R x eb ax x x f x∈++=-32的一个极值点.(Ⅰ)求a 与b 的关系式(用a 表示b ),并求()x f 的单调区间; (Ⅱ)设0>a ,()xe a x g ⎪⎭⎫ ⎝⎛+=4252.若存在[]4,0,21∈εε使得()()121<-εεg f 成立,求a 的取值范围.湖北省2006高考试题理科答案及解析一、选择题:1--5、BDABC ;6--10、DDBCB ; 二、填空题:11、4; 12、0.94; 13、8或-18; 14、20; 15、r +1,1/2。

2006高考试题——数学(00001)

2006高考试题——数学(00001)

2006高考试题——数学文辽宁卷高考学习网-中国最大高考学习网站 | 我们负责传递知识!2006年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B )如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率P ,那么n 次独立重复试验中恰好发生k 次的概率k n k kn n P P C k P --=)1()(一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,选择一个符合题目要求的选项. (1)函数)321sin(+=x y 的最小正周期是 (A )2π (B )π (C )2π (D )4π(2)设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是(A )1 (B )3 (C )4 (D )8(3)设)(x f 是R 上的任意函数,则下列叙述正确的是球的表面积公式24R S π=球的体积公式334R V π=球其中R 表示球的半径高考学习网-中国最大高考学习网站 | 我们负责传递知识!(A ))(x f )(x f -是奇函数 (B ))(x f |)(x f -| 是奇函数(C ))(x f -)(x f -是偶函数 (D))(x f +)(x f -是偶函数(4)5646362616C C C C C++++的值为(A )61 (B )62 (C )63 (D )64 (5)方程02522=+-x x的两个根可分别作为(A )一椭圆和一双曲线的离心率 (B )两抛物线的离心率(C )一椭圆和一抛物线的离心率 (D )两椭圆的离心率(6)给出下列四个命题:①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行. ③若直线21,l l 与同一平面所成的角相等,则21,l l 互相平行.④若直线21,l l 是异面直线,则与21,l l 都相交的两条直线是异面直线.高考学习网-中国最大高考学习网站 | 我们负责传递知识!其中假.命题的个数是 (A )1 (B )2 (C )3 (D )4(7)双曲线422=-y x 的两条渐近线与直线3=x 围成一个三角形区域,表示该区域的不等式组是 (A )⎪⎩⎪⎨⎧≤≤≥+≥-3000x y x y x (B )⎪⎩⎪⎨⎧≤≤≤+≥-3000x y x y x (C )⎪⎩⎪⎨⎧≤≤≤+≤-3000x y x y x (D )⎪⎩⎪⎨⎧≤≤≥+≤-3030x y x y x(8)设○+是R 上的一个运算,A 是R 的非空子集. 若对任意A b a A b a ∈⊕∈有,,,则称A 对运算○+封闭. 下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是 (A )自然数集 (B )整数集 (C )有理数集(D )无理数集(9)△ABC 的三内角A ,B ,C ,所对边的长分别为c b a ,,,设向量p ),(b c a +、q =).,(a c a b -- 若p ∥q ,,则角C 的大小为高考学习网-中国最大高考学习网站 | 我们负责传递知识!(A )6π (B )3π (C )2π (D )32π(10)已知等腰△ABC 的腰为底的2倍,顶角的正切值是(A )23 (B )3 (C )815 (D )715(11)与方程)0(22≥+-=x e e y xx的曲线关于直线x y =对称的曲线的方程为 (A ))1ln(x y += (B ))1ln(x y -= (C ))1ln(x y +-=(D ))1ln(x y --= (12)曲线)6(161022<=-+-m my m x 与曲线)95(19522<<=-+-n ny n x 的(A )离心率相等 (B )焦距相等 (C )焦点相同 (D )准线相同绝密★启用前2006年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)第II 卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16高考学习网-中国最大高考学习网站 | 我们负责传递知识!分. (13)方程)1(log 2)1(log 22--=-x x 的解为 .(14)设⎩⎨⎧>≤=,0,ln ,0,)(x x x e x g x 则=))21((g g . (15)如图,半径为2的半球内有一内接正六棱锥P —ABCDEF , 则此正六棱锥的侧面积是 . (16)5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有种.(以数作答)三.解答题:本大题共小题,共74分,解答应写出文字说明、证明过程或演算步骤。

