假设检验的一般问题
4 假设检验和t检验

t
2.671
17905113912 /11101971 9462 / 9 ( 1 1)
11 9 2
11 9
=n1+n22=11+9-2=18
(3)确定P值,作出推断结论
以=18,查 t 界值表得 0.01<P<0.02。按=0.05 水
准,拒绝 H0,接受 H1,差异有统计学意义。可以认为 两种饲料对小鼠的体重影响不同。
(2)计算检验统计量
本例n=12,d=53,d2=555,
d d 53 4.42 n 12
sd
d2 (
d)2 / n
555 (53)2 /12 5.40
n 1
12 1
t d 4.42 2.83 sd / n 5.40 / 12
12 1 11
(3)确定P值,作出推断结论
(1)建立检验假设,确定检验水准
H0:1=2 即两组小鼠的体重总体均数相同 H1:1 2 即两组小鼠的体重总体均数不相同 =0.05
(2)计算检验统计量
126.45 105.11
t
2.671
(111)17.762 (9 1)17.802 ( 1 1)
11 9 2
11 9
126.45 105.11
型)选择相应的检验统计量。 如 t 检验、z检验、 F检验和 2 检验等。
本例采用t检验方法 t X X X 0 , n 1
SX S n S n
本例t值为1.54
3. 确定P值,做出推断结论
是指查根表据得所到计检算验的用检的验临统界计值量,确然定后H将0成算立得的可 能性的大统小计,量即与确拒定绝在域检的验临假界设值条作件比下较由,抽确样定误P差引 起差值别。的如概对率双。侧 t 检验 | t | ,则 tα/2(ν) P α ,按检
探讨假设检验的基本问题

探讨假设检验的基本问题作者:白梅花唐骏罗宁翟丽丽刘兴薇来源:《科技资讯》2015年第03期基金项目:内蒙古教育厅项目--《数学教育工学结合人才培养模式的建构与实践》(2013nmjg029)摘要:本文以一个简单例子探讨了统计中统计推断的一项重要内容--假设检验及其相关的基本问题。
假设检验是利用样本对总体进行某种推断的方法。
文中给出了对总体参数如何提出假设;再如何利用样本数据判断这个假设成立与否;以及假设检验方法可能犯的错误等。
关键词:假设检验;统计量;拒绝域;错误中图分类号:O21 文献标识码:A文章编号:1672-3791(2015)01(c)0000-001.前言假设检验是统计推断的重要组成部分,是利用样本对总体进行某种推断的方法。
它先对总体参数的值提出一个假设,然后利用样本信息去检验这个假设是否成立。
那么如何利用样本信息,对假设成立与否作出判断的一套程序是本文探讨的内容。
在现实生活中有大量的事例可以归结为假设检验的问题。
本文从下面例子谈起。
2.假设检验的一个例子例:由统计资料得知,2008年某地新生儿的平均体重为3190克,现在从2010年的新生儿中随机抽取100个,测得其平均体重为3210克,问:2010年的新生儿与2008年相比,体重有无显著差异?解:从结果看,2010年新生儿平均体重比2008年新生儿平均体重增加了20克,但这20克的差异可能产生于抽样的随机性或可以理解为抽样随机性不可能造成20克这样大的差异,新生儿体重确实有增加。
那么,这20克的差异说明了什么?下面我们可以采取假设的方法。
(1)提出假设:表示2010年新生儿平均体重;表示2008年新生儿平均体重。
假设2008年和2010年新生儿的体重没有显著差异,则原假设和备择假设分别为,原假设与备择假设互斥,肯定原假设,意味着放弃备择假设;否定原假设,意味着接受备择假设。
(2)确定检验统计量及检验法:原假设是否成立呢?我们要借助样本统计量进行统计推断,这个统计量被称为检验统计量。
概率论与数理统计 8-1

又如, 对于正态总体提出数学 期望等于 µ 0 的 假设等. 假设检验就是根据样本对所提出的假设作 出判断: 是接受, 还是拒绝. 出判断 是接受 还是拒绝
假设检验问题是统计推断的另一类重要问题. 假设检验问题是统计推断的另一类重要问题 如何利用样本值对一个具体的假设进行检验? 如何利用样本值对一个具体的假设进行检验 通常借助于直观分析和理 论分析相结合的做法,其基本原 论分析相结合的做法 其基本原 理就是人们在实际问题中经常 采用的所谓实际推断原理:“ 采用的所谓实际推断原理 “一 个小概率事件在一次试验中几 乎是不可能发生的” 乎是不可能发生的”. 下面结合实例来说明假设检验的基本思想. 下面结合实例来说明假设检验的基本思想
假设检验问题通常叙述为: 在显著性水平 下 假设检验问题通常叙述为 α ,
检验假设H0 : µ = µ0 , H1 : µ ≠ µ0 .
或称为“ . 或称为“在显著性水平 α下, 针对 H 1检验 H 0”
H0称为原假设或零假设 1 称为备择假设 称为原假设或零假设H , .
4. 拒绝域与临界点
当检验统计量取某个区域C中的值时 当检验统计量取某个区域 中的值时, 我们 中的值时 拒绝原假设H 则称区域C为拒绝域, 拒绝原假设 0, 则称区域 为拒绝域 拒绝域的边 界点称为临界点 临界点. 界点称为临界点 如在前面实例中, 如在前面实例中
一定时, 当样本容量 n 一定时 若减少犯第一类错误 的概率, 则犯第二类错误的概率往往增大. 的概率 则犯第二类错误的概率往往增大 若要使犯两类错误的概率都减小, 若要使犯两类错误的概率都减小 除非增加 样本容量. 样本容量
6. 显著性检验
只对犯第一类错误的概率加以控制 只对犯第一类错误的概率加以控制, 而不考 犯第一类错误的概率加以控制 显著性检验. 虑犯第二类错误的概率的检验, 称为显著性检验 虑犯第二类错误的概率的检验 称为显著性检验
假设检验的两类错误及检验水准的调整

