七年级数学上册期末总复习(人教版)全面版
数学人教版七年级数学上册期末复习知识点大全

数学人教版七年级数学上册期末复习知识点大全一、选择题1.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒B .4秒C .5秒D .6秒2.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .33.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯4.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( ) A .﹣9℃B .7℃C .﹣7℃D .9℃5.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+7.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°8.21(2)0x y -+=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-9.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A .6cmB .3cmC .3cm 或6cmD .4cm10.﹣2020的倒数是( ) A .﹣2020B .﹣12020C .2020D .1202011.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2B .4C .6D .812.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×2 13.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .2123x -=,变形为232x -= D .21x =,变形为2x =14.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5B .2或10C .2.5D .215.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离二、填空题16.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.17.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.18.把53°24′用度表示为_____. 19.分解因式: 22xy xy +=_ ___________20.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 21.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.22.若∠1=35°21′,则∠1的余角是__.23.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)24.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 25.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.26.化简:2x+1﹣(x+1)=_____.27.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.28.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 29.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.30.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.三、压轴题31.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.32.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.33.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.34.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.35.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积; (3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.36.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)37.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a . 请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点. (1)请你在图②的数轴上表示出A ,B ,C 三点的位置.(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒. ①当t =2时,求AB 和AC 的长度;②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.38.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意直接把高度为102代入即可求出答案.【详解】由题意得,当h=102时,102=20.4 524.5=20.25 25=25 且20.25<20.4<25∴20.2520.425∴4.5<t<5∴与t最接近的整数是5.故选C.【点睛】本题考查的是估算问题,解题关键是针对其范围的估算. 2.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.3.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 4.D解析:D 【解析】 【分析】这天的温差就是最高气温与最低气温的差,列式计算. 【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃), 故选:D . 【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.5.A解析:A 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案. 【详解】 解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程; C 、32y=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程;故选:A .【点睛】解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.6.A解析:A【解析】【分析】根据分式的基本性质即可求出答案.【详解】解:原式=22x y x y x y y x++-=--, 故选:A .【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型. 7.B解析:B【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案.解:过E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA ,∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.8.A解析:A【解析】根据非负数的性质,由1x-+(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A9.