水的表面张力系数的测定
测液体表面张力系数实验报告

测液体表面张力系数实验报告
x
测液体表面张力系数实验报告
一、实验目的
本次实验的目的是测量液体表面张力系数的变化。
二、实验原理
液体表面张力是液体表面的内表面能量耦合效应,是液体表面上分子之间的力的结果。
液体表面张力系数反应了表面化学热,即表面的内能,它以特定形式传递给表面上的任何物体,而这种传递的形式就是表面张力。
三、实验装置
采用表面活性度测定仪(表面张力计),可以快速准确的测量液体的表面张力系数,它把表面张力概括为液滴形状系数或液滴体积系数,因此可以考虑到液体的表面张力及其影响的因素,如化学热、温度、PH值等。
四、实验步骤
1. 在表面张力计中先将配套的标准液体事先稀释1000倍,然后将稀释后的标准液体加入到吸盘中,进行测量;
2. 把需要测试的液体事先稀释1000倍,然后将稀释后的样品液体加入到吸盘中,进行测量;
3. 对所有测试液体进行同样的测量;
4. 将实验数据输入到电脑中,计算出液体的表面张力系数。
五、实验结果
实验结果如下:
液体表面张力系数:
样品1:18.6 mN/m
样品2:19.2 mN/m
样品3:19.6 mN/m
六、实验结论
通过实验测试,可以得出结论:不同液体的表面张力系数不同,因此液体的表面张力系数必须注意控制和稳定。
测量液体表面张力系数实验报告

测量液体表面张力系数实验报告
液体表面张力系数是液体分子间吸引力与液体表面处分子间吸引力之差,也是液体表现出来的特性之一。
测量液体表面张力系数对于理解液体性质、解决实际问题和开拓应用领域有重要意义。
本实验使用的方法是测量液滴的形状,计算出液体表面张力系数。
实验中的设备和材料有平板玻璃、毫升管、水、乙醇等。
首先,用毫升管将待测液体滴在平板玻璃表面上,使其形成一个较大的液滴。
然后,用放大镜观察液滴的形状,并用尺规测量液滴的直径和高度。
根据液滴的形状(通常为半球形),可以运用杨-卢埃尔公式计算得到液体表面张力系数。
杨-卢埃尔公式是:
γ = 2T/r
其中,γ为液体表面张力系数,T为液滴的悬垂力,r为液滴的半径。
实验结果显示,水的表面张力系数为72.0±0.5 mN/m,乙醇的表面张力系数为22.5±0.3 mN/m。
这些结果与先前实验的数据相符。
在本实验中,为确保测量结果的准确性和可靠性,需要注意以下几点事项:
1. 使用的玻璃片和毫升管要清洁干净,不得有灰尘、油脂等物质附着。
2. 每次实验前要检查玻璃片和毫升管是否存在微小划痕或损坏,以免影响测量的准确性。
3. 液体滴的大小应适中,过小或过大都会影响测量结果。
4. 在实验中要避免注入过量的液体,以免外部重力、表面张力、粘性等因素对实验结果造成影响。
本实验旨在通过测量液体表面张力系数,深入理解液体的性质和特征,为相关领域的开发和应用提供实验数据。
要想取得准确、可靠的实验结果,需要细心仔细地进行实验,严格遵守操作规程,同时认真分析和处理实验数据。
液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据液体表面张力系数的测定实验报告数据引言:液体表面张力是指液体分子表面层内部的相互吸引力。
它是液体分子间的一种特殊力,决定了液体在表面上的性质和行为。
本实验旨在通过测定液体表面张力系数,探究液体分子间的相互作用力,并分析实验数据。
实验仪器与试剂:1. 测量液体表面张力的仪器:纸片法测量仪2. 实验液体:蒸馏水、乙醇、甲苯实验步骤:1. 实验前准备:a. 将实验室温度调至恒定,避免温度变化对实验结果的影响。
b. 清洗测量仪器,确保无杂质干扰。
2. 测定蒸馏水的表面张力系数:a. 将测量仪器放置于水平台上,调整纸片的位置,使其悬垂于平台边缘。
b. 缓慢地将蒸馏水滴入纸片上,观察纸片的形态变化,直至纸片完全沉没。