实际情况
H0 真 H0 不真
表1
假设检验的两类错误
检验结果
不拒绝 H0 结论正确 (1-琢)
Ⅱ型错误 (茁)
拒绝 H0 Ⅰ型错误 (琢) 结论正确 (1-茁)
统计学中还存在Ⅲ型和Ⅳ型错误。Ⅲ型错误指假 设检验回答了一个错误的问题,而这种错误的问题主 要是由研究设计错误引起的;Ⅳ型错误指对正确假设 检验作出错误解释 [2]。
2 多重比较检验水准的调整
2.1 问题的提出 当多组资料的假设检验 (如方差 分析等) 拒绝 H0,接受 H1,如需进一步了解哪几对 样本间存在统计学差异,须进行多样本间多重比较。 如仍采用 t 检验或类似方法进行多重比较,将增加犯 Ⅰ型错误概率,进行 c 次比较犯Ⅰ型错误概率为:1(1-琢) c (琢 为检验水准)。多重比较一般分为各样本 间两两比较 [比较次数 c=k (k-1) /2,k 为组数] 和 各处理组与对照组比较 (c= k-1)。 2.2 检验水准的调整 通过直接调整检验水准或采 用专门的统计方法可控制多重比较Ⅰ型错误概率。 Bonferroni 法用于多样本两两比较检验水准的调整,
LSD-t 检验常被列在统计教科书或统计软件多重 比较方法的第一个。但 LSD-t 检验没有对检验水准或 统计量进行调整,采用此法会增加犯Ⅰ型错误概率, 比较次数越多,犯Ⅰ型错误概率越大。因此在多重比 较时应慎用 LSD-t 检验。
从表 2 可见,采用 Bonferroni 法调整后的检验水 准低于 Sidak 法,随着比较次数增加,两者差距增 大。相对于 Bonferroni 法, 在两两比较时建议 选用 Sidak 法,尤其是组数较多时。
假设检验作出的推断具有概率性,因此其结论不 可能完全正确,可能发生两类错误。假设检验Ⅰ型错 误指拒绝了实际上成立的 H0,即“假阳性”。进行假 设检验应先设定检验水准,检验水准是预先规定允许 犯Ⅰ型错误的概率最大值,Ⅰ型错误概率大小用 琢 表示。 Ⅱ型 错 误 指接受 了 实 际 上 不 成 立 的 H0, 即 “假阴性”。Ⅱ型错误概率大小用 茁 表示,茁 只取单 尾。琢 越小,茁 越大,反之亦然。同时减小 琢 和 β 的唯一方法是增大样本量 [1]。
《概率论与数理统计》第八章1假设检验的基本概念

2. 从某批矿砂中,抽取10样本,检验这批砂矿的含 铁量是否为3%?
双侧检验 H0 : 0 3%, H1 : 3%
3.某学校学生英语平均分65分, 先抽取某个班的平均 分,看该成绩是否显著高于全校整体水平?
单侧检验 H0 : 0 65, H1 : 65
0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常?
分析 以 和 分别表示这一天袋装糖的净重
总体X 的均值和标准差,
由长期实践表明标准差比较稳定, 我们就设
0.015,于是 X ~ N(, 0.0152 ),这里 未知. 问题 问题是根据样本值判断 0.5 还是 0.5 .
所
以,原假
设H
不正确
0
。
对于这两种解释,哪种解释比较合理呢?
我们需要判断以上两种假设谁对谁错,并给出判断的理由
以上例子属于参数检验(parametric test) 的问题,(如针对总体均值,总体方差等参数的假 设检验)。
另外还有非参数检验(Nonparametric test) 的问题,如关于总体服从某种分布(如正态分布, 泊松分布)的假设检验。
4. 拒绝域与临界点
拒绝域W1: 拒绝原假设 H0 的所有样本值 (x1, x2, ···, xn)所组成的集合.
W1 W1 :拒绝原假设H0的检验统计量的取值范围.
临界点(值):拒绝域的边界点(值) (相应于检验统计量的值).
如: 在前面例4中,拒绝域 {u :| u | u / 2 }.
5. 双边备择假设与双边假设检验
之 下 做 出 的.
2. 检验统计量
第七章假设检验