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.10.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 -,故选:B .【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.11.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D .【点睛】本题考查数字类的规律探索.12.A解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x 厘米.根据题意得:2×(10+x )=10×4+6×2.故选:A .【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.13.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误.故选A.【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 14.A解析:A【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t的值为2或2.5,故选A.【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.15.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.二、填空题16.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09. 故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.17.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.18.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.19.【解析】【分析】原式提取公因式xy,即可得到结果.【详解】解:原式=xy(2y+1),故答案为:xy(2y+1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本解析:xy(2y1)【解析】【分析】原式提取公因式xy,即可得到结果.【详解】解:原式=xy(2y+1),故答案为:xy(2y+1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.20.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.21.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 22.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.23.270°-3α【解析】【分析】设∠DOE=x ,根据OC 平分∠AOD ,∠COE =α,可得∠COD=α-x ,由∠BOD =4∠DOE ,可得∠BOD=4x ,由平角∠AOB=180°列出关于x 的一次方程解析:270°-3α【解析】【分析】设∠DOE=x ,根据OC 平分∠AOD ,∠COE =α,可得∠COD=α-x ,由∠BOD =4∠DOE ,可得∠BOD=4x ,由平角∠AOB=180°列出关于x 的一次方程式,求解即可.【详解】设∠DOE=x ,根据OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.24.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.25.11cm.【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.26.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.27.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案. 【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.28.﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,(xy)2019=(22)2019=(﹣1)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.29.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.30.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.三、压轴题31.(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【解析】【分析】(1)由题意可得,∠MON=12×90°+90°,∠MON=12∠AOC+12∠BOD+∠COD,即可得出答案;(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.32.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.33.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)。
新人教版七年级数学上册期末专题总复习资料

新人教版七年级数学上册期末专题总复习资料人教版七年级数学上册期末专题总复资料类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三类型一加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】515-3;1-(+6)-3+(-1.25)- 48/82.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】6.82)+3.78+(-3.18)-3.78;311/-5 + (-9)/8 - 1.25.三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是()A。
B。
-1 C。
2016 D。
-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥时,|a|=a;当a<0时,|a|=-a.根据以上阅读完成下列问题:1)|3.14-π|=________;1/1-1/11+1/111-1/1111+…-1/2013+1/2014-1/2015-1/2016 2)计算:2/3-3/2+4/3-9/8+10/9类型二运用分配律解题的技巧一、正用分配律5.计算.131/2-4+8×(-24);39×(-14).二、逆用分配律666/(-3)-3×(-3)-6×3.6.计算:4×7/7.三、除法变乘法,再利用分配律122/6-7+3÷(-42).参考答案与解析1.解:(1)原式=1+(-1.25)-6+4/8= -4.75.2)原式=2.3+6.2-(-1.7-2.2-1.1)= 3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)= -10.2)原式=19+8/4-9/8-1.25= 3.3.D4.解:(1)π-3.14=π-3.14.2)原式=1-1/2-1/10= 3/5.5.解:(1)原式=-12+18-3=3.2)原式=2/3-3/2+4/3-9/8+10/9= 55/72.1.下列说法正确的是()A。
人教版七年级数学(上册)期末全套复习资料全