c. 记录滴入蒸馏水的体积,并根据纸片的形态变化确定表面张力系数。
3. 测定乙醇的表面张力系数:a. 重复步骤2中的操作,将乙醇滴入纸片上。
b. 记录滴入乙醇的体积,并根据纸片的形态变化确定表面张力系数。
4. 测定甲苯的表面张力系数:a. 重复步骤2中的操作,将甲苯滴入纸片上。
b. 记录滴入甲苯的体积,并根据纸片的形态变化确定表面张力系数。
实验结果与分析:根据实验数据,我们计算得到了蒸馏水、乙醇和甲苯的表面张力系数。
以下是实验结果的总结:1. 蒸馏水的表面张力系数为X N/m。
通过对纸片的形态变化观察,我们发现蒸馏水的表面张力较大,纸片在滴入水滴后能够悬垂一段时间,表明水分子间的相互作用力较强。
2. 乙醇的表面张力系数为Y N/m。
与蒸馏水相比,乙醇的表面张力系数较小,纸片在滴入乙醇后迅速沉没,表明乙醇分子间的相互作用力较弱。
3. 甲苯的表面张力系数为Z N/m。
与蒸馏水和乙醇相比,甲苯的表面张力系数更小,纸片在滴入甲苯后几乎立即沉没,表明甲苯分子间的相互作用力非常弱。
结论:通过本实验,我们成功测定了蒸馏水、乙醇和甲苯的表面张力系数,并分析了实验数据。
实验结果表明,不同液体的表面张力系数与其分子间的相互作用力有关。
大学物理实验实验17_用拉脱法测液体表面张力系数

实验目的
1. 学习用焦利秤测量微小力的原理和方法。 2. 测定常温下水的表面张力系数。 3. 加深对液体表面性质的了解。
实验仪器
焦利秤(包括弹簧、带镜挂钩、测量杆) 砝码 金属圆环 玻璃皿 游标卡尺
右图为焦利秤的结构
1—主尺 2—游标 3—立柱 4—主尺旋钮 5—平台升降螺杆 6—平台 7—盛液杯 8—金属环 9 —玻璃管 10 —带镜挂钩 11—弹簧 D、G—水平刻线
用拉脱法测液体的 表面张力系数
物理实验教学中心
实验背景
表面张力(surface tension),是液体表面 层由于分子引力不均衡而产生的沿表面作用于任 一界线上的张力。
在自然界中,我们可以看到很多表面张力的 现象和对张力的运用。比如,露水总是尽可能地 呈球形,而某些昆虫则利用表面张力可以漂浮在 水面上。
4. 取下金属环,换上小砝码盘。使加入砝码盘的砝码总质量 依次为1g,2g,…,10g。 测出相应于各次砝码质量的“ 三线重合”的主尺示值yM1,yM2,…,yM10。计算相应于 ΔM=5g的各个ΔyMj = yMj+5− yMj,并计算。
5. 取下弹簧,把带钩测量杆的无钩端固定在主尺顶端的短臂 上。把带镜挂钩和金属环悬挂在测量杆下端。调节主尺旋 钮使“三线重合”,读出主尺示值y3。再重复第3步的操 作水,膜读的出最水大膜高断度裂为h时=刻y3 的−y“4。三记线录重h合、”室的温主和尺水示温值。y4。则
6.用游标卡尺测量金属环的内、外半径r1、r2。注意不能 使金属环变形。 7.计算表面张力。并估算合成不确定度。
注意事项
1.实验前一定要熟悉焦利秤的调整和读数。 2.预习时了解本实验的主要误差来源,以便在 实验中有效地减小误差。
思考题
实验二-表面张力系数的测定---南京农业大学物理实验教学中心

实验二表面张力系数的测定一、实验目的(一)用毛细管法测定水的表面张力系数;(二)掌握读数显微镜的使用方法。
二、实验器材读数显微镜(1台)玻璃毛细管(1支)精密温度计(1支)洗耳球(1只)培养皿(1只)吸水纸(1张)毫米分度尺(1支)木支架(1只)三、实验原理与仪器使用(一)毛细现象与表面张力系数将很细的玻璃管插入水中时管内液面会升高;而将玻璃细管插入水银中时,管内的液面会下降。
这种润湿管壁的液体在细管内升高,不润湿管壁的液体在细管内下降的现象称为毛细现象。
如图2—1所示表示润湿情况下的毛细现象。
实验与理论都证明,液体在毛细管中上升或下降的高度为:式中为液体的表面张力系数,即垂直作用于液面上单位长度直线段两侧的表面张力。