2006年高考湖北卷理科数学试题及参考答案

2006年高考湖北卷理科数学试题及参考答案

2006年高考湖北卷理科数学试题及参考答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()1,3=a ,b 是不平行于x 轴的单位向量,且3=⋅b a ,则b = A. ⎪⎪⎭⎫ ⎝⎛21,23 B. ⎪⎪⎭⎫ ⎝⎛23,21 C.⎪⎪⎭⎫ ⎝⎛433,41 D. ()0,12.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a ,则a =A.4B.2C.-2D.-43.若△ABC 的内角A 满足322sin =A ,则=+A A cos sin A. 315 B. 315- C. 35 D. 35- 4.设()x x x f -+=22lg ,则⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为 A. ()()4,00,4 - B. ()()4,11,4 --C. ()()2,11,2 --D. ()()4,22,4 --5.在2431⎪⎪⎭⎫ ⎝⎛+x x 的展开式中,x 的幂的指数是整数的项共有 A.3项 B.4项 C.5项 D.6项6.关于直线m 、n 与平面α、β,有下列四个命题:①βα//,//n m 且βα//,则n m //; ②βα⊥⊥n m ,且βα⊥,则n m ⊥;③βα//,n m ⊥且βα//,则n m ⊥; ④βα⊥n m ,//且βα⊥,则n m //.其中真命题的序号是:A. ①、②B. ③、④C. ①、④D. ②、③7.设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若PA BP 2=,且1=⋅AB OQ ,则P 点的轨迹方程是A. ()0,0123322>>=+y x y x B. ()0,0123322>>=-y x y x C. ()0,0132322>>=-y x y x D. ()0,0132322>>=+y x y x 8.有限集合S 中元素个数记作card ()S ,设A 、B 都为有限集合,给出下列命题:①φ=B A 的充要条件是card ()B A = card ()A + card ()B ;②B A ⊆的必要条件是card ()≤A card ()B ;③B A ⊄的充分条件是card ()≤A card ()B ;④B A =的充要条件是card ()=A card ()B .其中真命题的序号是A. ③、④B. ①、②C. ①、④D. ②、③9.已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=mA. 2-B. 1-C. 1D. 410.关于x 的方程()011222=+---k x x ,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有8个不同的实根.其中假命题的个数是A. 0B. 1C. 2D. 3第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.设x 、y 为实数,且ii y i x 315211-=-+-,则x +y =___________. 12.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为___________.(精确到0.01)13.已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为___________.14.某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后进行,又工程丁必须在丙完成后立即进行,那么安排这6项工程的不同的排法种数是___________.(用数字作答)15.将杨辉三角中的每一个数r n C 都换成分数()rn C n 11+, 就得到一个如右图所示的分数三角形,称为莱布尼茨三角形. 从莱布尼茨三角形可以看出()()r n x n r n nC C n C n 111111-=+++,其中x =_______. 令()22111160130112131nn n C n nC a +++⋅⋅⋅++++=-, 则n n a ∞→lim =_______. 三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分) 设函数()()c b a x f +⋅=,其中向量()()x x b x x a cos 3,sin ,cos ,sin -=-= ()R x x x c ∈-=,s i n ,c o s .(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .17.(本小题满分13分) 已知二次函数()x f y =的图像经过坐标原点,其导函数为()26-='x x f .数列{}n a 的前n 项和为n S ,点()()*,N n S n n ∈均在函数()x f y =的图像上.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设13+=n n n a a b ,n T 是数列()n b 的前n 项和,求使得20m T n <对所有*N n ∈都成立的最小正整数m . 18.(本小题满分12分)如图,在棱长为1的正方体1111D C B A ABCD -中, p 是侧棱1CC 上的一点,m CP =.(Ⅰ)试确定m ,使得直线AP 与平面11B BDD 所成角的正切值为23;(Ⅱ)在线段11C A 上是否存在一个定点Q ,使得对任意的m ,Q D 1在平面1APD 上的射影垂直于AP .并证明你的结论.19.(本小题满分10分)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布()100,70N .已知成绩在90分以上(含90分)的学生有12名.(Ⅰ)试问此次参赛的学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可供查阅的(部分)标准正态分布表()()00x x P x <=φ20.(本小题满分14分)设A 、B 分别为椭圆()0,12222>=+b a b y a x 的左、右顶点,椭圆长半轴的长等于焦距,且4=x 为它的右准线.(Ⅰ)求椭圆的方程;(Ⅱ)设P 为右准线上不同于点(4,0)的任意一点,若直线AP 、BP 分别与椭圆相交于异于A 、B 的点M 、N ,证明点B 在以MN 为直径的圆内.(此题不要求在答题卡上画图)21.(本小题满分14分)设3=x 是函数()()()R x e b ax x x f x ∈++=-32的一个极值点. (Ⅰ)求a 与b 的关系式(用a 表示b ),并求()x f 的单调区间;(Ⅱ)设0>a ,()x e a x g ⎪⎭⎫ ⎝⎛+=4252.若存在[]4,0,21∈εε使得()()121<-εεg f 成立,求a 的取值范围.答案一、选择题:1--5、BDABC ;6--10、DDBCB ;二、填空题:11、4; 12、0.94; 13、8或-18; 14、20; 15、r +1,1/2。