第一章有理数总复习一、知识归纳:1、数轴是一条规定了原点、方向、长度单位的直线。
有了数轴,任何一个有理数都可以用它上面的一个确定的点来表示。
在数的研究上它起着重要的作用。
它使数和最简单的图形——直线上的点建立了对应关系,它揭示了数和形之间的内在关系,因此它是数形结合的基础。
但要注意数轴上的所有点并不是都有有理数和它对应。
借助于数轴上点的位置关系可以比较有理数的大小,法则是:在数轴上表示的两个有理数,右边的数总比左边的数大。
2、相反数是指只有符号不同的两个数。
零的相反数是零。
互为相反的两个数位于数轴上原点的两边,离开原点的距离相等。
有了相反数的概念后,有理数的减法运算就可以转化为加法运算。
3、绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
显然有:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。
对于任何有理数a,都有a≥0 。
4、倒数可以这样理解:如果a与b是非零的有理数,并且有a×b=1,我们就说a与b互为倒数。
有了倒数的概念后,有理数的除法运算就可以转化为乘法运算。
5、有理数的大小比较:(1)正数都大于零,负数都小于零,即负数<零<正数;(2)两个正数,绝对值大的数较大;(3)两个负数,绝对值大的数反而小;(4)在数轴上表示的有理数,右边的数总比左边的大;6、科学记数法:是指任何数记成a×10n的形式,其中用式子表示|a|的范围是0<|a|<10。
7、近似数与精确度:近似数:一个与实际数很接近的数,称为近似数;精确度:右边最后一位数所在的位数,就是精确到的数位。
二、有理数的运算法则1、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
由此可得,互为相反数的两数相加的0;三个数相加先把前两个数相加,或先把后两个数相加,和不变。
新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一:有理数的意义一、双基回顾1.前进8米的相反数是后退8米,盈利50元的相反数是亏损50元。
2.向东走5m记作+5m,则向西走8m记作-8m,原地不动用0表示。
3.把下列各数填入相应的大括号中:正数{7,11/2,0.25};负数{-9.25,-301,-7/3};分数{11/2,-7/3,0};整数{7,-9,-301,0};非负整数{0,7,11/2};非正数{-9.25,-301,-7/3,0}。
4.与表示-1的点距离为3个单位的点所表示的数是-4.5.数轴上到原点的距离为2的点所表示的数是±2.6.3的相反数的倒数是-1/3.7.最小的自然数是1;最小的正整数是1;绝对值最小的数是0;最大的负整数是-1.8.相反数等于它本身的数是0,绝对值等于它本身的数是0,平方等于它本身的数是1,立方等于它本身的数是0,倒数等于它本身的数是1.9.如图,如果a0,那么-a>b>-b>a。
10.已知|a+2|+(3-b)²=0,则a=-2,b=3/2.二、例题导引例11) 大于-3且小于2.1的整数有-2,-1,0,1.2) 绝对值大于1小于4.3的整数的和是-3+2+1+3+4=7.例2由a、b互为相反数可得a+b=0,由m、n互为倒数可得mn=1,代入(a+b)²-3mn+2|x|的式子中得(-6)²-3+6=33.例31) 由a²=4得a=±2,由b³=-8得b=-2,故a+b=0.2) 由|a|=2,|b|=5得a=-2,b=5,故a-b=-7.三、练升华1.判断下列叙述是否正确:①零上6℃的相反数是零下6℃,而不是零下8℃。
(错误)②如果a是负数,那么-a就是正数。
(正确)③正数与负数互为相反数。
(正确)④一个数的相反数是非正数,那么这个数一定是非负数。
人教版七年级数学上学期期末总复习共127页

16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。—END
人教版七年级数学上学期期末总复习
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
新人教版数学七年级上学期数学期末复习资料

数学七年级上册期末知识点复习资料第一章有理数(一)有理数1、有理数的分类:按有理数的定义分类:按有理数的性质符号分类:正整数正整数整数零正有理数有理数负整数正分数正分数有理数 0分数负整数负整数负有理数负分数2、正数和负数用来表示具有相反意义的数。
(二)数轴1、定义:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴的三要素是:原点、正方向、单位长度。
(三)相反数1、定义:只有符号不同的两个数互为相反数。
2、几何定义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数。
3、代数定义:只有符号不同的两个数叫做互为相反数,0的相反数是0。
(四)绝对值1、定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值。
2、几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。
3、代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
a (a>0),即对于任何有理数a,都有|a|=0(a=0)–a(a<0)4、绝对值的计算规律:(1)互为相反数的两个数的绝对值相等.(2)若|a|=|b|,则a =b或a =-b.(3)若|a|+|b|=0,则|a|=0,且|b|=0.相关结论:(1)0的相反数是它本身。
(2)非负数的绝对值是它本身。
(3)非正数的绝对值是它的相反数。
(4)绝对值最小的数是0。
(5)互为相反数的两个数的绝对值相等。
(6)任何数的绝对值都是它的正数或0,即|a|≥0。
(五)倒数1、定义:乘积为“1”的两个数互为倒数。
2、求法:颠倒这个数的分子和分母。
3、a(a≠0)的倒数是1a .有理数的运算一、有理数的加法法则:1、同号两数相加,取相同的符号,并把绝对值相加;2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、一个数同零相加,仍得这个数;4、两个互为相反数的两个数相加得0。
二、有理数的减法法则:减去一个数,等于加上这个数的相反数。
人教版七年级数学上册期末复习知识点总结
【最新】人教版七年级数学上册期末复习知识点总结人教版七年级数学上册期末复习知识点总结第一章:有理数一.有理数的根底知识〔1〕正数〔2〕负数〔3〕0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义.2.有理数的概念及分类整数和分数统称为有理数.有理数的分类如下:(1)按定义分类:(2)按性质符号分类:3.数轴标有原点.正方向和单位长度的直线叫作数轴.数轴有三要素:原点.正方向.单位长度.4.相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两个数,在数轴上位于原点的两那么,并且与原点的距离相等.概念剖析:(1)在数轴上离某点的距离等于a的点有两个.(2)如果数a和数b互为相反数,那么a+b=0;abb1(ab0)或a1(ab0);(3)求一个数的相反数,只要在这个数的前面加上〝〞即可;例如ab的相反数是ba;5.绝对值数轴上表示数a的点与原点的距离叫做数a的绝对值.〔1〕绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离.〔2〕绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的a(a0)绝对值是它的相反数,可用字母a表示如下:a0(a0)a(a0)〔3〕两个负数比拟大小,绝对值大的反而小.概念剖析:①〝一个数的绝对值就是数轴上表示该数的点与原点的距离〞,而距离是非负,也就是说任何一个数的绝对值都是非负数,即a0.②互为相反数的两个数离原点的距离相等,也就是说互为相反数的两个数绝对值相等.二.