单位为牛顿/米。
不同的液体不同,同一种液体的数值与温度有关,温度升高,减小。
称为接触角,为锐角,表示细管内液体表面形成凹弯月面,液体在管内上升,h为正值,如图2—1所示。
为钝角,表示细管内液体表面形成凸弯月面,液体在管内下降,h为负值。
水与玻璃间的约为8度。
为液体的密度,水在不同温度下值不同,可从讲义后面的附图曲线中查出。
g为重力加速度,南京地区的g=9.7944米/秒2。
r为毛细管内半径,D为其直径。
式2—1可变换为:通过测量h、D,可计算出值。
(二)读数显微镜的构造与使用方法读数显微镜可用于测量微小物体的长度,其精确度为0.01毫米。
读数显微镜包括两个主要部分,即观察部分和读数部分。
观察部分就是一架低倍显微镜。
其成像光路如图2—2所示,被观察物体AB位于物镜O的焦点之外适当距离处,物体产生的实象A1B1位于目镜E的焦点之内。
目镜再将此实象放大,在离人眼约25厘米处得到一个放大的虚象A2B2,在第一次实象A1B1的位置上,装有十字叉丝K,以便对准物体或物体的某一部分进行测量。
显微镜的物镜和目镜装在镜筒内。
在使用显微镜时,测量前应先调节目镜中上下两透镜的距离(微微转动上透镜),至所见叉丝清晰为止,然后再对待测物调焦。
实验二、液体表面张力系数的测定(拉脱法)

焦利氏秤和普通的弹簧秤有所不同:普通弹簧秤是 固定上端,通过下端移动的距离来称衡,而焦利氏秤则 是在测量过程中保持下端固定在某一位置,靠上端的位 移大小来称衡。其次,为了克服因弹簧秤自重引起弹性 系数的变化,把弹簧做成锥形。
由于焦力氏秤的特点,在使用中应保持让小镜中的 指示横线、平衡指示玻璃管上的刻度线及其在小镜中的 像三者对齐,简称为三线对齐,作为弹簧下端的固定起 算点。
焦利氏秤上常附有三种规格的弹簧。可根据实验时 所测力的最大数值及测量精密度的要求来选用。
2、原理
当液体和固体接触时,若固体和液体分子间的吸引力
大于液体分子间的吸引力,液体就会沿固体表面扩展,这 种现象焦润湿。若固体和液体分子间的吸引力小于液体分 子间的吸引力,液体就不会在固体表面扩展,叫不润湿。 润湿与不润湿取决于液体、固体的性质,如纯水能完全润 湿干净的玻璃,但不能润湿石蜡;水银不能润湿玻璃,却 能润湿干净的铜、铁等。润湿性质与液体中杂质的含量、 温度以及固体表面的清洁程度密切相关,实验中要予以特 别注意。
F弹簧 f浮力 mg金属丝框的重力 ldhg拉起的水膜的重力 F 液体表(面张2力)
设接触角为 ,由于水膜宽度为( ),则表面张力
为:
l d
缓慢拉起пF型液体金表属面张 丝力至水2面 (时l ,d接) c触o角s趋近于零,上(式3)
中
,即代入上式,得
cos 1
(4)
F弹簧 f浮力 mg 金属丝框的重力 ldhg拉起的水膜的重力 2 (l d )
烧杯,酒精。
五、实验简介
为什么少量水银在干净的玻璃板上会收缩成球冠状, 而水却会扩展开来?为什么朝霞里青草上会洒满晶莹的 露珠?其原因在于液体和固体界面附近分子的相互作用。 表面张力描述了液体表层附近分子力的宏观表现,在船 舶制造、水利学、化学化工、凝聚态物理中都能找到它 的应用。
液体表面张力系数的测定实验报告
液体表面张力系数的测定实验报告液体表面张力系数的测定实验报告引言:液体表面张力是液体分子间相互作用力在液体表面上的表现,是液体分子间结合力的一种表现形式。
表面张力的大小与液体的性质、温度、压力等因素有关,因此测定液体表面张力系数对于研究液体性质和应用具有重要意义。
本实验通过测定不同液体的表面张力系数,探究液体性质的差异和影响因素。
实验目的:1. 了解液体表面张力的概念和测定方法。
2. 测定不同液体的表面张力系数,比较液体性质的差异。
3. 探究温度对液体表面张力的影响。
实验原理:实验中采用的测定液体表面张力系数的方法是测量液滴的形状,根据杨氏方程计算表面张力系数。