2006年全国统一高考数学试卷(理科)(全国卷一)及答案

2006年全国统一高考数学试卷(理科)(全国卷一)及答案2006年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.设集合 $M=\{x|x^2-x<0\}$,$N=\{x||x|<2\}$,则()。

A。

$M\cap N=\varnothing$B。

$M\cap N=M$C。

$M\cup N=\mathbb{R}$XXX2.已知函数 $y=e^x$ 的图象与函数 $y=f(x)$ 的图象关于直线 $y=x$ 对称,则()。

A。

$f(2x)=e^{2x}$($x\in\mathbb{R}$)B。

$f(2x)=\ln2\cdot\ln x$($x>0$)C。

$f(2x)=2e^x$($x\in\mathbb{R}$)D。

$f(2x)=\ln x+\ln 2$($x>0$)3.双曲线 $mx^2+y^2=1$ 的虚轴长是实轴长的2倍,则$m=$()。

A。

$\dfrac{3}{4}$B。

$1$C。

$-4$D。

$4$4.如果复数 $(m^2+i)(1+mi)$ 是实数,则实数 $m=$()。

A。

$1$B。

$-1$C。

$0$D。

不存在实数 $m$ 满足条件。

5.函数$y=\dfrac{\sin x}{1+\cos x}$ 的单调增区间为()。

A。

$(2k\pi,(2k+1)\pi)$,$k\in\mathbb{Z}$B。

$(2k\pi,(2k+1)\pi)$,$k\in\mathbb{N}$C。

$(2k\pi+\pi,(2k+1)\pi)$,$k\in\mathbb{Z}$D。

$(2k\pi+\pi,(2k+1)\pi+\pi)$,$k\in\mathbb{Z}$6.$\triangle ABC$ 的内角 $A$、$B$、$C$ 的对边分别为$a$、$b$、$c$,若 $a$、$b$、$c$ 成等比数列,且 $c=2a$,则 $\cos B=$()。

教育最新2006年高考理科数学试题及答案(湖北卷)

2006年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页.共150分.考试用时120分钟.★祝考试顺利★第Ⅰ卷(选择题 共50分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷上无效。

