2015年人教版七年级数学期末模拟试题(1)
初中数学人教版七年级下册期末-章节测试习题(1)

章节测试题1.【题文】已知关于的方程组(1)若求方程组的解;(2)若方程组的解满足求的取值范围.【答案】(1) ;(2) a>-.【分析】(1)将a=2代入方程组计算即可求出解;(2)将a看做已知数求出x与y,根据x大于y得到a的范围. 【解答】解:(1)当a=2时,方程组为,①-②得:3y=6,即y=2,将y=2代入①得:x=9,则方程组的解为;(2)方程组两方程相减得:3y=10-2a,即y=,将y=代入第一个方程得:x=,根据题意得:>,解得:a>-.2.【题文】为了了解某地区“雾霾天气的主要成因”,随机调查了该地区部分市民,并对调査结果随机调査了该市部分市民,并对调査结果进行整理,绘制了如下尚不完整的统计图表.根据图表中提供的信息解答下列问题:(1)求接受调查的总人数;(2)填空:扇形统计图中E组所占的百分比为______%;(3)扇形统计图中,C组所对应扇形圆心角的度数为________;(4)若该地区人口约有100万人,请你估计持D组观点的市民人数.【答案】(1)600人;(2)60,150,15%;(3)90°;(4)30万人.【分析】(1)根据A组的人数和所占的百分比可以求得接受调查的总人数;(2)根据接受调查的总人数和B组观点的百分比可以求得m,总人数减去其余各组的人数可以求得n的值,根据E组人数和总人数可求得所占的百分比;(3)根据C组观点的人数占的百分比可以求得C组所对应扇形圆心角的度数;(4)根据D组观点占的百分比可以求得持D组观点的市民人数.【解答】解:(1)由题意可得,接受调查的总人数是:120÷20%=600,即接受调查的一共有600人;(2)m=600×10%=60,n=600-180-120-90-60=150,扇形统计图中E组所占的百分比为:×100%=15%,故答案为:60,150,15%;(3)扇形统计图中,C组所对应扇形圆心角的度数为:360°×=90°,故答案为:90°;(4)100×=30(万人),答:持D组观点的市民有30万人.3.【题文】某体育器材公司最新推出A、B两种不同型号的跳绳,我区某学校第一次订购两种跳绳共计640条,该公司共获利2160元,两种跳绳的成本价、销售价如下表:(1)求学校第一次订购A、B两种跳绳各多少条?(2)第二次订购A、B两种跳绳的条数皆为第一次的2倍,销售时,A种跳绳按原售价销售,B种跳绳全部降价出售,该公司为使利润不小于4080元,则B种跳绳每条的最低销售价应为多少元?【答案】(1)学校第一次订购A种跳绳400条,B种跳绳240条;(2)第二次B 种跳绳每条的最低销售价应为9.5元.【分析】(1)设学校第一次订购A种跳绳x条B种跳绳y条,根据“两种跳绳共计640条,该公司共获利2160元”列出方程组进行求解;(2)设第二次B种跳绳每条的最低销售价应为a元,根据“该公司的利润不少于4080元”列出不等式,继而即可求解.【解答】解:(1)设学校第一次订购A种跳绳x条,B种跳绳y条,根据题意得:,解得:.答:学校第一次订购A种跳绳400条,B种跳绳240条.(2)设第二次B种跳绳每条的最低销售价应为a元,根据题意得:(8-5)×400×2+(a-6)×240×2≥4080,解得:a≥9.5.答:第二次B种跳绳每条的最低销售价应为9.5元.4.【题文】如图1,在平面直角坐标系中,点A(0,4),C(2,0).(1)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿轴正方向移动,点Q到达A点整个运动随之结束,AC的中点D的坐标是(1,2),设运动时间为秒,问:是否存在这样的使若存在,请求出的值;若不存在,请说明理由.(2)如图2,点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF,点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,以下两个式子:哪个式子为定值,请求出这个定值.【答案】(1) t=;(2)的值不变,其值为2.【分析】(1)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据,列出关于t的方程,求得t的值即可;(2)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入进行计算即可.【解答】解:(1)由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,∴0<t≤2时,点Q在线段AO上,即 CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=OP•y D=(2−t)×2=2−t,S△DOQ=OQ•x D=×2t×1=t,∵,∴2(2-t)=t,∴t=;(2)的值不变,其值为2.∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴==,不能确定.===2.5.【题文】已知,平面直角坐标系中,A(2,0),B(),且满足(1)求点B坐标;(2)P(0,)为轴上一点,求的取值范围;(3)若Q为直线AB上一点,连接OQ,且直接写出点Q 的纵坐标的取值范围.【答案】(1)B(-2,4);(2)m≥6或m≤-2;(3)≤y≤3或6≤y≤8.【分析】(1)根据非负数的性质列出方程组,解方程组求出a、b,得到点B的坐标;(2)先利用待定系数法求得直线AB的解析式为y=-x+2,进而得出直线AB交y 轴于(0,2),根据三角形的面积公式求出根据S△ABP不小于8时,×|y-2|×(2+2)≥8,得到点P的纵坐标m的取值范围;(3)分两种情况,当点Q在线段AB上时,可得2(4-y)≤y≤3(4-y)计算可得;当点Q在线段AB的延长线上时,可得2(y-4)≤y≤3(y-4)计算即可.【解答】解:(1)∵∴2a+b=0,3a+2b-2=0,解得a=-2,b=4,∴B(-2,4);(2)设直线AB的解析式为y=kx+b,把A(2,0),B(-2,4)代入,可得,解得,∴直线AB的解析式为y=-x+2,令x=0,则y=2,即直线AB交y轴于(0,2),=4,根据得,8,即×|m-2|×(2+2)≥8,解得m≥6或m≤-2;(3)≤y≤3或6≤y≤8.6.【答题】下列方程中,是二元一次方程的是()A.3x﹣2y=4zB.4x+y=2C.D.6xy+9=0 【答案】B【分析】直接利用二元一次方程的定义分析得出答案.【解答】A、,是三元一次方程,故此选项错误;B、,是二元一次方程,故此选项正确;C、,是分式方程,故此选项错误;D、,是二元二次方程,故此选项错误;选B.7.【答题】若m<1,则下列各式中错误的是()A.m+2<3B.m﹣1<0C.2m<2D.m+1>0【答案】D【分析】根据不等式的性质即可求出答案.【解答】∵m<1∴m+1<2故D错误选D.8.【答题】在下列调查中,适宜采用全面调查的是()A.了解明德集团所有中学生的视力情况B.了解某校七(4)班学生校服的尺码情况C.调查北京2017年的游客流量D.调查中国“2018俄罗斯世界杯”栏目的收视率【答案】B【分析】根据实际问题的需要选择合适的调查方式.【解答】A、适合用抽样调查;B、适合用全面调查;C、适合用抽样调查;D、适合用抽样调查,所以答案选B.9.【答题】不等式组的解在数轴上表示正确的是()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:解得:x<3,x≥-1故不等式组的解集为:-1≤x<3在数轴上表示为:.选C.10.【答题】已知是二元一次方程2x+y=14的解,则k的值是()A.2B.﹣2C.3D.﹣3【答案】A【分析】根据方程的解的定义,将方程2x+y=14中x,y用k替换得到k的一元一次方程进行求解.【解答】将代入二元一次方程2x+y=14,得7k=14,解得k=2.选A.11.【答题】在一个三角形中,一个外角是其相邻内角的2倍,那么这个外角是()A.150B.120°C.100°D.90°【答案】B【分析】设与外角相邻的内角为x°,根据平角的定义得到方程3x=180,求出x即可.【解答】设与外角相邻的内角为x°,∵一个三角形中,一个外角是其相邻内角的2倍∴这个外角为2x°∴3x=180∴x=60.即这个外角为120°选B.12.【答题】由方程组可得出x与y的关系式是()A.x+y=9B.x+y=3C.x+y=﹣3D.x+y=﹣9【答案】A【分析】本题考查了二元一次方程组的解法。
人教版七年级下数学期末模拟提优练试题

人教版七年级下数学期末模拟提优练试题一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列实数中,有理数是()A.B.0.1010010001C.D.2.(3分)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查3.(3分)如图所示,能判定直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠4=180°D.∠3+∠4=90°4.(3分)如图,将北京市地铁部分线路图置于正方形网格中,若设定崇文门站的坐标为(0,﹣1),雍和宫站的坐标为(0,4),则西单站的坐标为()A.(0,5)B.(5,0)C.(0,﹣5)D.(﹣5,0)5.(3分)若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n26.(3分)观察市统计局公布的“十五”时期重庆市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的是()A.2003年农村居民人均收入低于2002年B.农村居民人均收入比上年增长率低于9%的有2年C.农村居民人均收入最多时2004年D.农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加7.(3分)下列运算中,正确的是()A.=24B.=C.﹣=﹣D.=±28.(3分)一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()A.25°B.35°C.45°D.65°9.(3分)若不等式组有解,则a的取值范围是()A.a≤3B.a<3C.a<2D.a≤210.(3分)在平面直角坐标系中,一动点从原点出发按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动的路线如图所示,则该动点移动到点A100时的坐标是()A.(49,0)B.(49,1)C.(50,0)D.(50,1)二、填空题(本小题共8小题,每小题3分,共24分)11.(3分)4的平方根是.12.(3分)用不等式表示“比x的5倍大1的数不小于4”:.13.(3分)已知是二元一次方程ax﹣2y=4的一个解,则a的值是.14.(3分)化简:||=.15.(3分)如图,将一个长方形条折成如图所示的形状,若已知∠1=100°,则∠2=°.16.(3分)有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了.”问:两个牧童各有多少只羊?设甲牧童有x只羊,乙牧童有y只羊,可列方程组为.17.(3分)已知AB∥y轴,点A的坐标为(﹣2,3),且AB=3,则点B的坐标为.18.(3分)已知实数x,y同时满足三个条件:①3x﹣2y=4+p;②3y﹣2x=2﹣p;③x>y,那么实数p的取值范围是.三、解答题(本题共46分)19.(6分)解方程组:.20.(7分)解不等式组:并把它的解集在所给数轴上表示出来.21.(8分)如图,在由边长为1的小正方形组成的网格图中建立平面直角坐标系.(1)直接写出点D的坐标(,);(2)平移△ABC,使得点A与点D重合,请在坐标系中画出平移后的三角形,记为△DB1C1(其中B、C的对应点分别是B1、C1);(3)若P1(a,b)在线段DB1上,则其平移前的对应点P的坐标为(,).22.(6分)完成下面填空.已知:如图,AE平分∠BAD,AB∥CD,CD与AE相交于点F,∠CFE=∠E,求证:AD∥BC证明:∵AB∥CD(已知)∴∠1=∠(两直线平行,同位角相等)∵AE平分∠BAD(已知)∴∠1=∠(角平分线定义)又∵∠CFE=∠E(已知)∴∠=∠E(等量代换)∴AD∥BC()23.(9分)今年央视举办的“经典咏流传”节目受到中学生的广泛关注,某中学为了了解学生对观看“经典咏流传”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制了如下所示的两幅统计图.在条形统计图中,从左往右依次为A类(非常喜欢),B 类(较喜欢),C类(一般),D类(不喜欢),已知A类和B类所占人数比是5:9,请结合两幅统计图,回答下列问题:(1)此次抽样调查的样本容量是:.(2)请补全两幅统计图:并计算扇形统计图“D类(不喜欢)”部分的圆心角度数;(3)该校有2000名学生,请你估计对观看“经典咏流传”节目较喜欢的学生人数.24.(10分)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【分析】依据实数的分类进行判断即可.【解答】解:是开方开不尽的数,是无理数;0.1010010001是有限小数,是有理数;是开方开不尽的数,是无理数;是无理数.故选:B.【点评】本题主要考查的是实数的概念,熟练掌握实数的定义是解题的关键.2.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选:D.【点评】本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.3.【分析】依据平行线的三条判定定理,进行判断.【解答】解:A、B、∠1与∠2,∠3与∠4都不是直线AB与CD形成的同位角,所以不能判断直线AB∥CD,故错误;C、根据对顶角相等,可得∠1=∠5,∠4=∠6,又∠1+∠4=180°,∴∠5+∠6=180°,根据同旁内角互补,两直线平行可得AB∥CD,故正确;D、∠3+∠4=90°,不符合平行线的判断条件,所以不能判断直线AB∥CD,故错误;故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4.【分析】首先利用已知点确定原点位置,进而得出答案.【解答】解:如图所示:西单站的坐标为:(﹣5,0).故选:D.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.5.【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.【点评】本题考查了不等式的性质,.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变6.【分析】解决本题需要从统计图获取信息,由此关键是明确图表中数据的来源及所表示的意义,对选项一一分析,选择正确答案.