有理数的运算1.有理数的加法2.有理数的减法:减去一个数等于加上这个数的相反数.3.有理数的乘法倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.注意:0没有倒数.4.有理数的除法:除以一个数,等于乘上这个数的倒数,0不能做除数.5.有理数的乘方〔1〕有理数的乘方:求几个相同因数a的积的运算叫做乘方,乘方的结果叫做幂.〔2〕正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数,0的任何非0次幂都是0,1的任何非0次幂都是1,1偶数次幂是1.1奇数次幂是1;概念剖析:①〝an〞所表示的意义是n个a相乘,不是n乘以a;②(a)nan.因为an表示n个a相乘,而(a)n表示n个a的相反数;③任何数的偶次幂都得非负数,即a2n0.知识窗口:所有的奇数可以表示为2n1或2n1;所有的偶数可以表示为2n.6.有理数的混合运算7.科学记数法〔1〕把一个大于10的数记成a10n的形式,其中a是整数位只有一位的数,这种记数方法叫做科学记数法.〔2〕与实际完全符合的数叫做准确数,与准确数接近的数叫做近似数.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.〔3〕一个数,从左边第一个不是0的数字起,到精确到的数位止〔最末尾一位〕,所得的数字,叫做这个数的有效数字.第二章:整式的加减1单项式由数与字母的积组成的代数式叫做单项式,其中数字因数叫做单项式的系数,所有字母因数的指数之和叫做单项式的次数.单独的一个数或字母也叫做单项式.2多项式几个多项式的和叫做多项式,其中.每个单项式都叫做多项式的项,不含字母的项叫做常数项,次数最高项的次数叫做该多项式的次数,每个单项式的系数都是多项式的系数;如果一个多项式有n项,且次数为m,那么我们称该多项式为m次n项式.二.代数式的计算1.同类项所含字母相同,并且相同字母的指数也相同的项,叫做同类项,常数项也是同类项.2.合并同类项把多项式中的同类项合并成一项叫做合并同类项,不是同类项不能合并.合并同类项法那么:〔1〕系数相加,所得结果作为系数;〔2〕字母和字母的指数不变.3.去括号去括号法那么:〔1〕括号前是〝+〞号,把括号和它前面的〝+〞号去掉后,原括号里各项符号都不改变;〔2〕括号前是〝〞号,把括号和它前面的〝〞号去掉后,原括号里各项的符号都要改变.4.整式的加减:整式的加减实质上就是合并同类项第三章:一元一次方程一.方程的有关概念在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程.2.等式的根本性质〔1〕等式两边同时加上〔或减去〕同一个数或代数式,所得结果仍是等式.假设ab,那么acbc或acbc.〔2〕等式两边同时乘以〔或除以〕同一个数〔除数不能为0〕,所得结果仍是等式.假设ab,那么acbc或abcc;二.解方程1.解方程及解方程的解的含义求得方程的解的过程,叫做解方程.使方程的左.右两边的值相等的未知数的值,叫做方程的解.3.解一元一次方程的步骤〔1〕去分母:注意每一项都要乘分母的最小公倍数,分子是一个整体的时候用括号〔2〕去括号:注意括号外面的符号,括号外的系数要乘上括号内的每一项;〔3〕移项:项放到等号另外一边时,注意变号;〔4〕合并同类项;〔5〕系数化为1;二.列方程初步〔列代数式〕路程问题:路程=时间×速度速度=路程÷时间时间=路程÷速度平均速度=总路程÷总时间轮船航行问题:顺水航行的速度=静水速度+水流速度逆水航行的速度=静水速度水流速度工程问题:工作量=工作时间×工作效率工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率价格问题:总价=单价×数量单价=总价÷数量数量=总价÷单价利润问题:利润=售价本钱售价=利润+本钱本钱=售价利润数字问题:表示数字的方法:1a个10a十100a百1000a千10000a万〔其中a个.a十.a百.a千.a万表示个位.十位.百位.千位万位的数字〕.面积问题:记住特殊图形的面积公式,非特殊图形的面积可用〝面积分割补法〞.第四章:几何图形初步一几何图形从实物中抽象出的各种图形统称为几何图形.几何图形可分为立体图形和平面图形.二.点.线.面.体(1)点动成线.线动成面.面动成体;(2)体是由面组成.面与面相交成线.线与线相交成点;二.线段.射线.直线1.线段.射线.直线的表示方法〔1〕线段的表示方法有两种:一是用两个大写字母,二是用一个小写的英文字母.〔2〕射线的表示方法一种:用端点和射线上的另一个点来表示,端点字母要写在前面.〔3〕直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示.线段.射线.直线的联系:射线和线段都可以看成是直线的一局部.3.直线性质:过两点有且只有一条直线.简称两点确定一条直线.4.线段的比拟〔1〕叠合法;〔2〕度量法.5.线段性质:〝两点之间,线段最短〞.连接两点的线段的长度,叫做这两点的距离.6.线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点.假设C是线段AB的中点,那么:AC=BC=12AB或AB=2AC=2BC.二.角〔1〕角可以看成是由两条有共同端点的射线组成的图形.两条射线叫角的边,共同的端点叫角的顶点.〔2〕角还可以看成是一条射线绕着他的端点旋转所成的图形.2.角的表示方法:角用〝∠〞符号表示〔1〕分别用两条边上的两个点和顶点来表示.〔顶点必须在中间〕〔2〕在角的内部写上阿拉伯数字,然后用这个阿拉伯数字来表示角.〔3〕在角的内部写上小写的希腊字母,然后用这个希腊字母来表示角.〔4〕直接用一个大写英文字母来表示.〔当顶点只有一个角时才可以用该方法〕3.角的度量:会用量角器来度量角的大小.4.角的单位:角的单位有度.分.秒,用°.′.″表示,角的单位是60进制与时间单位是类似的.度.分.秒的换算:1°=60′,1′=60″,1°=3600″.5.锐角.直角.钝角.平角.周角的概念和大小〔1〕平角:角的两边成一条直线时,这个角叫平角.〔2〕周角:角的一边旋转一周,与另一边重合时,这个角叫周角.〔3〕0°180度的角互为补角,同角或等角的补角相等.扩展阅读:七年级数学下册期末复习知识点总结七年级数学〔下册〕知识点总结任课教师:闫冠彬★必考▲重点√了解★复习重点:七至十单元测试卷相交线与平行线【知识点】√1.▲平面上不相重合的两条直线之间的位置关系为_______或________2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线.性质是对顶角相等.P3例;P82题;P97题;P352〔2〕;P353题3.两条直线相交所成的四个角中,如果有一个角为90度,那么称这两条直线互相垂直.其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足.4.垂直三要素:垂直关系,垂直记号,垂足5.做直角三角形的高:两条直角边即是钝角三角形的高,只要做出斜边上的高即可.6.做钝角三角形的高:最长的边上的高只要向最长边引垂线即可,另外两条边上的高过边所对的顶点向该边的延长线做垂线.AACBC7.垂直公理:过一点有且只有一条直线与直线垂直.8.垂线段最短;CB9.点到直线的距离:直线外一点到这条直线的垂线段的长度.10.两条直线被第三条直线所截:同位角F〔在两条直线的同一旁,第三条直线的同一侧〕,内错角Z〔在两条直线内部,位于第三条直线两侧〕,同旁内角U〔在两条直线内部,位于第三条直线同侧〕.P7例.练习111.平行公理:过直线外一点有且只有一条直线与直线平行.12.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.如果b//a,c//a,那么b//cP174题13.平行线的判定.P15例结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.P15练习;P177题;P368题.14.平行线的性质.P21练习1,2;P236题15.★命题:〝如果+题设,那么+结论.