3.考试结束,监考人员将本试题卷和答题卡一并收回。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知向量()1,3=a ,b 是不平行于x 轴的单位向量,且3=⋅b a ,则b =A. ⎪⎪⎭⎫⎝⎛21,23 B. ⎪⎪⎭⎫⎝⎛23,21 C.⎪⎪⎭⎫⎝⎛433,41 D. ()0,1 2.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a ,则a =A.4B.2C.-2D.-4 3.若△ABC 的内角A 满足322sin =A ,则=+A A cos sin A.315B. 315- C. 35 D. 35-4.设()x x x f -+=22lg,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为A. ()()4,00,4 -B. ()()4,11,4 --C. ()()2,11,2 --D. ()()4,22,4 --5.在2431⎪⎪⎭⎫⎝⎛+x x 的展开式中,x 的幂的指数是整数的项共有 A.3项 B.4项 C.5项 D.6项6.关于直线m 、n 与平面α、β,有下列四个命题:①βα//,//n m 且βα//,则n m //; ②βα⊥⊥n m ,且βα⊥,则n m ⊥; ③βα//,n m ⊥且βα//,则n m ⊥; ④βα⊥n m ,//且βα⊥,则n m //. 其中真命题的序号是:A. ①、②B. ③、④C. ①、④D. ②、③ 7.设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2=,且1=⋅,则P 点的轨迹方程是A. ()0,0123322>>=+y x y x B. ()0,0123322>>=-y x y x C. ()0,0132322>>=-y x y x D. ()0,0132322>>=+y x y x8.有限集合S 中元素个数记作card ()S ,设A 、B 都为有限集合,给出下列命题: ①φ=B A 的充要条件是card ()B A = card ()A + card ()B ; ②B A ⊆的必要条件是card ()≤A card ()B ; ③B A ⊄的充分条件是card ()≤A card ()B ; ④B A =的充要条件是card ()=A card ()B .其中真命题的序号是A. ③、④B. ①、②C. ①、④D. ②、③9.已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=mA. 2-B. 1-C. 1D. 4 10.关于x 的方程()011222=+---k x x ,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中假命题的个数是A. 0B. 1C. 2D. 3第Ⅱ卷(非选择题 共100分)注意事项:第Ⅱ卷用0.5毫米黑色的签字笔或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效. 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上. 11.设x 、y 为实数,且ii y i x 315211-=-+-,则x +y =___________. 12.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为___________.(精确到0.01) 13.已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为___________. 14.某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后进行,又工程丁必须在丙完成后立即进行,那么安排这6项工程的不同的排法种数是___________.(用数字作答) 15.将杨辉三角中的每一个数rn C 都换成分数()rn C n 11+,就得到一个如右图所示的分数三角形,称为莱布尼茨三角形. 从莱布尼茨三角形可以看出()()r n x n r n nC C n C n 111111-=+++,其中x =_______.令()22111160130112131nn nC n nC a +++⋅⋅⋅++++=-,则n n a ∞→lim =_______.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 设函数()()c b a x f +⋅=,其中向量()()x x b x x a cos 3,sin ,cos ,sin -=-=()R x x x c ∈-=,s i n ,c o s .(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .17.(本小题满分13分)已知二次函数()x f y =的图像经过坐标原点,其导函数为()26-='x x f .数列{}n a 的前n 项和为n S ,点()()*,N n S n n ∈均在函数()x f y =的图像上.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设13+=n n n a a b ,n T 是数列()n b 的前n 项和,求使得20m T n <对所有*N n ∈都成立的最小正整数m .18.(本小题满分12分)如图,在棱长为1的正方体1111D C B A ABCD -中,p 是侧棱1CC 上的一点,m CP =.(Ⅰ)试确定m ,使得直线AP 与平面11B BDD 所成角的正切值为23;(Ⅱ)在线段11C A 上是否存在一个定点Q ,使得对任意的m ,Q D 1在平面1APD 上的射影垂直于AP . 并证明你的结论.19.(本小题满分10分)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布()100,70N .已知成绩在90分以上(含90分)的学生有12名.(Ⅰ)试问此次参赛的学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可供查阅的(部分)标准正态分布表()()00x x P x <=φ20.(本小题满分14分)设A 、B 分别为椭圆()0,12222>=+b a b y a x 的左、右顶点,椭圆长半轴的长等于焦距,且4=x 为它的右准线.(Ⅰ)求椭圆的方程;(Ⅱ)设P 为右准线上不同于点(4,0)的任意一点,若直线AP 、BP 分别与椭圆相交于异于A 、B 的点M 、N ,证明点B 在以MN 为直径的圆内.(此题不要求在答题卡上画图) 21.(本小题满分14分)设3=x 是函数()()()R x e b ax x x f x∈++=-32的一个极值点.(Ⅰ)求a 与b 的关系式(用a 表示b ),并求()x f 的单调区间;(Ⅱ)设0>a ,()xe a x g ⎪⎭⎫ ⎝⎛+=4252.若存在[]4,0,21∈εε使得()()121<-εεg f 成立,求a 的取值范围.湖北省2006高考试题理科答案及解析一、选择题:1--5、BDABC ;6--10、DDBCB ; 二、填空题:11、4; 12、0.94; 13、8或-18; 14、20; 15、r +1,1/2。