【解答】解:A、2003年农村居民人均收入每年比上一年增长率低于2002年,但是,人均收入仍是增长,所以A错误;B、农村居民人均收入比上年增长率低于9%的有3年,所以B错误;C、农村居民人均收入比上年增长率最多时2004年,所以C错误;D、农村居民人均收入每年比上一年的增长率有大有小,但都在增长,故D正确.故选:D.【点评】本题考查的是折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.注意读图获取信息、分析问题解决问题的能力.7.【分析】依据算术平方根的性质、立方根的性质求解即可.【解答】解:==4,故A错误;=,3==,故B错误;﹣=﹣,故C正确;=2,故D错误.故选:C.【点评】本题主要考查的是立方根、平方根、算术平方根的概念,熟练掌握相关概念是解题的关键.8.【分析】根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG,求出∠EFG,即可求出答案.【解答】解:过F作FN∥AD,∵BC∥AD,∴BC∥AD∥FN,∴∠1=∠NFE=35°,∠2=∠NFG,∵∠G=90°,∠E=30°,∴∠EFG=60°,∴∠2=60°﹣25°=35°,故选:B.【点评】本题考查了平行线性质,三角形内角和定理的应用,关键是根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG.9.【分析】先求出不等式的解集,再根据不等式组有解即可得到关于a的不等式,求出a 的取值范围即可.【解答】解:,由①得,x>a﹣1;由②得,x≤2,∵此不等式组有解,∴a﹣1<2,解得a<3.故选:B.【点评】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.10.【分析】根据点A1、A2、A3、A4、A5、A6、A7、A8、…的坐标的变化,可找出A4n(2n,0)(n为正整数),再结合100=4×25,即可得出A100的坐标.【解答】解:∵A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),…,∴A4n(2n,0)(n为正整数).∵100=4×25,∴A100的坐标为(50,0).故选:C.【点评】本题考查了规律型中点的坐标,根据点的坐标的变化找出变化规律“A4n(2n,0)(n为正整数)”是解题的关键.二、填空题(本小题共8小题,每小题3分,共24分)11.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.【分析】理解:不小于4就是大于等于4.【解答】解:由题意可知5x+1≥4.故答案是:5x+1≥4.【点评】考查了由实际问题抽象出一元一次不等式.要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.13.【分析】将x与y的值代入方程即可求出a的值.【解答】解:将x=2,y=2代入方程得:2a﹣4=4,解得:a=4.故答案为:4【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.【分析】要先判断出<0,再根据绝对值的定义即可求解.【解答】解:∵<0∴||=2﹣.故答案为:2﹣.【点评】此题主要考查了绝对值的性质.要注意负数的绝对值是它的相反数.15.【分析】根据平行线的性质,即可得到∠3的度数,再根据平角的定义以及折叠的性质,即可得到∠2的度数.【解答】解:根据长方形的对边平行,可得∠1+∠3=180°,∵∠1=100°,∴∠3=80°,由折叠可得,∠2=∠4=(180°﹣80°)=50°,故答案为:50【点评】本题主要考查了平行线的性质以及折叠的性质,解题时注意:两直线平行,同旁内角互补.16.【分析】设甲牧童有x只羊,乙牧童有y只羊,根据题意列出方程组解答即可.【解答】解:设甲牧童有x只羊,乙牧童有y只羊,可得:,故答案为:,【点评】此题考查二元一次方程组的应用,解答此题的关键是弄清题意,设出未知数,再根据数量关系列出方程组解决问题.17.【分析】根据平行于y轴的点的横坐标相同可得点B的横坐标,再分点B在点A的上方与下方两种情况讨论求解.【解答】解:∵AB∥y轴,点A的坐标为(﹣2,3),∴点B的横坐标为﹣2,∵AB=3,∴点B在点A的上方时,点B的纵坐标为6,点B的坐标为(﹣2,6),点B在点A的下方时,点B的纵坐标为0,点B的坐标为(﹣2,0),综上所述,点B的坐标为(﹣2,6)或(﹣2,0)故答案为:(﹣2,6)或(﹣2,0)【点评】本题考查了坐标与图形性质,主要利用了平行于y轴的点的横坐标相同的性质,要注意分情况讨论,作出图形更形象直观.18.【分析】首先根据:①3x﹣2y=4+p,②3y﹣2x=2﹣p,用p表示出x、y;然后根据x >y,求出实数p的取值范围是多少即可.【解答】解:①×2+②×3,可得:5y=14﹣p,解得y=2.8﹣0.2p③,把③代入①,解得x=3.2+0.2p,∵x>y,∴3.2+0.2p>2.8﹣0.2p,解得p>﹣1.故答案为:p>﹣1.【点评】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.三、解答题(本题共46分)19.【分析】利用加减消元法求解可得.【解答】解:①+②×5,得:44y=660,解得:y=15,将y=15代入①,得:5x﹣15=110,解得:x=25,所以方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:解不等式①,得:x≥1,解不等式②,得:x<4,所以不等式组的解集为1≤x<4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.21.【分析】(1)直接利用平面直角坐标系得出D点坐标;(2)利用D点平移规律得出各对应点位置进而得出答案;(3)利用平移规律得出P点坐标.【解答】解:(1)点D的坐标为:(﹣2,3);故答案为:﹣2,3;(2)如图所示:△DB1C1即为所求;(3)P1(a,b)在线段DB1上,则其平移前的对应点P的坐标为:(a+3,b﹣2).故答案为:a+3,b﹣2.【点评】此题主要考查了平移变换,正确得出点的平移规律是解题关键.22.【分析】由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由AE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【解答】证明:∵AB∥DC(已知),∴∠1=∠CFE(两直线平行,同位角相等).∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义),∴∠CFE=∠2(等量代换).∵∠CFE=∠E(已知),∴∠2=∠E(等量代换),∴AD∥BC(内错角相等,两直线平行).故答案为:∠CFE;∠2;∠2;内错角相等,两直线平行.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.【分析】(1)根据统计图中的数据可以求得此次抽样调查的样本容量;(2)根据统计图中的数据可以求得选择C和D的人数,B和D所占的百分比从而可以将统计图补充完整,并求得扇形统计图“D类(不喜欢)”部分的圆心角度数;(3)根据统计图的数据可以求得对观看“经典咏流传”节目较喜欢的学生有多少人.【解答】解:(1)此次抽样调查的样本容量是:20÷20%=100,故答案为:100;(2)选择C的有:100×19%=19人,选择D的有:100﹣20﹣36﹣19=25人,B所占的百分比是:36÷100×100%=36%,D所占的百分比是:25÷100×100%=25%,补全的统计图如右图所示,扇形统计图“D类(不喜欢)”部分的圆心角度数是:360°×25%=90°;(4)2000×36%=720(人),答:对观看“经典咏流传”节目较喜欢的学生有720人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、样本容量,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.【分析】(1)根据用8000元购进了大樱桃和小樱桃各200千克,以及大樱桃的进价比小樱桃的进价每千克多20元,分别得出等式求出答案;(2)根据要想让第二次赚的钱不少于第一次所赚钱的90%,得出不等式求出答案.【解答】解:(1)设小樱桃的进价为每千克x元,大樱桃的进价为每千克y元,根据题意可得:,解得:,小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40﹣30)+(16﹣10)]=3200(元),∴销售完后,该水果商共赚了3200元;(2)设大樱桃的售价为a元/千克,(1﹣20%)×200×16+200a﹣8000≥3200×90%,解得:a≥41.6,答:大樱桃的售价最少应为41.6元/千克.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确表示出总费用是解题关键.一、七年级数学易错题1.如图,在直角坐标系中,已知点()()3,0,0,4A B -,对OAB ∆连续作旋转变换,,依次得到1,2,3,4?·····∆∆∆∆则2013∆的直角顶点的坐标为( )A .()8052,0B .()8040,0C .()8049,0D .()8048,0【答案】A 【解析】 【分析】根据勾股定理列式求出AB 的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2013除以3,根据商为671可知第2013个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可. 【详解】解:∵点A (-3,0)、B (0,4), ∴22345AB +=,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12, ∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点, ∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0). 故选:A .【点睛】本题考查点的坐标变化规律,注意观察图形,得到每三个三角形为一个循环组依次循环是解题的关键.2.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°【答案】B【解析】因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.3.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是()A.3B.4C.5D.6【答案】D【解析】【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1-a,0),C(1+a,0)(a>0),∴AB=1-(1-a)=a,CA=a+1-1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD 交⊙D 于P′,此时AP′最大,∵A (1,0),D (4,4), ∴AD=5, ∴AP′=5+1=6, ∴a 的最大值为6. 故选D . 【点睛】本题考查圆、最值问题、直角三角形性质等知识,解题的关键是发现PA=AB=AC=a ,求出点P 到点A 的最大距离即可解决问题,属于中考常考题型.4.已知关于x 、y 的方程组22331x y kx y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( ) A .①②③ B .①②④C .①③④D .②③④【答案】B 【解析】 【分析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可. 【详解】解:①把k=0代入方程组得:20231x y x y +=⎧⎨+=-⎩,解得:21x y =-⎧⎨=⎩, 代入方程得:左边=-2-2=-4,右边=-4,左边=右边,此选项正确; ②由x+y=0,得到y=-x ,代入方程组得:31x kx k -=⎧⎨-=-⎩,即k=3k-1,解得:12k =, 则存在实数12k =,使x+y=0,本选项正确;③22331x y k x y k +=⎧⎨+=-⎩,解不等式组得:321x k y k=-⎧⎨=-⎩,∵1y x ->-, ∴1(32)1k k --->-, 解得:1k <,此选项错误; ④x+3y=3k-2+3-3k=1,本选项正确; ∴正确的选项是①②④; 故选:B. 【点睛】此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.5.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③【答案】C 【解析】 【分析】 【详解】解:①∵∠B+∠BCD=180°, ∴AB ∥CD ; ②∵∠1=∠2, ∴AD ∥BC ; ③∵∠3=∠4, ∴AB ∥CD ; ④∵∠B=∠5, ∴AB ∥CD ;∴能得到AB ∥CD 的条件是①③④. 故选C . 【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行; 同位角相等,两直线平行.6.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是( ) A .12x y =⎧⎨=⎩ B .34x y =⎧⎨=⎩C .10103x y =⎧⎪⎨=⎪⎩D .510x y =⎧⎨=⎩【答案】D 【解析】 【分析】 将方程组变形,设32,55x y m n ==,结合题意得出m=3,n=4,即可求出x ,y 的值. 【详解】 解:方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可以变形为:方程组11122232··5532··55xy a b c x y a b c ⎧+=⎪⎪⎨⎪+=⎪⎩ 设32,55x ym n ==, 则方程组可变为111222····a m b n c a m b n c +=⎧⎨+=⎩, ∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩, ∴方程组111222····a m b n c a m b n c +=⎧⎨+=⎩的解是34m n =⎧⎨=⎩, ∴323,455x y ==,解得:x=5,y=10, 故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.弄清题意是解本题的关键.7.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为()A.12 B.13 C.14 D.15【答案】C【解析】【分析】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),结合图形找出部分a n的值,根据数值的变化找出变化规律“a n=n”,再罗列出部分S n的值,根据数值的变化找出变化规律()12nn nS+=,依次变化规律解不等式()11002n n+≥即可得出结论.