〞P22练习116.真.假命题P2411题;P3712题17.平移的性质P28归纳三角形和多边形1.三角形内角和定理★【重点题目】P763例:三角形三个内角之比为2:3:4,那么他们的度数分别为_____________2.构成三角形满足的条件:三角形两边之和大于第三边.判断方法:在△ABC中,a.b为两短边,c为长边,如果a+b>c那么能构成三角形,否那么〔a+bc〕不能构成三角形〔即三角形最短的两边之和大于最长的边〕【重点题目】P64例;P692,6;P7073.三角形边的取值范围:三角形的任一边:小于两边之和,大于两边之差〔的绝对值〕【重点题目】三角形的两边分别为3和7,那么三角形的第三边的取值范围为_____________4.等面积法:三角形面积12底高,三角形有三条高,也就对应有三条底边,任取其中一组底和高,三角形同一个面积公式就有三个表示方法,任取其中两个写成连等〔可两边同时2消去12〕底高底高,知道其中三条线段就可求出第四条.例如:如图1,在直角△ABC中,ACB=900,CD是斜边AB上的高,那么有ACBCCDAB【重点题目】P708题A 例直角三角形的三边长分别为3.4.5,那么斜边上的高为_____________D5.等高法:高相等,底之间具有一定关系〔如成比例或相等〕【例】AD是△ABC的中线,AE是△ABD的中线,SABC4cm2,那么SABE=_____________CB图16.三角形的特性:三角形具有_____________【重点题目】P695题7.外角:【根底知识】什么是外角?外角定理及其推论【重点题目】P75例2P765.6.8题8.n边形的★内角和_____________★外角和_______√对角线条数为_____________【根底知识】正多边形:各边相等,各角相等;正n边形每个内角的度数为_____________【重点题目】P83.P84练习1,2,3;P843,4,5,6;P904.5题9.√镶嵌:围绕一个拼接点,各图形组成一个周角〔不重叠,无空隙〕.单一正多边形的镶嵌:镶嵌图形的每个内角能被3600整除:只有6个等边三角形〔600〕,4个正方形〔900〕,3个正六边形〔1200〕三种〔两种正多边形的〕混合镶嵌:混合镶嵌公式nm3600:表示n个内角度数为的正多边形与m个内角度数为的正多边形围绕一个拼接点组成一个周角,即混合镶嵌.【例】用正三角形与正方形铺满地面,设在一个顶点周围有m个正三角形.n个正方形,那么m,n的值分别为多少?平面直角坐标系▲根本要求:在平面直角坐标系中1.给出一点,能够写出该点坐标2.给出坐标,能够找到该点▲建系原那么:原点.正方向.横纵轴名称〔即_.y〕√语言描述:以…〔哪一点〕为原点,以…〔哪一条直线〕为_轴,以…〔哪一条直线〕为y轴建立直角坐标系▲根本概念:有顺序的两个数组成的数对称为〔有序数对〕【三大规律】1.平移规律★点的平移规律〔P51归纳〕例将P(2,3)向左平移3个单位,向上平移5个单位得到点Q,那么Q点的坐标为_____________图形的平移规律〔P52归纳〕重点题目:P53练习;P543.4题;P557题.2.对称规律▲关于_轴对称,纵坐标取相反数关于y轴对称,横坐标取相反数关于原点对称,横.纵坐标同时取相反数例:P点的坐标为(5,7),那么P点〔1.〕关于_轴对称的点为_____________(2.)关于y轴的对称点为_____________〔3.〕关于原点的对称点为_____________3.位置规律★假设在平面直角坐标系上有一点P〔a,b〕y1.如果P点在第一象限,有a>0,b>0〔横.纵坐标都大于0〕第二象限第一象限2.如果P点在第二象限,有a0〔横坐标小于0,纵坐标大于0〕3.如果P点在第三象限,有a。
2019—2020年最新人教版七年级上册(第一学期)数学期末总复习资料(全册).doc
《全套题》第一章:有理数一、有理数的基础知识 1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。
②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数, 正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A 、一个数前面有“-”号,这个数就是负数;B 、非负数就是正数;C 、一个数前面没有“-”号,这个数就是正数;D 、0既不是正数也不是负数; 例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-, 正整数集合{} 整数集合{} 负整数集合{} 正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是 ____________, 0米的意义是______________。
例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。
例5 若0>a,则a 是 ;若0<a ,则a 是 ;若b a <,则b a -是 ;若b a >,则ba -是 ;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。
人教版七年级第一学期数学期末总复习知识点汇总
人教版七年级第一学期数学期末总复习知识点汇总第一章有理数1.1 正数与负数1.正数和负数的概念①正数:大于0的数叫正数。
(根据需要;有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界。
注意:①字母a可以表示任意数;当a表示正数时;-a是负数;当a表示负数时;-a是正数;当a表示0时;-a仍是0。
(如果出判断题为:带正号的数是正数;带负号的数是负数;这种说法是错误的;例如+a;-a就不能做出简单判断)②正数有时也可以在前面加“+”;有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量;则负数可以表示具有与该正数相反意义的量;比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”;如教室里有0个人;就是说教室里没有人;⑵0是正数和负数的分界线;0既不是正数;也不是负数。
如:(3)0表示一个确切的量。
如:0℃以及有些题目中的基准;比如以海平面为基准;则0米就表示海平面。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数;0;负整数;正分数;负分数都可以写成分数的形式;这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数;不能写成分数形式;不是有理数。
②有限小数和无限循环小数都可化成分数;都是有理数。
3;整数也能化成分数;也是有理数注意:引入负数以后;奇数和偶数的范围也扩大了;像-2;-4;-6;-8…也是偶数;-1;-3;-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数整数0 正有理数正分数有理数有理数0(0不能忽视)负整数分数负有理数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点;正方向;单位长度的直线叫做数轴。
数学人教版七年级数学上册期末复习知识点大全