2006年数学全国卷一(含答案)

焊接自动化提高产品质量和生产效率焊接是一种常见的金属加工技术,广泛应用于汽车制造、船舶建造、航空航天等各个领域。

传统的焊接方式主要靠工人手工操作,存在人为因素的干扰,因此容易出现质量不稳定和生产效率低下的情况。

为了解决这些问题,焊接自动化技术应运而生。

焊接自动化可以提高产品质量、提高生产效率,并且减少人力成本,受到广泛关注和应用。

焊接自动化通过引入机器人、自动化设备和智能控制系统,实现焊接过程的自动化,能够对焊接过程进行精确控制,提高焊接质量和生产效率。

焊接自动化可以分为多种应用形式,包括焊接机器人、焊接自动化生产线、焊接自动化装备等。

这些应用形式的不断完善和更新,为生产企业带来了更加灵活、高效和稳定的焊接生产方式。

焊接自动化可以提高产品质量。

传统手工焊接存在许多问题,比如焊接接头尺寸不一致、焊缝不均匀、焊接变形等,都会影响产品质量。

而引入焊接自动化技术后,可以实现焊接参数的精确控制,并且通过智能化系统进行监控和调节,确保焊接质量的稳定性和一致性。

这样能够减少人为因素的干扰,消除焊接缺陷,提高产品质量。

焊接自动化可以提高生产效率。

手工焊接需要工人进行反复操作,工艺繁琐耗时,而引入焊接自动化技术后,可以实现焊接过程的自动化和连续化。

焊接机器人可以根据预设程序进行自动作业,焊接速度快、效率高,而且可以连续工作24小时,极大地提高了生产效率。

焊接自动化技术还可以减少人力成本,节约时间和人力资源,降低生产成本,提高生产效益。

焊接自动化还可以提升生产安全性。

焊接作业过程中会产生大量有害气体和金属粉尘,对操作人员健康造成威胁。

而焊接机器人能够代替人工进行高温、高强度的焊接作业,有效降低了安全风险,保障了工人的健康和安全。

在实际应用中,焊接自动化技术已经得到了广泛的应用。

在汽车制造领域,焊接自动化已经成为汽车车身焊接的主要生产方式,能够满足大规模生产和高质量焊接的需求。

在航空航天领域,焊接自动化技术也被广泛应用于飞机和航天器的制造中,能够满足高品质、高精度的焊接要求。

2006年高考理科数学试题及答案(湖北 卷)

2006年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页.共150分.考试用时120分钟.★祝考试顺利★第Ⅰ卷(选择题 共50分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题宗旨答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷上无效。