【详解】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),观察,发现规律:a1=1,a2=2,a3=3,…,∴a n=n.S1=a1=1,S2=a1+a2=3,S3=a1+a2+a3=6,…,∴S n=1+2+…+n=()12n n+.当100≤S n,即100≤()12n n+,解得:12201n+≤﹣(舍去),或2201n≥﹣1.∵220114﹣113<,故选:C.【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“()12nn nS+=”.8.已知点A(3a,2b)在x轴上方,在y轴左侧,则点A到x轴、y的距离分别为() A.3a,-2b B.-3a,2b C.2b,-3a D.-2b,3a【答案】C【解析】【分析】应先判断出点A的横纵坐标的符号,进而判断点A到x轴、y轴的距离.【详解】∵点A(3a,2b)在x轴上方,∴点A的纵坐标大于0,得到2b>0,∴点A到x轴的距离是2b;∵点A(3a,2b)在y轴的左边,∴点A的横坐标小于0,即3a<0,∴点A到y轴的距离是-3a;故答案为C.【点睛】本题主要考查点的坐标的几何意义,到x轴的距离就是纵坐标的绝对值,到y轴的距离就是横坐标的绝对值.9.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A.1. B.2. C.3. D.4.【答案】C【解析】【分析】【详解】解:设1分的硬币有x枚,2分的硬币有y枚,则5分的硬币有(15-x-y)枚,可得方程x+2y+5(15-x-y)=35,整理得4x+3y=40,即x=10-34 y,因为x ,y 都是正整数,所以y=4或8或12,所以有3种装法,故选C.10.现有如图(1)的小长方形纸片若干块,已知小长方形的长为a ,宽为b .用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm ,则图(3)中阴影部分面积与整个图形的面积之比为( )A .15B .16C .17D .18【答案】B【解析】【分析】观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比.【详解】解:根据题意、结合图形可得:330433a b a a b +=⎧⎨=+⎩, 解得:155a b =⎧⎨=⎩, ∴阴影部分面积223()310300=-=⨯=a b ,整个图形的面积304304151800=⨯=⨯⨯=a , ∴阴影部分面积与整个图形的面积之比300118006==, 故选B .【点睛】本题考查了二元一次方程组的应用,理解题意并利用大长方形的长与宽和小长方形的关系建立二元一次方程组是解题的关键.11.如果关于x 的不等式组02443x m x x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为4x >,且整数m 使得关于x y 、的二元一次方程组831mx y x y +=⎧⎨+=⎩的解为整数(x y 、均为整数),则符合条件的所有整数m 的和是( )A .2-B .2C .6D .10【答案】B【解析】【分析】 根据不等式组求得m ≤4,再解方程组求出732113x m y m ⎧=⎪⎪-⎨⎪=-⎪-⎩,根据x y 、均为整数得到整数m=4、2、-4,即可得到答案.【详解】 解不等式02x m ->得x m >, 解不等式443x x --<-得4x >, ∴m ≤4, 解方程组831mx y x y +=⎧⎨+=⎩得732113x m y m ⎧=⎪⎪-⎨⎪=-⎪-⎩, ∵x y 、均为整数,m-3是7的因数,∴m-3=1、-1、-7,7,即m=4、2、-4,10(舍去)符合条件的所有整数m 的和是4+2-4=2,故选:B.【点睛】此题考查解不等式组,解方程组,因式分解,解题中求出方程组的解,确定m-3是7的因数是解题的关键,由此根据m 的取值范围求出符合条件的所有整数m 的值.12.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为() A .0B .1C .2D .与m 有关 【答案】A【解析】 根据题意可得()()22**11b b a a b b a a b b a a -=---=--+,又因为a ,b 是方程2104x x m -+=的两根,所以2104a a m -+=,化简得214a a m -=-,同理2104b b m -+=,214b b m -=-,代入上式可得()()222211044b b a a b b a a m m ⎛⎫⎛⎫--+=--+-=--+-= ⎪ ⎪⎝⎭⎝⎭,故选A .13.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( ) A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁【答案】A【解析】【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解.【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得: 1025x y y x y x-=-⎧⎨-=-⎩ 即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁.【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.14.如图所示,A1(1,3),A2(32,3),A3(2,3),A4(3,0).作折线A1A2A3A4关于点A4的中心对称图形,再做出新的折线关于与x轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线一每秒1个单位的速度移动,设运动时间为t.当t=2020时,点P的坐标为()A.(10103B.(20203C.(2016,0)D.(10103【答案】A【解析】【分析】把点P从O运动到A8作为一个循环,寻找规律解决问题即可.【详解】由题意OA1=A3A4=A4A5=A7A8=2,A1A2=A2A3=A5A6=A6A7=1,∴点P从O运动到A8的路程=2+1+1+2+2+1+1+2=12,∴t=12,把点P从O运动到A8作为一个循环,∵2020÷12=168余数为4,∴把点A3向右平移168×3个单位,可得t=2020时,点P的坐标,∵A3(23,168×6=1008,1008+2=1010,∴t=2020时,点P的坐标(10103,【点睛】本题考查坐标与图形变化,规律型问题等知识,解题的关键是学会探究规律的方法.15.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有﹣个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8D.8x<5x+12<8【答案】C【解析】设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选C.16.设边长为3的正方形的对角线长为a,下列关于a的四种说法:① a是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a是18的算术平方根.其中,所有正确说法的序号是A.①④B.②③C.①②④D.①③④【答案】C【解析】根据勾股定理,边长为3的正方形的对角线长为a=①正确.根据实数与数轴上的一点一一对应的关系,a可以用数轴上的一个点来表示,故说法②正确.∵216<a18<25=,∴4<a=,故说法③错误.∵2a18=,∴根据算术平方根的定义,a是18的算术平方根,故说法④正确.综上所述,正确说法的序号是①②④.故选C.17.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()。
安庆市2015年第一学期期末教学质量调研监测七年级数学试题参考答案

18. (1)原式 = 2x( x2 16)
········ 6 分 ·········· 8 分
········· 2 分
= 2x( x 4)( x 4)
········· 4 分
( 2)原式 = 9x2 ( y 2) 2
=( 3x+y-2 ) (3x-y+2)
·······2 分 ········· 4 分
x2
经检验: x=2 是原方程的解。
······· 6 分 ······· 12 分 ······ 2 分 ······ 5 分 ······ 9 分
······14 分
10
2x
x
x 套玩具,由题意得:
解得, x=200
经检验 x=200 是原方程的根.
2x+x=2 × 200+200=600( 套 )
所以动漫公司两次共购进这种玩具 600 套
(2)设每套玩具的售价 y 元,由题意得:
600y 32000 68000 20%
32000 68000
解这个不等式, y≥ 200
16. 由①得: x
5 4
由 ②得: x 3
所以,不等式组的解集为: 整数解为 x=-1,0,1,2 ,·
········· 8 分
···········2 分
· ········· 4 分
5 - x3
4
·········· 6 分 ······· 8 分
17.
2-x-1=x-3
X=2 检验:当 x=2 时, x-3 ≠0.
∴EF∥ AB
∴∠ 3=∠ ADE
∵∠ 3=∠ B,
∴∠ B=∠ ADE
青海省西宁市 七年级数学上学期期末考试试题含解析新人教版

青海省西宁市2015-2016学年七年级数学上学期期末考试试题一、选择题(共6小题,每小题3分,满分18分)1.+8﹣9=()A.+1 B.﹣1 C.﹣17 D.+17.单项式﹣πxy的次数为(2 3 .4 D.﹣ CA.﹣ B.2)) 3.若a=b,则下列式子错误的是( 11=5b﹣D.5a﹣a2=b﹣2 C﹣A.﹣. a=b B..一元一次方程x﹣1=2的解表示在数轴上,是图中数轴上的哪个点( 4)A.D点 B.C点 C.B点 D.A点CD=DECD=2CE;④.其中能表上,下面的等式:①CE=DE;②;③DE=CD5.点E在线段CD示E是CD中点的有()A.1个 B.2个 C.3个 D.4个6.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A.2 B.2或2.25 C.2.5 D.2或2.5二、填空题(共8小题,每小题2分,满分16分).的倒数是 7 .8.绝对值是3的数是.9.西宁市2015﹣2016学年度第一学期初一年级参加期末考试人数约为1.2万人,将1.2万人用科学记数法表示为人.10.54°36′的余角为.11.已知关于x的方程1﹣a(x+2)=2a的解是x=﹣3,则a的值是..若2xy与4xy可以合并,则m+n= .3m﹣1222n1213.点A,B,C在同一条直线上,AB=6cm,BC=2cm,则AC= .14.如图,用大小相等的小正方形拼大正方形,拼第(1)个大正方形要4个小正方形,拼第(2)个需要9个小正方形…,想一想,按照这样的方法拼成的第n个大正方形由个小正方形拼成.三、解答题(共8小题,满分66分).15.计算﹣2÷22×(﹣).计算:25×.161.5x+2)﹣((1﹣0.5x)=.解方程:172.解方程:.18y=3.)的值,其中)xx19.求2(+y)﹣(y﹣xx+(y﹣yx=122222222﹣,平分∠AOE,∠COF=34°,求OFOAB20.如图,已知直线和CD相交于点,∠COE是直角,∠BOD 的度数.21.西宁市为了鼓励市民节约用水制定阶梯收取水费,每月每户如果用水量没超过10立方米,则每立方米水费为2.5元;每月每户如果用水量超过10立方米,超过的部分每立方米在原单价的基础上增加20%收费.张清家12月份共交水费49元,请问张清家12月份用水多少立方米?222.(1)如图1,点C是线段AB上的一点,AB=10,点M,N分别为AC,CB的中点,MN为多少?请说明理由.(2)如图2,点C,D是线段AB上的两点,AB=10,CD=4,点M,N分别为AC,DB的中点,MN 为多少?请说明理由.32015-2016学年青海省西宁市七年级(上)期末数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.+8﹣9=()A.+1 B.﹣1 C.﹣17 D.+17【考点】有理数的减法.【分析】先将减法转化为加法,然后再利用加法法则计算即可.【解答】解:+8﹣9=8+(﹣9)=﹣(9﹣8)=﹣1.故选:B.【点评】本题主要考查的是有理数的减法,掌握有理数的减法法则是解题的关键..单项式﹣πxy的次数为(2 3 .4 D.﹣ CA..﹣ B 单项式.【考点】根据单2)项式次数的定义进行解答即可.【分析】2.πxy的次数为3【解答】解:单项式﹣.故选D 熟知一个单项式中所有字母的指数的和叫做单项式的次数是本题考查的是单项式,【点评】解答此题的关键.),则下列式子错误的是( 3.若a=b 1 ﹣1=5b﹣.﹣ D.AC.b a=B.a﹣2=b﹣2 5a 【考点】等式的性质.,等式【分析】根据等式的基本性质:等式的两边同时加上(或减去)同一个数(或字母),等式仍成立.即可0的数(或字母)仍成立;等式的两边同时乘以(或除以)同一个不为解决.错误;,右边乘以,故解:【解答】AA、左边乘以正确;2,故BB、两边都减,故CC正确;、两边都乘以﹣ D正确;、两边都乘以5,再都减1,故D .故选:A结果仍相等;(或减)等式的两边加同一个数(或式子)【点评】本题考查的是等式的性质:0)结果仍相等.等式的两边同乘(或除以)同一个数(除数不为的解表示在数轴上,是图中数轴上的哪个点(﹣4.一元一次方程x1=2 )4点.AB点 D点 B.C点 C.A.D 解一元一次方程;数轴.【考点】【专题】计算题;一次方程(组)及应用. 1求出方程的解,即可作出判断.【分析】去分母,移项合并,把x系数化为2=4,【解答】解:方程去分母得:x﹣ x=6,解得: D点,把方程的解表示在数轴上,是图中数轴上的A故选【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键..其中能表;③CD=2CE;④CD=上,下面的等式:①CE=DE;②DE=CD5.点E在线段CDDE )CD 中点的有(示E是个D.4 个C.3个 A.1个 B.2 两点间的距离.【考点】推理填空题.【专题】由.分成两段长度相等的线段.即:CE=DE的中点,则点E将线段CD【分析】点E如果是线段CD 此性质可判断出哪一项符合要求.,故①正确;的中点,则CE=DE【解答】解:假设点E是线段CD的中点,故②正确;是线段CDCE=CD,点当EDE=CD时,则 CD的中点,故③正确;E﹣CE=CE,点是线段当CD=2CE,则DE=2CE CD的中点,故④不正确;DE,点E不是线段④CD= 综上所述:①、②、③正确,只有④是错误的. C.故选:【点评】本题考点:线段中点的性质,线段的中点将线段分成两个长度相等的线段.