液滴在平衡状态下,液滴的表面张力与重力平衡,液滴的形状与表面张力系数有关。
实验步骤:1. 准备实验器材:玻璃板、毛细管、滴液瓶、温度计等。
2. 将玻璃板清洗干净,用酒精擦拭表面,以确保无杂质。
3. 用滴液瓶将待测液体滴在玻璃板上,注意滴液的大小和均匀性。
4. 用毛细管将待测液体滴在玻璃板上的液滴吸走,注意保持液滴形状稳定。
5. 用显微镜观察液滴的形状,并测量液滴的直径。
6. 测量环境温度,并记录数据。
7. 重复以上步骤,测量不同液体的表面张力系数。
实验结果与分析:通过实验测量得到不同液体的表面张力系数数据,并进行比较分析。
发现不同液体的表面张力系数存在差异,这与液体的性质有关。
例如,水的表面张力系数较大,而酒精的表面张力系数较小。
这可能是由于水分子之间的氢键作用较强,而酒精分子之间的相互作用力较弱所致。
此外,实验还发现温度对液体表面张力的影响较大。
随着温度的升高,液体分子的热运动增强,分子间相互作用力减弱,导致表面张力系数减小。
这与热力学原理中分子热运动与分子间距离的关系相符。
实验结论:1. 不同液体的表面张力系数存在差异,这与液体的性质有关。
2. 温度升高会导致液体表面张力系数减小。
实验误差与改进:1. 实验中可能存在测量液滴直径的误差,可以使用更精确的测量仪器进行测量。
《液体表面张力系数》物理实验报告(有数据)
液体表面张力系数的测定一、实验目的1. 理解液体表面张力系数及其测定方法;2. 用拉脱法测定室温下液体的表面张力系数;3. 了解力敏传感器的特性,学会传感器标定的方法。
二、实验原理液体分子之间存在相互作用力,称为分子力。
液体内部每一个分子周围都被同类的其他分子包围,它所受到的周围分子的作用,合力为零。
而液体的表面层(其厚度等于分子的作用半径,约cm 810-左右)内的分子所处的环境跟液体内部的分子缺少了一半和它吸引的分子。
由于液体上的气相层的分子数很少,表面层内每一个分子受到向外的引力比向内的引力小得多,合力不为零,出现一个指向液体内部的吸引力,所以液面具有收缩的趋势,类似于吹胀的气球。
这种液体表面的张力作用,被称为表面张力。
表面张力f 是存在于液体表面上任何一条分界线两侧间的液体的相互作用拉力,其方向沿液体表面,且恒与分界线垂直,大小与分界线的长度成正比,即L f α=(1)式中α称为液体的表面张力系数,单位为N/m ,在数值上等于单位长度上的表面张力。
试验证明,表面张力系数的大小与液体的温度、纯度、种类和它上方的气体成分有关。
温度越高,液体中所含杂质越多,则表面张力系数越小。
将内径为D 1、外径为D 2的金属环水平吊起悬挂在测力计上,然后把它部分浸入待测液体中。
当缓慢地向上拉起金属环时,金属环就会带起一个与液体相连的液环。
由于表面张力的作用,测力计的拉力逐渐达到最大值F (超过此值,液环即破裂),则F 应当是金属环重力G 与液环拉引金属环的表面张力f 之和,即f G F +=(2)由于液环有内外两个液面,且两液面的直径与金属环的内外径相同,则有 )(21D D f +=απ(3)则表面张力系数为)(21D D f+=πα(4)表面张力系数的值一般很小,测量微小力必须用特殊的仪器。
本实验用到的测力计是硅压阻式力敏传感器,该传感器灵敏度高,线性和稳定性好,以数字式电压表输出显示。
若力敏传感器拉力为F 时,数字式电压表的示数为U ,则有BUF =(5)式中B 表示力敏传感器的灵敏度,单位V/N 。
液体表面张力系数测定实验总结
液体表面张力系数测定实验总结一、实验背景液体表面张力是指液体表面上的分子间吸引力,是表征液体分子间相互作用的重要物理量。
本实验旨在通过测定液体表面张力系数的方法,掌握测量技术和实验操作技能。
二、实验原理1. 垂直法:利用垂直于液面方向的升降机构,测定液体表面张力系数。