数学人教版七年级数学上册期末复习知识点大全一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( )A .0.65×108B .6.5×107C .6.5×108D .65×106 2.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( ) A . B .C .D .3.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.4.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( )A .两点之间线段最短B .两点确定一条直线C .垂线段最短D .两点之间直线最短5.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( )A .π,3B .π,2C .1,4D .1,3 6.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( )A .﹣9℃B .7℃C .﹣7℃D .9℃ 7.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( )A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm 8.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个9.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A.①④B.②③C.③D.④10.观察下列算式,用你所发现的规律得出22015的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2 B.4 C.6 D.811.不等式x﹣2>0在数轴上表示正确的是()A.B.C.D.12.下列各组数中,互为相反数的是( )A.2与12B.2(1)-与1 C.2与-2 D.-1与21-13.A、B两地相距450千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t小时,两车相距50千米,则t的值为()A.2或2.5 B.2或10 C.2.5 D.214.下列计算正确的是()A.3a+2b=5ab B.4m2n-2mn2=2mnC.-12x+7x=-5x D.5y2-3y2=215.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了()A.40分钟B.42分钟C.44分钟D.46分钟二、填空题16.如图甲所示,格边长为cma的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.17.当a=_____时,分式13a a --的值为0. 18.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.19.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.20.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.21.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.22.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.23.计算7a 2b ﹣5ba 2=_____.24.4是_____的算术平方根.25.当12点20分时,钟表上时针和分针所成的角度是___________.26.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.27.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.28.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).29.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.30.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、压轴题31.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.32.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF的度数.33.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.34.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6a b x-1-2...(1)可求得x =______,第 2021 个格子中的数为______;(2)若前k 个格子中所填数之和为 2019,求k 的值;(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和.35.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.36.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.37.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?38.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除1.B解析:B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:65 000 000=6.5×107.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 3.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B∵互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D∵0的绝对值是0,故本选项错误.故选C.4.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B. 5.A解析:A【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项.【详解】解:单项式2r hπ的系数和次数分别是π,3;故选:A.【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.6.D解析:D【解析】【分析】这天的温差就是最高气温与最低气温的差,列式计算.【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃),故选:D.【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.7.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.8.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.9.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D .【点睛】本题考查数字类的规律探索.11.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x >2,在数轴上表示为:故选:C .【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.12.C解析:C【解析】【分析】根据相反数的定义进行判断即可.【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意;C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意;故选:C .【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.解析:A【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t 值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t 的值为2或2.5,故选A.