两地同时出发,相向而行.已知甲车B千米,甲、乙两车分别从450A、6.A、B两地相距的值t 千米.则t/小时,经过小时两车相距50/速度为120千米小时,乙车速度为80千米)是(2.5 2或.2.5 D..A.2 B2或2.25 C 【考点】一元一次方程的应用.千米,第二次应该是相遇后交错应该有两种情况,第一次应该还没相遇时相距50【分析】速度×时间,可列方程求解.50千米,根据路程=离开相距千米,根据题意,得小时两车相距50【解答】解:设经过t120t+80t=450+50,﹣120t+80t=45050,或.,或解得t=2t=2.5 50千米.小时相距答:经过2小时或2.5 .故选D能够根本题考查了一元一次方程的应用,解决问题的关键是能够理解有两种情况、【点评】据题意找出题目中的相等关系.5二、填空题(共8小题,每小题2分,满分16分)..的倒数是 7【考点】倒数.【专题】推理填空题.【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣1).)﹣.1【解答】解:﹣ 1的倒数为:1÷(﹣)=1÷(﹣故答案为:﹣.【点评】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数.8.绝对值是3的数是±3 .【考点】绝对值.【分析】根据绝对值的性质得|3|=3,|﹣3|=3,故求得绝对值等于3的数.【解答】解:因为|3|=3,|﹣3|=3,所以绝对值是3的数是±3,故答案为:±3.【点评】本题主要考查了绝对值的性质,掌握绝对值性质的逆向运用是解答此题的关键.9.西宁市2015﹣2016学年度第一学期初一年级参加期末考试人数约为1.2万人,将1.24万人用科学记数法表示为 1.2×10 人.【考点】科学记数法—表示较大的数.科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确定n的值时,n【分析】要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将1.2万用科学记数法表示为1.2×10.4【解答】1.2×10.4故答案为:点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中1≤|a| n【<10,n为整数,表示时关键要正确确定a的值以及n的值.10.54°36′的余角为 35°24′.【考点】余角和补角;度分秒的换算.【分析】根据余角的定义列出算式,然后再进行计算即可.【解答】解:90°﹣54°36′=35°24′.故答案为:35°24′.【点评】本题主要考查的是余角的定义和度分秒的换算,掌握余角的定义以及度分秒的换算是解题的关键.11.已知关于x的方程1﹣a(x+2)=2a的解是x=﹣3,则a的值是 1 .【考点】一元一次方程的解.【分析】把x=﹣3代入方程即可得到一个关于a的方程,解方程求得a的值.6【解答】解:把x=﹣3代入方程得:1+a=2a,解得:a=1.故答案是:1.【点评】本题考查了方程的解的定义,方程的解是能使方程左右两边相等的未知数的值,理解定义是关键..若2xy与4xy可以合并,则m+n= 2 .3m﹣1222n12【考点】同类项.【分析】根据同类项是字母项相同且相同字母的指数也相同,可得m、n的值,根据有理数的加法,可得答案.解:2xy与4xy可以合并,得3m﹣1222n【解答】3m﹣1=2,2n=2.解得m=1,n=1,m+n=1+1=2.故答案为:2.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.点A,B,C在同一条直线上,AB=6cm,BC=2cm,则AC= 4cm或8cm .【考点】两点间的距离.【分析】A、B、C在同一条直线上,则C可能在线段AB上,也可能C在AB的延长线上,应分两种情况进行讨论.【解答】解:当C在线段AB上时:AC=AB﹣BC=6﹣2=4cm;当C在AB的延长线上时,AC=AB+BC=6+2=8cm.故答案为:4cm或8cm.【点评】此题主要考查了两点之间的距离求法,求线段的长度,能分两种情况进行讨论是解决本题的关键.14.如图,用大小相等的小正方形拼大正方形,拼第(1)个大正方形要4个小正方形,拼第(2)个需要9个小正方形…,想一想,按照这样的方法拼成的第n个大正方形由(n+1)2个小正方形拼成.【考点】规律型:图形的变化类.【分析】首先根据图形中小正方形的个数规律得出变化规律,进而得出答案.解:∵第一个图形有2=4个正方形组成,2【解答】3=9个正方形组成,2第二个图形有4=16个正方形组成,2第三个图形有n个图形有(n+1)个正方形组成,2∴第(n+1).2故答案为:【点评】此题主要考查了图形的变化类,根据图形得出小正方形的变化规律是解题关键.7三、解答题(共8小题,满分66分)15.计算﹣2÷.×(﹣【考点】有理数的混合运算.【分析】首先进行乘方运算、同时22)把除法运算转化为乘法运算,然后进行乘法运算即可. =【解答】解:原式﹣4×﹣9×=﹣=.认真【点评】本题主要考查有理数的混合运算,乘方运算,关键在于正确地进行乘法运算,的进行计算..计算:25×16.【考点】有理数的乘法.【分析】根据有理数的乘法,应用乘法的分配律,即可解答.)【解答】解:原式=25×(=25×(﹣)=﹣5.【点评】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法法则.17.解方程:2(1﹣0.5x)=﹣(1.5x+2)【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:2﹣x=﹣1.5x﹣2,移项合并得:0.5x=﹣4,解得:x=﹣8.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键..解方程:. 18【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:7(2x﹣1)=42﹣3(3x+1),去括号得:14x﹣7=42﹣9x﹣3,移项合并得:23x=46,解得:x=2.8【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键..)y+(xy﹣)的值,其中x=1,y=﹣x(19.求2x+y)﹣(xy﹣【考点】整式的加减—22222222 3化简求值.【专题】计算题;整式.的值代入计算即可求出值.原式去括号合并得到最简结果,把【分析】x与y2222222222+y,=x+2y﹣xy+x+y﹣yx=2x【解答】解:原式 x=1,y=﹣3=+=16时,原式.当此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.【点评】平分∠AOE,∠COF=34°,求OF点,∠COECD相交于O是直角,和20.如图,已知直线AB ∠BOD的度数.【考点】角平分线的定义.【专题】计算题.【分析】利用图中角与角的关系即可求得.【解答】解:∵∠COE是直角,∠COF=34°∴∠EOF=90°﹣34°=56°又∵OF平分∠AOE∴∠AOF=∠EOF=56°∵∠COF=34°∴∠AOC=56°﹣34°=22°则∠BOD=∠AOC=22°.故答案为22°.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.21.西宁市为了鼓励市民节约用水制定阶梯收取水费,每月每户如果用水量没超过10立方米,则每立方米水费为2.5元;每月每户如果用水量超过10立方米,超过的部分每立方米在原单价的基础上增加20%收费.张清家12月份共交水费49元,请问张清家12月份用水多少立方米?【考点】一元一次方程的应用.【分析】可设张清家12月份用水x立方米,根据张清家12月份共交水费49元列出方程计算即可.【解答】解:设张清家12月份用水x立方米,依题意有2.5×10+2.5×(1+20%)(x﹣10)=49,9解得x=18.答:张清家12月份用水18立方米.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.(1)如图1,点C是线段AB上的一点,AB=10,点M,N分别为AC,CB的中点,MN为多少?请说明理由.(2)如图2,点C,D是线段AB上的两点,AB=10,CD=4,点M,N分别为AC,DB的中点,MN为多少?请说明理由.【考点】两点间的距离.【分析】(1)根据线段中点的性质,可得MC,NC的长,根据线段的和差,可得答案;(2)根据线段的和差,可得(AC+BD)的长,根据线段中点的性质,可得(MC+ND)的长,根据线段的和差,可得答案.【解答】解:(1)MN=5,理由如下:由点M,N分别为AC,CB的中点,得NC=BC. MC=AC,由线段的和差,得=×10=5; MN=MC+NC=(AC+BC)(2)MN=7,理由如下:由线段的和差,得AC+BD=AB﹣CD=10﹣4=6.由点M,N分别为AC,DB的中点,得DN=DB.AC, MC=由线段的和差,得+CD=×6+4=7. MN=MC+CD+DN=(AC+DB)【点评】本题考查了两点间的距离,利用线段的和差得出(MC+CD+DN)是解题关键.1020XX—019学年度第一学期生物教研组工作计划指导思想以新一轮课程改革为抓手,更新教育理念,积极推进教学改革。
人教版数学七年级上册第3章:一元一次方程 期末巩固练习(一)

【一元一次方程】期末巩固练习(一)一.选择题1.若关于x的一元一次方程2x﹣k+4=0的解是x=3,那么k的值是()A.4B.5C.6D.102.下列变形错误的是()A.若a=b,则a+c=b+c B.若ab=ac,则b=cC.若a=b,则=D.若=,则a=b3.若方程5x﹣1=m+4的解是x=2,则m的值为()A.26B.10C.D.4.对于两个不相等的有理数a,b,我们规定符号max{a,b}表示a,b两数中较大的数,例如max{2,4}=4.按照这个规定,那么方程max{x,﹣x}=3x﹣2的解为()A.B.1C.1或D.或5.已知一个长方形的周长为30cm,若长方形的长减少1cm,宽扩大为原来的2倍后成为一个正方形,设原来长方形的长为xcm,则可列方程()A.x﹣1=2(15﹣x)B.x﹣1=2(30﹣x)C.x﹣1=(15﹣x)D.x﹣1=(30﹣x)6.下列解方程过程正确的是()A.2x=1系数化为1,得x=2B.x﹣2=0解得x=2C.3x﹣2=2x﹣3移项得3x﹣2x=﹣3﹣2D.x﹣(3﹣2x)=2(x+1)去括号得x﹣3﹣2x=2x+17.一元一次方程+++=4的解为()A.30B.24C.21D.128.已知关于x的方程a﹣x=+3a的解是x=4,则代数式3a+1的值为()A.﹣5B.5C.8D.﹣89.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.610.如图所示,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边()上.A.AB B.BC C.CD D.DA二.填空题11.规定新运算:a*b=a(ab+4).已知算式3*x=2*(﹣2),x=.12.若关于x的一元一次方程ax+3=x+7的解是正整数,则整数a的值为.13.若4x+1与7﹣2x的值相等,则x=.14.若x=2是方程3x﹣4=﹣a的解,则a2019+的值是.15.若关于x的方程(k﹣2)x|k﹣1|+5k+4=0是一元一次方程,则k+x=.三.解答题16.解方程:(1)2x﹣1=3;(2)﹣x﹣5=4;(3)﹣=1;(4)[(t﹣)﹣8]=t﹣1.17.为方便市民出行,减轻城市中心交通压力,青岛市掀起一轮城市基础设施建设高潮,动工修建贯穿东西、南北的地铁1、2、3、11号线,已知修建地铁2号线32千米和3号线66千米共投资581.6亿元,且3号线每千米的平均造价比2号线每千米的平均造价多0.2亿元.(1)求2号线、3号线每千米的平均造价分别是多少亿元?(2)除地铁1、2、3、11号线外,青岛市政府规划未来五年,还要再建182千米的地铁线网,据预算,这182千米地铁线网每千米的平均造价是3号线每千米的平均造价的1.2倍,则还需投资多少亿元?18.一艘船从甲码头到乙码头顺流而行,用了2h;从乙码头返回甲码头逆流而行,用了2.5h.已知水流的速度是3km/h.(1)求船在静水中的平均速度;(2)一个小艇从甲码头到乙码头所用时间是从乙码头到甲码头所用时间的一半,求小艇从甲码头到乙码头所用时间.19.用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab﹣b.如:1*3=1×32+2×1×3﹣3=12.(1)求(﹣2)*4的值;(2)若(x﹣1)*3=12,求x的值;(3)若m=*(2x),n=(2x﹣1)*2(其中x为有理数),试比较m、n大小关系,并说明理由.20.如图,数轴上有两点A,B,点A表示的数为2,点B在点A的左侧,且AB=6.动点P从点A 出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动时间为t秒(t>0).(1)填空:数轴上点B表示的数为,点P表示的数为(用含t的式子表示);(2)经过多长时间,P、B两点之间相距8个单位长度?(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动.若点P,R同时出发,经过多长时间,P,R之间的距离为2个单位长度?。
四川省资阳市简阳市度七年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中七年级全册数学试题