3.考试结束,监考人员将本试题卷和答题卡一并收回。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,惟有一项乃是符合题目要求的. 1.已知向量()1,3=a ,b 乃是不平行于x 轴的单位向量,且3=⋅b a ,则b =A.⎪⎪⎭⎫ ⎝⎛21,23 B. ⎪⎪⎭⎫ ⎝⎛23,21 C. ⎪⎪⎭⎫ ⎝⎛433,41 D. ()0,1 2.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a ,则a = A.4 B.2 C.-2 D.-4 3.若△ABC 的内角A 满足322sin =A ,则=+A A cos sin A.315B. 315- C. 35 D. 35-4.设()x x x f -+=22lg,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为A. ()()4,00,4 -B. ()()4,11,4 --C. ()()2,11,2 --D. ()()4,22,4 --5.在2431⎪⎪⎭⎫ ⎝⎛+x x 的展开式中,x 的幂的指数乃是整数的项共有 A.3项 B.4项 C.5项 D.6项 6.关于直线m 、n 与平面α、β,有下列四个命题:①βα//,//n m 且βα//,则n m //; ②βα⊥⊥n m ,且βα⊥,则n m ⊥; ③βα//,n m ⊥且βα//,则n m ⊥; ④βα⊥n m ,//且βα⊥,则n m //. 其中真命题的序号乃是:A. ①、②B. ③、④C. ①、④D. ②、③ 7.设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2=,且1=⋅,则P 点的轨迹方程乃是A. ()0,0123322>>=+y x y x B. ()0,0123322>>=-y x y x C. ()0,0132322>>=-y x y x D. ()0,0132322>>=+y x y x8.有限集合S 中元素个数记作card ()S ,设A 、B 都为有限集合,给出下列命题: ①φ=B A 的充要条件乃是card ()B A = card ()A + card ()B ; ②B A ⊆的必要条件乃是card ()≤A card ()B ; ③B A ⊄的充分条件乃是card ()≤A card ()B ; ④B A =的充要条件乃是card ()=A card ()B .其中真命题的序号乃是A. ③、④B. ①、②C. ①、④D. ②、③9.已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点()y x ,可使宗旨函数my x z +=取得最小值,则=mA. 2-B. 1-C. 1D. 4 10.关于x 的方程()011222=+---k x x ,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中假命题的个数乃是A. 0B. 1C. 2D. 3第Ⅱ卷(非选择题 共100分)注意事项:第Ⅱ卷用0.5毫米黑色的签字笔或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效. 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上. 11.设x 、y 为实数,且ii y i x 315211-=-+-,则x +y =___________. 12.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为___________.(精确到0.01) 13.已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为___________. 14.某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后进行,又工程丁必须在丙完成后立即进行,那么安排这6项工程的不同的排法种数乃是___________.(用数字作答) 15.将杨辉三角中的每一个数rn C 都换成分数()rnC n 11+, 就得到一个如右图所示的分数三角形,称为莱布尼茨三角形. 从莱布尼茨三角形能够看出()()r n xn r n nC C n C n 111111-=+++,其中x =_______.令()22111160130112131nn n C n nC a +++⋅⋅⋅++++=-,则n n a ∞→lim =_______.三、解读回答题:本大题共6小题,共75分.解读回答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 设函数()()c b a x f +⋅=,其中向量()()x x b x x a cos 3,sin ,cos ,sin -=-=()R x x x c ∈-=,sin ,cos .(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .17.(本小题满分13分)已知二次函数()x f y =的图像经过坐标原点,其导函数为()26-='x x f .数列{}n a 的前n 项和为n S ,点()()*,N n S n n ∈均在函数()x f y =的图像上.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设13+=n n n a a b ,n T 乃是数列()n b 的前n 项和,求使得20m T n <对所有*N n ∈都确立的最小正整数m .18.(本小题满分12分)如图,在棱长为1的正方体1111D C B A ABCD -中,p 乃是侧棱1CC 上的一点,m CP =.(Ⅰ)试确定m ,使得直线AP 与平面11B BDD 所成角的正切值为23;(Ⅱ)在线段11C A 上乃是否存在一个定点Q ,使得对任意的m ,Q D 1在平面1APD 上的射影垂直于AP . 并证明你的结论.19.(本小题满分10分)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布()100,70N .已知成绩在90分以上(含90分)的学生有12名.(Ⅰ)试问此次参赛的学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可供查阅的(部分)标准正态分布表()()00x x P x <=φ20.(本小题满分14分)设A 、B 分别为椭圆()0,12222>=+b a b y a x 的左、右顶点,椭圆长半轴的长等于焦距,且4=x 为它的右准线.(Ⅰ)求椭圆的方程;(Ⅱ)设P 为右准线上不同于点(4,0)的任意一点,若直线AP 、BP 分别与椭圆相交于异于A 、B 的点M 、N ,证明点B 在以MN 为直径的圆内.(此题不要求在答题卡上画图) 21.(本小题满分14分)设3=x 乃是函数()()()R x e b ax x x f x∈++=-32的一个极值点.(Ⅰ)求a 与b 的关系式(用a 表示b ),并求()x f 的单调区间;(Ⅱ)设0>a ,()xe a x g ⎪⎭⎫ ⎝⎛+=4252.若存在[]4,0,21∈εε使得()()121<-εεg f 确立,求a 的取值范围.湖北省2006高考试题理科答案及解析一、选择题:1--5、BDABC ;6--10、DDBCB ; 二、填空题:11、4; 12、0.94; 13、8或-18; 14、20; 15、r +1,1/2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档