【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.14.C解析:C【解析】试题解析:A.不是同类项,不能合并.故错误.B. 不是同类项,不能合并.故错误.C.正确.D.222 532.y y y -=故错误.故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.15.C解析:C【解析】试题解析:设开始做作业时的时间是6点x 分,∴6x ﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y 分,∴6y ﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C .二、填空题16.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键. 17.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a =1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a =1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.18.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键.19.-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】<<,解:459∴<<,23=,∴=,b3a2=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.20.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x 的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.22.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.23.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a 2b【解析】【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.24.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.25.110°【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.26.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.27.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.28.>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小解析:>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小. 29.11【解析】【分析】对整式变形得,再将2a ﹣b=4整体代入即可.【详解】解:∵2a﹣b=4,∴=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已解析:11【解析】【分析】对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴423a b -+=2(2)324311a b -+=⨯+=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.30.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a ※b =a ﹣b+2ab ,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、压轴题31.(1)107秒或10秒;(2)1413或11413.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a-20=0,c+10=0,∴a=20,c=﹣10.设点B对应的数为b.∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).解得:b=10.当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.∵Q到B的距离与P到B的距离相等,∴|﹣10+5t﹣10|=|20+2t﹣10|,即5t﹣20=10+2t或20﹣5t=10+2t,解得:t=10或t=107.答:运动了107秒或10秒时,Q到B的距离与P到B的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.∵点M 为线段PR 的中点,点N 为线段RQ 的中点,∴点M 对应的数为224202x x ++-=442x +, 点N 对应的数为2052x x -+=2x +10, ∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.32.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC 即可,把∠AOC 、∠BOC 、∠AOB 相加即可求出射线OA ,OB ,OC 组成的所有小于平角的和;(2)依题意设∠2=x ,列等式,解方程求出即可;(3)依据题意求出∠BOM ,∠COM ,再根据角平分线的性质得出∠MOE ,∠MOF ,即可求出∠EOF .【详解】解:(1)∵∠BOC =30°,∠AOB =45°,∴∠AOC =75°,∴∠AOC +∠BOC +∠AOB =150°;答:由射线OA ,OB ,OC 组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.33.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.34.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1.故答案为:6,-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、绝对值
1. 绝对值的意义(1)___一__个_正__数_的__绝__对_值__是_它_;本身 ( 2 __一__个__负__数__数__的___绝__对__值__是__它__的__相__反__数__________ ( 3 )_0的__绝_对__值__是_0_; (4)|a|_≥ __0.
2. 化简(1)-|-2/3|=_-2_/3_(2)|-3.3|-|+4.3|=_-1__; (3)1-|-1/2|=_1/_2_; (4)-1-|1-1/2|=_-_3/_2___。
解:∵点O是线段AB的中点,AB=14㎝
∴AO=
1 2
AB=7㎝
∴OC=AC-AO
=9㎝-7㎝
=2㎝
2、如图,已知∠AOB=90°,∠AOC是60°,
OD平分∠BOC,OE平分∠AOC。求∠DOE。
解:∵∠AOB=90°,∠AOC=60°
∴∠BOC=∠AOB+∠AOC=150°
∵OD平分∠BOC ∴∠DOC= 1 ∠BOC=75°
生活中的立体图形
按柱、锥、球划分 (1) (2) 是一类,是柱体 (3)(4)是锥体 (5)是球体
圆柱
柱体
三棱柱
四棱柱 棱柱
五棱柱
六棱柱
……
圆锥
锥体
三棱锥
棱锥
四棱锥 五棱锥
六棱锥
……
立体图形的平面展开图
正方体
长方体
三棱柱
四棱锥
三棱柱
五棱锥
归纳:正方体 的表面展开图 有以下11种。你能看 出有什么规律吗?
非正数是_0_。 ④与原点的距离为三个单位的点有2__
个,他们分别表示的有理数是_3_和_-3_。
三.相反数
只有符号不同的两个数,
其中一个是另一个的相反数.