某某省资阳市简阳市2015-2016学年度七年级数学上学期期末考试试题一、单项选择题:每小题3分,共30分1.的相反数是()A.2 B.﹣2 C.﹣D.2.用面值1元的纸币换成面值为1角或5角的硬币,则换法共有()A.4种B.3种C.2种D.1种3.如图,从A到B最短的路线是()A.A﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F﹣E﹣B4.下列计算:①0﹣(﹣5)=﹣5;②(﹣3)+(﹣9)=﹣12;③;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个5.若M=4x2﹣5x+11,N=3x2﹣5x+10,则M和N的大小关系是()A.M>N B.M=N C.M<N D.无法确定6.下列说法中,正确的是()A.3是单项式B.﹣的系数是﹣3,次数是3C.不是整式D.多项式2x2y﹣xy是五次二项式7.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90° B.105°C.120°D.135°8.如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C等于()A.35° B.75° C.70° D.80°9.观察下列图形,其中不是正方体的展开图的为()A.B.C.D.10.日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0,1,如二进制数1101记为11012,11012通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿照上面的转换方法,将二进制数111012转换为十进制数是()A.4 B.25 C.29 D.33二、填空题:每小题3分,共18分11.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=.12.多项式ab3﹣3a2b﹣a3b﹣3按字母a降幂排列是.13.矩形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是.14.如图所示,用两个相同的三角形按照如图方式作平行线,能解释其中道理的定理是.15.如果实数a满足a﹣|a|=2a,那么下面三个结论中正确的有.①a>0;②a<0;③a=0.16.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.三、解答题:共52分17.计算:[(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2|18.如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,求∠CAE的度数.19.如图所示,∠ABC=80°,∠CBD=30°,BE平分∠ABD.求∠CBE的度数.20.一家三人(父亲、母亲、女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母买全票价,女儿按半价优惠”,乙方旅行社告知:“家庭旅游可按团体票计价,即每人均按全票价的收费”,如果这两家旅行社每人的全票价都为600元,那么哪家旅行社的费用更优惠?21.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?22.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变.某某省资阳市简阳市2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、单项选择题:每小题3分,共30分1.的相反数是()A.2 B.﹣2 C.﹣D.【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数互为相反数解答即可.【解答】解:的相反数是﹣.故选C.【点评】本题考查相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.属于基础题型,比较简单.2.用面值1元的纸币换成面值为1角或5角的硬币,则换法共有()A.4种B.3种C.2种D.1种【考点】二元一次方程的应用.【专题】应用题;压轴题.【分析】设1角的硬币为x个,5角的硬币为y个,根据面值是1元,即10角列二元一次方程,求其非负整数解即可.【解答】解:设1角的硬币为x个,5角的硬币为y个,则x+5y=10,即x=10﹣5y,∵x,y是非负整数,∴x=0,5,10,y=2,1,0.故换法共有3种.故选B.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求其整数解.3.如图,从A到B最短的路线是()A.A﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F﹣E﹣B【考点】两点间的距离.【分析】根据题图,要从A地到B地,一定要经过E点且必须经过线段EB,所以只要考虑A到E的路线最短即可,根据“两点之间线段最短“的结论即可解答.【解答】解:根据图形,从A地到B地,一定要经过E点且必须经过线段EB,所以只要找出从A到E的最短路线,根据“两点之间线段最短“的结论,从A到E的最短路线是线段AE,即A﹣F﹣E,所以从A地到B地最短路线是A﹣F﹣E﹣B.故选:D.【点评】此题主要考查了两点间的距离,关键时尽量缩短两地之间的里程.4.下列计算:①0﹣(﹣5)=﹣5;②(﹣3)+(﹣9)=﹣12;③;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】有理数的除法;有理数的加法;有理数的减法;有理数的乘法.【分析】分别根据有理数的减法、加法、乘法、除法法则计算各式,然后判断.【解答】解:①0﹣(﹣5)=5,错误;②(﹣3)+(﹣9)=﹣12,正确;③,正确;④(﹣36)÷(﹣9)=4,错误.故选B.【点评】本题考查了有理数的加、减、乘、除运算法则.注意确定运算的符号.5.若M=4x2﹣5x+11,N=3x2﹣5x+10,则M和N的大小关系是()A.M>N B.M=N C.M<N D.无法确定【考点】整式的加减;非负数的性质:偶次方.【分析】利用作差法比较M与N的大小即可.【解答】解:∵M=4x2﹣5x+11,N=3x2﹣5x+10,∴M﹣N=(4x2﹣5x+11)﹣(3x2﹣5x+10)=4x2﹣5x+11﹣3x2+5x﹣10=x2+1>0,∴M>N.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.6.下列说法中,正确的是()A.3是单项式B.﹣的系数是﹣3,次数是3C.不是整式D.多项式2x2y﹣xy是五次二项式【考点】单项式;多项式.【分析】根据单项式和多项式的概念求解.【解答】解:A、3是单项式,故本选项正确;B、﹣的系数是﹣,次数是3,故本选项错误;C、是整式,故本选项错误;D、多项式2x2y﹣xy是三次二项式,故本选项错误.故选A.【点评】本题考查了单项式的知识:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.7.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90° B.105°C.120°D.135°【考点】钟面角.【分析】钟表12个数字,每相邻两个数字之间的夹角为30度.【解答】解:∵1个小时在时钟上的角度为180°÷6=30°,∴3.5个小时的角度为30°×3.5=105°.故选B.【点评】本题主要考查角度的基本概念.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.8.如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C等于()A.35° B.75° C.70° D.80°【考点】三角形内角和定理;平行线的性质.【专题】计算题.【分析】利用平行线的性质和三角形内角和的定理即可求得.【解答】解:∵∠A=35°,∠AOB=75°,根据三角形的内角和是180°,∴∠B=70°.∵AB∥CD,根据两条直线平行,内错角相等,∴∠C=∠B=70°.故选C.【点评】考查了平行线的性质:两条直线平行,内错角相等.以及三角形的内角和定理:三角形的内角和是180°.9.观察下列图形,其中不是正方体的展开图的为()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体,而D选项,上底面不可能有两个,故不是正方体的展开图.故选D.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.10.日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0,1,如二进制数1101记为11012,11012通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿照上面的转换方法,将二进制数111012转换为十进制数是()A.4 B.25 C.29 D.33【考点】有理数的混合运算.【专题】新定义.【分析】由题意知,111012可表示为1×24+1×23+1×22+0×2+1,然后通过计算,所得结果即为十进制的数.【解答】解:∵11012通过式子1×23+1×22+0×2+1转换为十进制数13,∴111012=1×24+1×23+1×22+0×2+1=29.故选C.【点评】本题考查二进制和十进制之间的转换.需注意观察所给例题及二进制数的特点.二、填空题:每小题3分,共18分11.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c= 2或0 .【考点】有理数的加减混合运算;绝对值.【专题】计算题.【分析】先利用绝对值的代数意义求出a,b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果.【解答】解:∵|a|=1,|b|=2,|c|=3,∴a=±1,b=±2,c=±3,∵a>b>c,∴a=﹣1,b=﹣2,c=﹣3或a=1,b=﹣2,c=﹣3,则a+b﹣c=2或0.故答案为:2或0【点评】此题考查了有理数的加减混合运算,以及绝对值,确定出a,b及c的值是解本题的关键.12.多项式ab3﹣3a2b﹣a3b﹣3按字母a降幂排列是﹣a3b﹣3a2b+ab3﹣3 .【考点】多项式.【专题】计算题.【分析】根据多项式次数的定义求解.【解答】解:多项式ab3﹣3a2b﹣a3b﹣3按字母a降幂排列是:﹣a3b﹣3a2b+ab3﹣3.故答案为:﹣a3b﹣3a2b+ab3﹣3.【点评】本题考查了多项式的定义,解题的关键是熟练掌握定义,并能灵活运用.13.矩形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是.【考点】列代数式.【专题】压轴题.【分析】能射进阳光部分的面积=长方形的面积﹣直径为2b的半圆的面积.【解答】解:能射进阳光部分的面积=2ab﹣πb2.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.阴影部分的面积一般应整理为一个规则图形的面积.14.如图所示,用两个相同的三角形按照如图方式作平行线,能解释其中道理的定理是内错角相等,两直线平行.【考点】平行线的判定.【专题】应用题.【分析】根据图形知道已知∠PAB=∠ACD,利用内错角相等,判断两直线平行.【解答】解:∵∠PAB=∠ACD,∴CD∥AP(内错角相等,两直线平行).【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.15.如果实数a满足a﹣|a|=2a,那么下面三个结论中正确的有②③.①a>0;②a<0;③a=0.【考点】绝对值.【分析】根据a≤0时,|a|=﹣a,即可得出结论.【解答】解:∵实数a满足a﹣|a|=2a,∴|a|=﹣a,即a<0,∴②正确,∵当a=0时,实数a满足a﹣|a|=2a=0,∴③正确,故答案为:②③.【点评】本题主要考查了绝对值的定义,解答本题的关键是熟练掌握:如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.16.根据如图所示的程序计算,若输入x的值为1,则输出y的值为 4 .【考点】代数式求值.【专题】图表型.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y 的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y 的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.【点评】解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.三、解答题:共52分17.计算:[(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2|【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算法则首先计算乘方,然后计算乘除,最后计算加减,同级别运算从左向右进行计算,即可得出结果.【解答】解:[(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2|=[﹣1++1﹣18]÷|﹣2×|=﹣÷=﹣【点评】题目考查了有理数的混合运算,解决此类问题的关键是掌握有理数混合运算法则,题目整体难易程度适中,适合课后训练.18.如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,求∠CAE的度数.【考点】平行线的性质.【分析】过点C作CF∥BD,根据两直线平行,内错角相等即可求解.【解答】解:过点C作CF∥BD,则CF∥BD∥AE,∴∠BCF=∠DBC=20°,∵∠C=90°,∴∠FCA=90°﹣20°=70°,∵CF∥AE,∴∠CAE=∠FCA=70°.答:∠CAE的度数为70°.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等.正确作出辅助线是解题的关键.19.如图所示,∠ABC=80°,∠CBD=30°,BE平分∠ABD.求∠CBE的度数.【考点】角的计算;角平分线的定义.【分析】首先求得∠ABD的度数,然后根据角平分线的定义求得∠EBD的度数,然后根据∠CBE=∠EBD ﹣∠CBD求解.【解答】解:∠ABD=∠ABC+∠CBD=80°+30°=110°;∵BE是∠ABD的平分线,∴∠EBD=∠ABD=55°,∴∠CBE=∠EBD﹣∠CBD=55°﹣30°=25°.【点评】本题考查了角度的计算,正确理解题目中的角的关系是关键.20.一家三人(父亲、母亲、女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母买全票价,女儿按半价优惠”,乙方旅行社告知:“家庭旅游可按团体票计价,即每人均按全票价的收费”,如果这两家旅行社每人的全票价都为600元,那么哪家旅行社的费用更优惠?【考点】有理数的混合运算;有理数大小比较.【专题】应用题.【分析】按照旅行社的计算费用要求代入数据进行计算,进一步比较得出答案即可.【解答】解:甲旅行社的费用:600+600×=1500(元)乙旅行社的费用:600××3=1440(元)因为1440<1500,所以乙旅行社的费用更优惠.【点评】此题考查有理数的混合运算的实际运用,理解题意,掌握两种计算方法是解决问题的关键.21.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?【考点】角的计算;角平分线的定义.【分析】(1)先求得∠AOC的度数,然后由角平分线的定义可知∠MOC=60°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(2)先求得∠AOC=α+30°,由角平分线的定义可知∠MOC=α+15°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(3)先求得∠AOC=β+90°,由角平分线的定义可知∠MOC=β+15°,∠CON=β,最后根据∠MON=∠MOC﹣∠CON求解即可;(4)根据计算结果找出其中的规律即可.