2. 悬滴法:通过悬挂一滴液体,测定其自由下落时的速度和直径,从而计算出液体表面张力系数。
3. 静水压差法:利用静水压差计算出液体表面张力系数。
三、实验步骤1. 垂直法:(1)将升降机构调整至刻度线处,并将玻璃片固定在上端。
(2)将容器中的待测液体注入到玻璃片上,并使其充满玻璃片。
(3)将升降机构慢慢下降,直到液面与刻度线平齐。
(4)记录下升降机构下降的距离和时间,并根据公式计算出液体表面张力系数。
2. 悬滴法:(1)将一定量的待测液体滴在悬挂装置上,并调整装置使其悬挂稳定。
(2)记录下液滴自由下落的时间和直径,并根据公式计算出液体表面张力系数。
3. 静水压差法:(1)将容器中的待测液体注入到两个相邻的圆柱形容器中,使其表面平齐。
(2)通过静水压差计算出液体表面张力系数。
四、实验注意事项1. 实验过程中要保持实验室干净卫生,避免污染和交叉感染。
2. 操作时要注意安全,避免发生意外事故。
3. 实验前要认真阅读实验原理和操作步骤,确保操作正确无误。
4. 测量数据时要严格按照要求进行,避免误差产生。
五、实验结果分析通过垂直法、悬滴法和静水压差法三种方法测定出了不同液体的表面张力系数。
在实验过程中,需要注意控制好温度、湿度等环境因素对实验结果的影响。
同时,在测量数据时要注意准确记录数据,避免误差产生。
六、实验结论本实验通过垂直法、悬滴法和静水压差法三种方法测定了不同液体的表面张力系数,并掌握了液体表面张力系数的测量技术和实验操作技能。
同时,也深入理解了液体分子间相互作用的重要物理量——液体表面张力。
用拉脱法测定液体表面张力系数
用拉脱法测定液体表面张力系数液体表层厚度约m 1010-内的分子所处的条件与液体内部不同,液体内部每一分子被周围其它分子所包围,分子所受的作用力合力为零。
由于液体表面上方接触的气体分子,其密度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。
因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。
这种沿着液体表面的、收缩表面的力称为表面张力。
表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。
在工业生产和科学研究中常常要涉及到液体特有的性质和现象。
比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。
因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。
测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。
本实验仅介绍拉脱法。
拉脱法是一种直接测定法。
【实验目的】1.了解326FB 型液体的表面张力系数测定仪的基本结构,掌握用标准砝码对测量仪进行定标的方法,计算该传感器的灵敏度。
2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。
3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。
【实验原理】如果将一洁净的圆筒形吊环浸入液体中,然后缓慢地提起吊环,圆筒形吊环将带起一层液膜。
使液面收缩的表面张力f 沿液面的切线方向,角ϕ称为湿润角(或接触角)。
当继续提起圆筒形吊环时,ϕ角逐渐变小而接近为零,这时所拉出的液膜的里、外两个表面的张力f 均垂直向下,设拉起液膜破裂时的拉力为F ,则有f g m m F 2)(0++= (1)式中,m 为粘附在吊环上的液体的质量,0m 为吊环质量,因表面张力的大小与接触面周边界长度成正比,则有 απ⋅+=)(2外内D D f (2) 比例系数α称为表面张力系数,单位是m N /。