1)数a的相反数是-a
(a是任意一个有理数)
2)0的相反数是0 3)若a、b互为相反数,则a+b=0
-4
4
-2 2
-4 -3 –2 –1 0 1 2 3 4
前0不算,中后0都算。 1、用科学记数法表示:
19900000≈__2_._0_×__1_0_7___(保留两个有效数字) 2、2.50×104精确到_百___位 3、近似数0.0030060有_五__个有效数字,分
别是__3_、__0_、__0_、__6_、__0__。
3. 填空题。 1) 若|a|=3,则a=±__3__; |a+1|=0,则a=-_1___。 2) 若|a-5|+|b+3|=0,则a=_5__,b=__-_3。 3) 若|x+2|+(y-2)2=0,则x=-_2__,y=_2__。
五、有理数的四则运算
计算:
(1) 2 1 3 1 3 3 4 4
∠1+∠2=90 °
2、∠1与∠2互补,∠1是∠2的补角,∠ 2是∠1的补角.
∠1+∠2=180 °
1)两个角成对出现
注意!
2)只考虑数量关系,与位置无关.
性质: 同角(等角)的余角(补角)相等
认真解一解
1、如图、线段AB=14cm,C是AB上一点,且 AC=9cm,O是AB的中点,求线段OC的长度。
一
二
阶
四 一 型
三 一 型
梯 型
直线、射线、线段的比较
名称
线段
射线
直线
图形
表示法
a
A
BO C
线段AB 、线 射线OC、 段BA、线段a 射线l
l
l
AB
直线AB、直
线BA、直线l
延伸性 端点个数 作图叙述
无
2 连接AB
沿OC方向 向两方无限
延伸
延伸
1
0
以点O为端 过A、B两点 点作射线OC 作直线AB
6.如图,已知直线AB和CD相交于O点,∠COE
是直角,OF 平分∠AOE, ∠COF=34°,求∠BOD的
度数.
F
E
C
A
O
B
D
22度
一、 有 理 数
1. 正_整__数_、_零__、_负_整__数__统称整数。
2. 正_分__数_、_负__分_数_____统称分数。
3. __整_数__、_分_数______统称有理数。
2
同理∠EOC=
1 2
∠AOC=30°
∴∠EOD=∠COD-∠EOC =75°-30° =45°
3、如果两个角互补,并且它们的差是30°,那么较大 的角等于 105°.
4.一个角的余角比它的补角的 一半还少30°,求这个角.
60度
5.一个角的补角是123°24′16″,则这个角的余角是多少?
33°24′16″
4. 有理数的分类表:
正整数
整数 0
有
负整数
有
理
理
数
正分数
数
分数
负分数
正有理数
0 负有理数
正整数 正分数
负整数 负分数
练习
把下列各数填在相应的大括号内:
1,-0.1,-789,25,0,-20,-3.14,-590,6/7
正整数集{ 1,25
…}
负整数集{ -789,-20、-590
正分数集{ 6/7
到小的顺序排列,用“>”号连接起来。 4, -|-2|, -4.5, 1, 0。
3. ①比-3大的负整数是__-_2,__-1__; ②已知m是整数 且-4<m<3,则m为_-_3,__-2_,_-_1,_0_,_1_,_2___。 ③有理数 中,最大的负整数是_-_1 ,最小的正整数是_1_。最大的
线段中点的定义
●
●
●
A
C
B
ACCB 1 AB
2
或 AB=2AC=2CB
角的平分线
1、定义:一条射线把一个角分成两个相等 的角, 这条射线叫做这个角的平分线.
2、几何语言表达:
A
∵ OC是∠AOB的平分线
C
∴∠1=∠2= 1 ∠AOB
2
1
Hale Waihona Puke 或∠AOB=2∠1=2∠2O 2
B
余角、补角
1、∠1与∠2互余,∠1是∠2的余角,∠2 是∠1的余角.
负分数集{ -0.1,-3.14,
…} …}
…}
正有理数集{ 1,25, 6/7
…}
负有理数集{ -0.1,-789,-20,-3.14,-590 …}
自然数集{ 1,0,25
…}
二、 数 轴
1. _规__定_了_原_点__、_正_方__向_和_单_位__长_度_的__直_线____叫数轴。 2. 练习1、在数轴上画出表示下列各数的点,并按从大
(2)4028(19 )(24 )(32 )
(3)(-18)÷2 1
4
×
4 9
÷(-16)
(4) 4 3 { 3 ) ( 4 [ 1 ( ) 2 .5 2 1 ( 4 ) ] ( 28 4 28 7 )}
4
15 15
六、科学记数法与有效数字
科学记数法:a×10n (1≤a<10,n比整数数位小1) 有效数字:左边第一个不是0的数算起到末位数字,