【解答】解:(1)∠AOB=90°,∠BOC=30°,∴∠AOC=90°+30=120°.由角平分线的性质可知:∠MOC=∠AOC=60°,∠CON=∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON=60°﹣15°=45°;(2)∠AOB=α,∠BOC=30°,∴∠AOC=α+30°.由角平分线的性质可知:∠MOC=∠AOC=α+15°,∠CON=∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON=α+15°﹣15°=α.(3)∠AOB=90°,∠BOC=β,∴∠AOC=β+90°.由角平分线的性质可知:∠MOC=∠AOC=β+45°,∠CON=∠BOC=β.∵∠MON=∠MOC﹣∠CON,∴∠MON=β+45°﹣β=45°.(4)根据(1)、(2)、(3)可知∠MON=∠BOC,与∠BOC的大小无关.【点评】本题主要考查的是角的计算、角平分线的定义,求得∠MOC和∠CON的大小,然后再依据∠MON=∠MOC﹣∠CON求解是解题的关键.22.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE= 6 cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变.【考点】两点间的距离.【分析】(1)由点D、E分别是AC和BC的中点,C点为AB的中点,求出AC,BC,CD,CE的长度,运用DE=CD+CE即可得出答案.(2)先求出BC,再利用中点关系求出CD,CE即可得出DE的长.(3)设AC=acm,由点D、E分别是AC和BC的中点,可得DE=CD+CE=(AC+BC)=AB=6cm,即可得出不论AC取何值(不超过12cm),DE的长不变,【解答】解:(1)∵AB=12cm,点D、E分别是AC和BC的中点,C点为AB的中点,∴AC=BC=6cm,∴CD=CE=3cm,∴DE=CD+CE=6cm,故答案为:6.(2)∵AB=12cm,AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴CD=2cm,CE=4cm,∴DE=6cm,(3)设AC=acm,∵点D、E分别是AC和BC的中点,∴DE=CD+CE=(AC+BC)=AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变,【点评】本题主要考查线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。
2015七年级数学期末测试题
树人七年级数学期末试卷一.填空题(每小题2分,共20分)1.—a的相反数是2,则a=();若3m+7与—10互为相反数,则m=();—m+1的相反数是()。
2.绝对值小于4.5的整数有(),和为()。
3.点A对应的数为-26,点B对应的数是48,在数轴上与点A,B距离相等的点所表示的数是()。
4.若|x+1|等于3,则x=()。
5.若|a|=3,|b|=1,且|a-b|=b-a,那么a+b=()。
6.若|m-3|+(n+2)2=0,则m+2n=( ).7.若ax2-2xy+y2=6x2+bxy+cy2成立,则a,b,c的值为(),()()。
8. 一个多项式,当减去2x2-3x+7时,因把减号看成了加号,得5x2-2x+4,试求正确的计算结果是()。
9.若x=-4是方程m(x-1)=4x-m的解,则m=()。
10.在数轴上和表示-3的点的距离等于5的点所表示的数是()()。
二.选择题(每小题2分,共10分)1.若a是有理数,则|-a|-a一定是()A.零B.非负数C.正数D负数2.如果|x-2|+x-2=0,那么x的取值范围是()A.x ≤2B.x ≥2C.x=2D.任意实数3.一种货物进价a元,提价15%后,再打9折,实际售价是()元。
A.0.35aB.1.35aC.1.035aD.1.15a4.已知等式3a=2b+5,则下列等式中不一定成立的是( )A.3a -5=2bB.3a+1=2b+6C.3ac=2bc+5D.a=32b+355.下列一元一次方程中,解为-3的是( )A.4x -5=3x B.5x -1=3x+4 C.3x+2=2x -1 D.7x -3=3x+1三.计算或化简或解方程(每题4分,共24分)1, 23-17-(-7)+(-16) 2,(-26.54)+(-6.4)-18.54+6.43,(-4)2×(-2)÷[(-4)2-(-4)] 4,(-24)÷5×515, 2xy 2-4x 2y -(x 2y -2xy 2) 6, 0.5x -0.7=5-1.3x三.综合应用(共46分)1.已知|x|=3,|y|=2,且x 大于y ,求x+y 的值。
期中模拟测试卷(一)七年级数学下学期期中期末满分必刷常考压轴题人教版
七年级下册期中模拟测试(一)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.36的平方根是()A.±6 B.6 C.﹣6 D.±【答案】A【解答】解:∵(±6)2=36,∴36的平方根是±6.故选:A.2.如图,小手盖住的点的坐标可能为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(﹣4,﹣3)【答案】D【解答】解:小手盖住的点的坐标在第三象限,点横坐标与纵坐标都是负数,只有(﹣4,﹣3)符合.故选:D.3.如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOE=150°,则∠AOC的度数为()A.50°B.60°C.70°D.80°【答案】B【解答】解:∵∠AOE=150°,∴∠BOE=180°﹣150°=30°,∵OE平分∠BOD,∴∠BOD=2∠BOE=60°,∴∠AOC=∠BOD=60°,故选:B.4.如图,点A为直线BC外一点,AC⊥BC,垂足为C,AC=3,点P是直线BC上的动点,则线段AP长不可能是()A.2 B.3 C.4 D.5【答案】A【解答】解:∵AC⊥BC,∴AP≥AC,即AP≥3.故选:A.5.下列各数3.1415926,﹣,0.202202220…,π,,﹣中,无理数的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:3.1415926,﹣是分数,属于有理数;,是整数,属于有理数;无理数有﹣,0.202202220…,π,共3个.故选:C.6.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.【答案】B【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.7.下列命题是真命题的有()①过直线外一点有且只有一条直线平行于已知直线;②同位角相等,两直线平行;③内错角相等;④在同一平面内,同垂直于一条直线的两条直线平行.A.1个B.2个C.3个D.4个【答案】C【解答】解:①过直线外一点有且只有一条直线平行于已知直线,正确,为真命题;②同位角相等,两直线平行,正确,为真命题;③两直线平行,内错角相等,故原命题为假命题;④在同一平面内,同垂直于一条直线的两条直线平行,正确,为真命题;故真命题的个数为3个,故选:C.8.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【答案】A【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.9.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【答案】D【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.10.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【答案】C【解答】解:过点P作P A∥a,则a∥b∥P A,∴∠1+∠MP A=180°,∠3+∠NP A=180°,∴∠1+∠2+∠3=360°.故选:C.11.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【答案】C【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,则小明从出口A到出口B所走的路线长为50+(25﹣1)×2=98米.故选:C.12.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3…,P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标为()A.(2020,0)B.(2020,1)C.(2021,0)D.(2021,1)【答案】D【解答】解:根据图形可得,正方形旋转4次为一个周期,即P→P4为一周期,且相差3﹣(﹣1)=4,∴一个周期P向右移动4个单位长度.∵2021÷4=505…1,∴到P2021有505个周期再旋转一次,505×4﹣1=2019,∴P2020(2019,1),由P2020→P2021与P→P1类似,∴P2021(2021,1).故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.把命题“对顶角相等”改写成“如果…那么…”的形式:.【答案】如果两个角是对顶角,那么这两个角相等【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.14.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为.【答案】110°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣70°=110°,故答案为:110°.15.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离是.【答案】3【解答】解:根据平移的性质,平移的距离=BE=4﹣1=3,故答案为:3.16.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是.【答案】35°【解答】解:如图,∵AB∥CD,∴∠AEF=∠1=25°,∵∠MEF=60°,∴∠2=∠MEF﹣∠AEF=60°﹣25°=35°,故答案为35°.17.若第三象限内的点P(x,y)、满足|x|=3,y2=25.则P点的坐标是.【答案】(﹣3,﹣5)【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵P在第三象限,∴点P的坐标是(﹣3,﹣5).故答案为:(﹣3,﹣5).18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的横坐标为.【答案】45【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的横坐标为45.故答案为:45.三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算下列各式的值:【答案】6【解答】解:=+(﹣5)+9﹣(﹣2)=+(﹣5)+9﹣+2=6.20.求满足下列各式x的值(1)2x2﹣8=0;(2)(x﹣1)3=﹣4.【答案】(1)x=±2;(2)x=﹣1【解答】解:(1)2x2﹣8=0,2x2=8,x2=4,x=±2;(2)(x﹣1)3=﹣4,(x﹣1)3=﹣8,x﹣1=﹣2,x=﹣1.21.一个正数的平方根是2a﹣1与﹣a+2,求a和这个正数.【答案】9【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9.22.如图,已知单位长度为1的方格中有个三角形ABC.(1)将三角形ABC向上平移3格再向右平移2格所得三角形A'B'C',在所给的网格中画出三角形A'B'C'的位置;(2)求出三角形A'B'C'的面积;(3)如果点C的坐标为(3,﹣1),请在所给的网格中建立平面直角坐标系.填空:①BC与B'C'的关系是;②BB'与CC'的关系是.【答案】(1)略(2)(3)平行且相等,平行且相等.【解答】解:(1)如图所示,三角形A'B'C'即为所求;(2)S△A'B'C'=3×3﹣=;(3)坐标系如图所示,①BC与B'C'的关系是:平行且相等,②BB'与CC'的关系是:平行且相等,故答案为:平行且相等,平行且相等.23.如图,AB,CD相交于点O,OM平分∠BOD.(1)若∠AOC=50°,求∠AOM的度数;(2)若2∠AOD=3∠AOC,求∠COM的度数.【答案】(1)160°(2)144°【解答】解:(1)由题意可得∠BOD=∠AOC=50°,∠AOD=180°﹣∠AOC=130°,∵OM平分∠BOD,∴∠DOM==25°,∴∠AOM=∠AOD+∠DOM=135°+25°=160°;(2)∵2∠AOD=3∠AOC,∠AOD+∠AOC=180°,∴∠AOD+∠AOD=180°,解得∠AOD=108°,∴∠BOD=180°﹣108°=72°,∠COB=∠AOD=108°,∵OM平分∠BOD,∴∠BOM==36°,∴∠COM=∠COB+∠BOM=108°+36°=144°.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【答案】(1)略(2)25°【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.25.我们知道:无理数是无限不循环的小数.下面是探究无理数的大小过程:因为12=1,22=4,所以1<<2;因为1.42=1.96,1.52=2.25,所以1.4<<1.5;因为1.412=1.9881,1.422=2.0164,所以1.41<<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<<1.415;……如此进行下去,可以得到的更加精确的近似值.(1)请仿照上面的思考过程,请直接写出无理数的大致范围?(精确到0.01)(2)填空:①比较大小:32(填“>、<或=”);②若a、b均为正整数,a>,b<,则a+b的最小值是.(3)现有一块长4.1dm,宽为3dm的长方形木板,要想在这块木板上截出两个面积分别为2dm2和5dm2的正方形木板,张师傅准备采用如图的方式进行,请你帮助分析一下,他的方法可行吗?【答案】(1)2.23<<2.24(2)>,4(3)可行【解答】解:(1)∵2.232<5<2.242,∴2.23<<2.24;(2)①∵(3)2=18,(2)2=12,∴3>2;故答案为:>;②∵a、b均为正整数,a>,b<,∴a最小为3,b=1,∴a+b最小为4;故答案为:4;(3)他的方法可行,理由如下:∵面积分别为2dm2的正方形边长是dm,面积分别为5dm2的正方形是dm,≈2,236<3,+≈3.65<4.1,∴他的方法可行.26.如图,在平面直角坐标系,点A、B的坐标分别为(a,0),(0,b),且|a﹣26|+=0,将点B向右平移24个单位长度得到C.(1)求A、B两点的坐标;(2)点P、Q分别为线段BC、OA两个动点,P自B点向C点以2个单位长度/秒向右运动,同时点Q自A点向O点以4个单位长度/秒向左运动,设运动的时间为t,连接PQ,当PQ恰好平分四边形BOAC的面积时,求t的值;(3)点D是直线AC上一点,连接QD,作∠QDE=120°,边DE与BC的延长线相交于点E,DM平分∠CDE,DN平分∠ADQ,当点Q运动时,∠MDN的度数是否变化?请说明理由.【答案】(1)A(26,0),B(0,8)(2)t=(3)不变【解答】解:(1)∵|a﹣26|+=0,∴a﹣26=0,且8﹣b=0,∴a=26,b=8,∴A(26,0),B(0,8);(2)∵BC∥x轴,BC=24,∴C(24,8),由题意得:BC∥OA,BP=2t,AQ=4t,则PC=24﹣2t,OQ=26﹣4t,BO=8,∴S梯形AOBC=×(24+26)×8=200,当PQ恰好平分四边形BOAC时,S梯形OBPQ=×200=100,∴:×(2t+26﹣4t)×8=100,解得:t=;(3)当点Q运动时,∠MDN的度数不变,理由如下:如图1,当点D在线段CA的延长线上或AC的延长线上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDC=,∠QDA,∠MDC=∠CDE,∴∠MDN=∠NDC+∠MDC=(∠QDA+∠CDE)=∠QDE=60°;如图2,当点D在线段AC上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDQ=∠ADQ,∠MDC=∠CDE,设∠CDE=α,∴∠QDC=120°﹣α,∠ADQ=180°﹣(120°﹣α)=60°+α,∴∠MDN=∠MDC+∠QDC+∠NDC=α+120°﹣α+(60°+α)=150°;综上所述,∠MDN的度数为150°或60°,∴当点Q运动时,∠MDN的度数不变化.。
吉林省长春七年级数学下学期期末试卷(含解析) 新人教版-新人教版初中七年级全册数学试题
2015-2016学年某某省某某七年级(下)期末数学试卷一、选择题(每小题3分,共24分)1.下列方程是一元一次方程的是()A.B.3x﹣2y=6 C. D.x2+2x=02.下列四组数中,是方程4x﹣y=10的解的是()A.B.C.D.3.如果x>y,则下列变形中正确的是()A.﹣x y B.y C.3x>5y D.x﹣3>y﹣34.解方程时,为了去分母应将方程两边同时乘以()A.12 B.10 C.9 D.45.已知等腰三角形的两边的长分别为3和6,则它的周长为()A.9 B.12 C.15 D.12或156.下列标志中,可以看作是轴对称图形的是()A.B. C.D.7.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC8.如图,在△ABC中,BC边上的高是()A.CE B.AD C.CF D.AB二、填空题(每小题3分,共18分)9.已知方程2a﹣5=x+a的解是x=﹣6,那么a=.10.一个数x的2倍减去7的差,得36,列方程为.11.装修大世界出售下列形状的地砖:(1)正三角形;(2)正五边形;(3)正六边形;(4)正八边形;(5)正十边形,若只选购一种地砖镶嵌地面,你有种选择.12.如图,在△ABC中,∠ACB=120°,将它绕着点C旋转30°后得到△DEC,则∠ACE=.13.如图所示,请将∠A、∠1、∠2按从大到小的顺序排列.14.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).三、解答题(每小题18分,共24分)15.解下列方程或方程组:(1)x﹣4=3(2)2x﹣1=3x+4(3)﹣(x﹣3)=3(2﹣5x)(4)(5)(6).16.解下列不等式或等式组:(1)10﹣3(x+5)≤1(2).四、解答题(共54分)17.解不等式:并在数轴上表示出它的解集.18.如果一个多边形的内角和是它的外角和的6倍,那么这个多边形是几边形.19.学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?20.如图,AB=AD,∠C=∠E,∠1=∠2,求证:△ABC≌△ADE.21.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去租用这两种货车情况如下表:第一次第二次甲种货车数量 2辆 5辆乙种货车数量 3辆 6辆累计运货重量 14吨 32吨(1)分别求甲、乙两种货车每辆载重多少吨?(2)现租用该公司3辆甲种货车和5辆乙种货车一次刚好运完这批货物,如果按每吨付运费50元计算,货主应付运费多少元?22.如图,它是一个8×10的网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1.(2)画出△ABC关于点O的中心对称图形△A2B2C2.(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形吗?如果是,请画出对称轴.△A1B1C1与△A2B2C2组成的图形(填“是”或“不是”)轴对称图形.23.如图,已知点B、E、F、C依次在同一条直线上,AF⊥BC,DE⊥BC,垂足分别为F、E,且AB=DC,BE=CF.试说明AB∥DC.24.如图,已知△ABC中,AB=AC=12cm,BC=9cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.①若点P的运动速度与点Q的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由?②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动,直接写出经过多长时间点P与点Q第一次相遇.2015-2016学年某某省某某外国语学校七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.下列方程是一元一次方程的是()A.B.3x﹣2y=6 C. D.x2+2x=0【考点】一元一次方程的定义.【分析】依据分式方程、二元一次方程、一元一次方程、一元二次方程的定义解答即可.【解答】解:A、2x+5=是分式方程,故A错误;B、3x﹣2y=6是二元一次方程,故B错误;C、=5﹣x是一元一次方程,故C正确;D、x2+2x=0是一元二次方程,故D错误.故选:C.2.下列四组数中,是方程4x﹣y=10的解的是()A.B.C.D.【考点】二元一次方程的解.【分析】将各选项代入即可得结果.【解答】解:将A选项代入得4×0﹣(﹣10)=10,所以此选项正确;将B选项代入得4×3.5﹣(﹣4)=18,所以此选项错误;将C选项代入得4×15﹣4=56,所以此选项错误;将D选项代入得4×1﹣6=﹣2,所以此选项错误,故选A.3.如果x>y,则下列变形中正确的是()A.﹣x y B.y C.3x>5y D.x﹣3>y﹣3【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【解答】解:A、两边都乘以﹣,故A错误;B、两边都乘以,故B错误;C、左边乘3,右边乘5,故C错误;D、两边都减3,故D正确;故选:D.4.解方程时,为了去分母应将方程两边同时乘以()A.12 B.10 C.9 D.4【考点】解一元一次方程.【分析】找出各分母的最小公倍数,即可得到结果.【解答】解:解方程﹣1=时,为了去分母应将方程两边同时乘以12,故选A5.已知等腰三角形的两边的长分别为3和6,则它的周长为()A.9 B.12 C.15 D.12或15【考点】等腰三角形的性质;三角形三边关系.【分析】分两种情况:当3为底时和3为腰时,再根据三角形的三边关系定理:两边之和大于第三边去掉一种情况即可.【解答】解:当3为底时,三角形的三边长为3,6,6,则周长为15;当3为腰时,三角形的三边长为3,3,6,则不能组成三角形;故选C.6.下列标志中,可以看作是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.7.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】四项分别一试即可,要判定△AEC≌△DFB,已知AE=DF、∠A=∠D,要加线段相等,只能是AC=DB,而AB=CD即可得.【解答】解:∵AB=CD∴AC=DB又AE=DF、∠A=∠D∴△AEC≌△DFB故选A.8.如图,在△ABC中,BC边上的高是()A.CE B.AD C.CF D.AB【考点】三角形的角平分线、中线和高.【分析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.【解答】解:由图可知,过点A作BC的垂线段AD,则△ABC中BC边上的高是AD.故选B.二、填空题(每小题3分,共18分)9.已知方程2a﹣5=x+a的解是x=﹣6,那么a= ﹣1 .【考点】一元一次方程的解.【分析】把x=﹣6代入方程2a﹣5=x+a,即可解答.【解答】解:x=﹣6代入方程2a﹣5=x+a得:2a﹣5=﹣6+a,解得:a=﹣1,故答案为:﹣1.10.一个数x的2倍减去7的差,得36,列方程为2x﹣7=36 .【考点】由实际问题抽象出一元一次方程.【分析】根据文字表述得到等量关系为:x的2倍﹣7=36,根据此等式列方程即可.【解答】解:x的2倍减去7即2x﹣7,根据等式可列方程为:2x﹣7=36.11.装修大世界出售下列形状的地砖:(1)正三角形;(2)正五边形;(3)正六边形;(4)正八边形;(5)正十边形,若只选购一种地砖镶嵌地面,你有 2 种选择.【考点】平面镶嵌(密铺).【分析】由镶嵌的条件知,判断一种图形是否能够镶嵌,只要看一看正多边形的内角度数是否能整除360°,能整除的可以平面镶嵌,反之则不能.【解答】解:(1)正三角形的每个内角是60°,能整除360°,6个能组成镶嵌;(2)正五方形的每个内角是108°,不能整除360°,不能组成镶嵌;(3)正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;(4)正八边形每个内角是135°,不能整除360°,不能镶嵌;(5)正十边形每个内角是144°,不能整除360°,不能镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有2种.故答案为:2.12.如图,在△ABC中,∠ACB=120°,将它绕着点C旋转30°后得到△DEC,则∠ACE= 150°.【考点】旋转的性质.【分析】由旋转的性质得出∠DCE=∠ACB=120°,∠BCE=∠ACD=30°,即可得出结果.【解答】解:∵△ABC绕点C按顺时针方向旋转后得到△DEC,∴∠DCE=∠ACB=120°,∠BCE=∠ACD=30°,∴∠ACE=∠ACB+∠BCE=150°;故答案为:150°.13.如图所示,请将∠A、∠1、∠2按从大到小的顺序排列∠2>∠1>∠A .【考点】三角形的外角性质.【分析】根据三角形的外角的性质判断即可.【解答】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A,故答案为:∠2>∠1>∠A.14.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45 (度).【考点】等腰三角形的性质.【分析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y,根据等边对等角得出∠ACE=∠AEC=x+y,∠BDC=∠BCD=∠BCE+∠DCE=90°﹣y.然后在△DCE中,利用三角形内角和定理列出方程x+(90°﹣y)+(x+y)=180°,解方程即可求出∠DCE的大小.【解答】解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为:45.三、解答题(每小题18分,共24分)15.解下列方程或方程组:(1)x﹣4=3(2)2x﹣1=3x+4(3)﹣(x﹣3)=3(2﹣5x)(4)(5)(6).【考点】解二元一次方程组;解一元一次方程.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解;(3)方程去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(5)方程组利用代入消元法求出解即可;(6)方程组利用加减消元法求出解即可.【解答】解:(1)移项得:x=4+3,解得:x=7;(2)移项合并得:x=﹣5;(3)去括号得:﹣x+3=6﹣15x,移项合并得:14x=3,解得:x=;(4)去分母得:9y﹣3﹣12=10y﹣14,解得:y=﹣1;(5),把①代入②得:3y+12+y=16,解得:y=1,把y=1代入①得:x=5,则方程组的解为;(6),①×4+②得:11x=22,即x=2,把x=2代入①得:y=1,则方程组的解为.16.解下列不等式或等式组:(1)10﹣3(x+5)≤1(2).【考点】解一元一次不等式组;解一元一次不等式.【分析】(1)根据解不等式的方法可以解答本题;(2)根据解不等式组的方法可以解答本题.【解答】解:(1)10﹣3(x+5)≤1去括号,得10﹣3x﹣15≤1,移项及合并同类项,得﹣3x≤6系数化为1,得x≥﹣2故原不等式的解集是x≥﹣2;(2)由①,得x≥2,由②,得x<4,故原不等式组的解集是2≤x<4.四、解答题(共54分)17.解不等式:并在数轴上表示出它的解集.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】利用不等式的解法,去分母,移项、合并、系数化成1,先求解,再表示在数轴上.【解答】解:去分母得,﹣2x+1≥﹣3,移项,得﹣2x≥﹣4,系数化为1,得,x≤2,在数轴上表示出不等式的解集为:18.如果一个多边形的内角和是它的外角和的6倍,那么这个多边形是几边形.【考点】多边形内角与外角.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是6×360°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×6,解得n=14.则这个多边形是十四边形.19.学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?【考点】一元一次不等式的应用.【分析】先设未知数,设还能买词典x本,根据名著的总价+词典的总价≤2000,列不等式,解出即可,并根据实际意义写出答案.【解答】解:设还能买词典x本,根据题意得:20×65+40x≤2000,40x≤700,x≤,x≤17,答:最多还能买词典17本.20.如图,AB=AD,∠C=∠E,∠1=∠2,求证:△ABC≌△ADE.【考点】全等三角形的判定.【分析】先证出∠BAC=∠DAE,再由AAS证明△ABC≌△ADE即可.【解答】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).21.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去租用这两种货车情况如下表:第一次第二次甲种货车数量 2辆 5辆乙种货车数量 3辆 6辆累计运货重量 14吨 32吨(1)分别求甲、乙两种货车每辆载重多少吨?(2)现租用该公司3辆甲种货车和5辆乙种货车一次刚好运完这批货物,如果按每吨付运费50元计算,货主应付运费多少元?【考点】二元一次方程组的应用.【分析】(1)两个相等关系:第一次2辆甲种货车载重的吨数+3辆乙种货车载重的吨数=14;第二次5辆甲种货车载重的吨数+6辆乙种货车载重的吨数=32,根据以上两个相等关系,列方程组求解.(2)结合(1)的结果,求出3辆甲种货车和5辆乙种货车一次刚好运完的吨数,再乘以50即得货主应付运费.【解答】解:(1)设甲种货车每辆载重x吨,乙种货车每辆载重y吨,则,解之得.答:甲种货车每辆载重4吨,乙种货车载重2吨.(2)4×3+2×5=22(吨),22×50=1100(元).答:货主应付运费1100元.22.如图,它是一个8×10的网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1.(2)画出△ABC关于点O的中心对称图形△A2B2C2.(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形吗?如果是,请画出对称轴.△A1B1C1与△A2B2C2组成的图形是(填“是”或“不是”)轴对称图形.【考点】作图-旋转变换;轴对称图形;作图-轴对称变换;中心对称.【分析】(1)根据△ABC与△A1B1C1关于直线OM对称进行作图即可;(2)根据△ABC与△A2B2C2关于点O成中心对称进行作图即可;(3)一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)如图,△A1B1C1与△A2B2C2组成的图形是轴对称图形,其对称轴为直线l.23.如图,已知点B、E、F、C依次在同一条直线上,AF⊥BC,DE⊥BC,垂足分别为F、E,且AB=DC,BE=CF.试说明AB∥DC.【考点】全等三角形的判定与性质;平行线的判定.【分析】首先利用等式的性质可得BF=CE,再用HL定理证明Rt△AFB≌Rt△DEC可得∠B=∠C,再根据平行线的判定方法可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵AF⊥BC,DE⊥BC,∴∠AFB=∠DEC=90°,在Rt△AFB和Rt△DEC中,∴Rt△AFB≌Rt△DEC(HL),∴∠B=∠C,∴AB∥CD.24.如图,已知△ABC中,AB=AC=12cm,BC=9cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.①若点P的运动速度与点Q的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由?②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动,直接写出经过多长时间点P与点Q第一次相遇.【考点】三角形综合题.【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C,最后根据SAS 即可证明;②因为V P≠V Q,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【解答】解:(1)①1秒钟时,△BPD与△CQP是否全等;理由如下:∵t=1秒,∴BP=CQ=3(cm)∵AB=12cm,D为AB中点,∴BD=6cm,又∵PC=BC﹣BP=9﹣3=6(cm),∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,,∴△BPD≌△CQP(SAS),②∵V P≠V Q,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4.5,∵△BPD≌△CPQ,∴CQ=BD=6.∴点P的运动时间t===1.5(秒),此时V Q===4(cm/s).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得:4x=3x+2×12,解得:x=24(秒)此时P运动了24×3=72(cm)又∵△ABC的周长为33cm,72=33×2+6,∴点P、Q在BC边上相遇,即经过了24秒,点P与点Q第一次在BC边上相遇.。
安徽省芜湖市2015-2016年七年级上期末考试数学试卷含答案(新课标人教版小学七年级上数学试卷)
2.如图,这个几何体从上面看到的平面图形是3. 将77800用科学记数法表不应 A. 0. 778 x 105A.xY与占 B. 3兀与 ....... .................................. x 10sC. 7. 78 x 104D. 77. 8 x 103 B. + (-2)与・-(-2)D. + (-2)与・ -( + 2) .•-x C. 5ab 与-2ba D _3/歹与芬/...................................... t5=0旳胖•则m 疋 ........................ ..C. -2D.2 6. 如果1是关于%方程%+2m- A. -4 B. 4C. 154° &下列B.如果亍:=6,那么A.如果s =寺ab,那么b芜湖市2015-2016学年度第一学期七年级期末评价数学试卷(满分100分,时间100分钟) 题号一二三总分得分一.选择题:(本大题12个小题,每小题3分,共36分)在每个小题的下面, 都给岀了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确 答案的代号填在题后的括号中.1.(-2) x 3的结果是得分 评卷人A.D. 1B. -5B.D. L 【、9•从点0引两条射线在0*、0B上分别截取0M = lcm.O/V = Icm,则两点间的距离一定 . 【] A・小于Icm B.等于lrm C.大于Icm D.有最大值2c/n10.把方程3x +筈丄=3 - 屮去分母正确的是 ..................................... 【】A. 3x + (Zv - 1) = 3 - (.V + 1)B. I8x + 2(2x - 1) = 18 ・ 3(力 + 1).C・ 18x + (2v - 1) = 18 - (x + I) D. 3x + 2(2x - 1) = 3 ・ 3(x + 1) 11・有理数e,6在数轴上的对应点如图所示■则下而式子中正确的是................ 【】0)6 < 0 < «:② I b I < I a I ;®ab > 0;@a - b > a + b.— ------g—J ----A•①® B.①® 第11题图a D.®@12.观察下列运算:8‘ = 8,82 = 64,83= 512,8° = 4096,8’ = 32768,86 = 262144,…,则81 +8, + 8’ + 8’ +…+ 820'5的和的个位数字是..................................... [ ]A.8B.6C.4D.2二填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接得分评卷人填在题后的横线上.13.有理数5. 614精确到百分位的近似数为_________ .14.若S的补角为76°29',则Z.a = _____________15.数轴上点与3分别表示互为相反数的两个数,且点A在点B的左边M、〃之间的距离为8个单位,则*代表的数是_________ • •16.已知点C在直线佔上,若M =4cm,BC =6cm、E、F分别为线段AC、BC的中点、则EF =_ _______ cm.17.一件服装标价200元,以6折销售,可获利20%,这件眼装的进价是 ____ 元18.点0在1£线汕上,点人人内,……在射线%上,点已厲厲.……在射线03上•图中的每一个实线段和虚线段的长均为1个单位长度•一个动点“从°点出发•以毎秒1个皿位长度的速度按如图所示的箭头方向沿溶实线段和以点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年七年级数学期末模拟试题(1)
一.选择题.(本大题满分45分,共15小题,每小题3分) 1.若x>y,则下列式子错误..的是( ) A.x-3>y-3 B .3-x>3-y C .-2x<-2y D .3x >3y 2. 已知351.1 =1.147,31.15 =2.472,3151.0 =0.532 5,则31510的值是( ) A.24.72 B.53.25 C.11.47 D.114.7 3.在平面直角坐标系中,点A位于第二象限,距离x轴1个单位长度,距y轴4个单位长度,则点A的坐标为( ) A.(1,4) B.(-4,1) C.(-1,4) D.(4,-1) 4.下列命题中,属于真命题的是( ) A.互补的角是邻补角 B、在同一平面内,如果a⊥b,b⊥c,则a⊥c。 C.同位角相等 D、在同一平面内,如果a∥b,b∥c,则a∥c。 5. 若a<b,则ac>bc成立,那么c应该满足的条件是( ) A、c>0 B、c<0 C、c≥0 D、c≤0 6.如图,在一张透明的纸上画一条直线l,在l外任取一点Q,并折出过点Q且与l垂直的直线。这样的直线能折出( ) A.0条 B.1条 C.2条 D.3条 7.如果21xy是方程组531yaxbyx的解,则b-a的值是( ) A.4 B.2 C.1 D.0 8.下列调查中,样本最具有代表性的是( ) A.在重点中学调查全市七年级学生的数学水平
B.在篮球场上调查青少年对我国篮球事业的关注度
C.了解班上学生睡眠时间时,调查班上学号为双的学生的睡眠时间
D.了解某人心地是否善良,调查他对子女的态度
9. 有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限
不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数
都可以用数轴上的点来表示。 其中正确的说法的个数是( )
A.1 B.2 C.3 D.4
10.在下列说法中:10的平方根是±10;-2是4的一个平方根;
94的平方根是3
2
; ④0.01的算术平方根是0.1;⑤,
24
aa
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
11.如下图,AB∥CD,EF分别交AB、CD于点E,F,∠1=50°,
则∠2的度数为( )
(A)50° (B)120° (C)130° (D)150°
12.下列各组数中,是二元一次方程3220xy的一组解的是( )
A. 12xy B. 24xy C. 03xy D. 15xy
13.已知实数x,y,m满足+|3x+y+m|=0,且y为负数,则m的取值范
围是( ) (A)m>6 (B)m<6 (C)m>-6 (D)m<-6 14.方程2x+y=9的正整数解有( )组。 A.1 B.2 C.3 D.4 15.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到长方形的边时,点P的坐标为( ) (A)(1,4) (B)(5,0) (C)(6,4) (D)(8,3) 二. 解答题(6+6+7+7+8+8+10+11+12=75分) 16.(本小题满分6分)解方程组12134yxyx 17.(本小题满分6分)解不等式组 6)2(214xx 18.(本小题满分7分)若+|2x-3y-5|=0, 求: x-8y的平方根.
19.(本小题满分7分)如图,直线AB与CD相交于点O,OD恰为∠
BOE的角平分线.
(1)图中∠AOD的补角是___________________(把符合条件的角都
填出来);
(2)若∠AOD=140°,求∠AOE的度数.
20.(本小题满分8分)
2013 年起,深圳市实施行人闯红灯违法处罚,处罚
方式分为四类:“罚款20元”、“罚款 50元”、“罚款100 元”、“穿绿马甲维护
交通” .下图是实施首日由某片区的执法结果整理数据后绘制的两幅不完整的
统计图,请你根据图中提供的信息,解答下列问题:
(1)实施首日,该片区行人闯红灯违法受处罚一共_________人;
(2)在所有闯红灯违法受处罚的行人中,穿绿马甲维护交通所占的百分比是
______% ;
(3)据了解,“罚款20元”人数是“罚款 50 元”人数的 2 倍,请补全条形统
计图;
(4)根据(3)中的信息,在扇形统计图中,“罚款 20元”所在扇形的圆心角等
于_______度.
21.(本小题满分8分
)如图,在方格纸中(小正方形的边长为1),△ABC的三
个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系
(O是坐标原点),解答下列问题:
(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;
(2)求出在整个平移过程中,△ABC扫过的面积
.
22. (本小题满分10分)某物流公司组织20辆汽车装运甲、乙、丙
三种物资共100吨到某地,按计划20辆汽车都要装运,每辆汽车只能
装运同一种物资且都刚好装满.根据下表提供的信息,解答下列问题:
物资种类 甲 乙 丙
每辆汽车运载量(吨) 6 5 4
每吨所需运费(元/吨) 120 160 100
(1)设装运甲种物资的车辆数为x,装运乙种物资的车辆数为y,求y与x的关
系式;
(2)如果装运甲种物资的车辆数不少于5,装运乙种物资的车辆数不少于4,那
么车辆的安排有几种方案?
(3)在(2)的条件下,若要求总运费最少,请写出采用的具体安排方案,并求
出最少总运费.
23. (本小题满分11分)实验证明,平面镜反射光线的规律是: 射
到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等。
(1)如图,一束光线M射到平面镜A上,被A反
射到平面镜B上,又被B反射,若被B反射出的
A
C
B
O 1 2 3 4 5 -1 -2 -3 1 2 3 4 5 y x
-1
-2
光线N与光线M平行,且∠1=50°,则∠2=____ °,∠3=___ °; (2)在(1)中,若∠1=55°,则∠3=_____;若∠1=40°,则∠3_____; (3)由(1),(2)请你猜想:当两平面镜A,B的的夹角∠3=______°时,可以是任何射到平面镜A上的光线M,经过平面镜A,B的两次反射后,入射光线M ,与反射光线平行,你能说明理由吗? 24. (本小题满分12分)如图,△ABC的三个顶点位置分别是A(1,0),B(-3,0),C(-2,5). (1)求△ABC的面积; (2)若点P(0,m)在y轴上,试用含 m的代数式表示三角形ABP的面积; (3)若点P在y轴上什么位置时,△ABP的面积
等于△ABC的一半?
(4)点Q在x轴上什么位置时,△BQC与△ABC的面积比为3:2?