k
,
n
也就是说,事件“|
U
|
z
”2
2
2
是一个小概率事件.
由标准正态分布的上分位点的定义知:
k z 2 ,
17
故可以取拒绝域为 W: | U | z 2
如果由样本值算得该统计量的实测值落
入区域W,则拒绝H0 ;否则,不能拒绝H0 .
这是因为,如果H0 是对的,那么衡量差 异大小的某个统计量落入区域 W(拒绝域) 是 个小概率事件. 如果该统计量的实测值落入 W,也就是说, H0 成立下的小概率事件发生 了, 那么就认为H0不可信而否定它. 否则就不 能否定H0 (只好接受它).
n
体N (, 2 )的样本. 且设是已知常数.
12
现在要检验的假设是:
H0 : 0 (0 355),
它的对立假设是:
H1 : 0,
在实际工作中, 往往把不轻易 否定的命题作 为原假设.
称H0为原假设(或零假设); 称H1为备选假设(或对立假设). 那么,如何判断原假设H0 是否成立呢?
13
H0 : 新技术未提高效益,H1 : 新技术提高效益.
30
•假设检验 —基本概念
原 把需要检验的
假 假设称为原假
关于总体
假 设
分布的某 个命题
设 设,记为H0.
备 在拒绝原假设后,可供 择 选择的一个命题称为
假 备择假设,它是原假设
设 的对立假设,记为H1.
31
•假设检验 —基本概念
检验统计量 用于判断原假设成立与否的统计量
P{第二类错误}= P{接受H0|H0不真}= .
26
•假设检验的两类错误
显著性水平 为犯第一类错误的概率.
贾俊平版统计学课件 第8章
▽与原假设对立的假设称备择假设,记为 H1 ,用 、 或 表示。 对于新生儿体重的例子,可以表示为
H 0 : 3190
H1 : 3190
(2)确定检验统计量及其分布
▽用于检验假设的统计量称为检验统计量
▽根据 H 0 及相应条件选择适当的统计量,并确定统计量
的分布 对于新生儿体重的例子,可利用 x 0 构造检验统计量. 若新生儿体重为正态分布 N ( , 2 ) ,且 已知,则在 H 0 为真 时,用 z 作为检验统计量,并且
H 0 : 3190 H1 : 3190
并已知 x 3210, 80, n 100 ,则
z0 x 0
n
3210 3190 80 100
2.5
于是
p 2Pz z0 2 0.00621 0.01242
双侧检验的P值
/ 2
/ 2 拒绝
▽犯第二类错误的概率为 。
表8-1 假设检验中各种可能结果的概率
实际情况
H 0 为真 H 0 不真
决策
接受 H 0
1
拒绝 H 0
1
假设检验中的两类错误(决策结果)
H0: 无罪
假设检验就好像一场审判过程 统计检验过程
陪审团审判
实际情况 裁决 无罪 无罪 有罪 正确 错误 有罪 错误 正确 接受H0 拒绝H0 决策
若p-值 /2, 不能拒绝 H0 若p-值 < /2, 拒绝 H0
8.1.6 假设检验的形式
研究的问题 假设
双侧检验
H0 H1
左侧检验
右侧检验
= 0 ≠0
假设检验
假设检验一、基本思想与基本步骤(一)假设检验问题[例1.6-1]某厂生产某种化纤的纤度X服从正态分布N(μ,0.042),其中μ的设计值为1.40,每天都要对“μ=1.40”作例行检验,以观生产是否正常运行。
某天从生产线中随机抽取25根化纤,测得纤度值为:x1,x2,…,x25其纤度平均值=1.38,问当日生产是否正常。
几点评论:(1)这不是一个参数估计问题。
(2)这里要求对某个命题“μ=1.40”回答:是与否。
(3)这一类问题被称为(统计)假设检验问题。
(4)这类问题在质量管理中普遍存在。
(二)假设检验的基本步骤假设检验的基本思想是:根据所获样本,运用统计分析方法,对总体X的某种假设H0做出接受或拒绝的判断。
具体做法如下:1.建立假设H0:μ=1.40这是原假设,其意是:“与原设计一致”,“当日生产正常”等。
要使当日生产与1 40无差别是办不到的,若差异仅是由随机误差引起的,则可认为H0成立;若由其他特殊因素引起的,则认为差异显著,则应拒绝H0。
H1:μ≠1.40 这是备择假设,它是在原假设被拒绝时而应接受的假设。
在这里,备择假设还有两种设置形式,它们是:H12:μ<1.40,或H13:μ>1.40 备择假设的不同将会影响下面拒绝域的形式,今后称H0对H1的检验问题是双边假设检验问题H0对H12的检验问题是单边假设检验问题H0对H13的检验问题也是单边假设检验问题注:若假设是关于总体参数的某个命题,称为参数的假设检验问题,比如:H0:μ=μ0,H1:μ≠μ0,H0:σ2≤σ20,H1:σ2>σ20,H0:P≥P0,H1:P<P0,都是参数假设检验问题。
东莞德信诚精品培训课程(部分)(点击课程名称打开课程详细介绍)内审员系列培训课程查看详情TS16949五大工具与QC/QA/QE品质管理类查看详情 JIT东莞德信诚公开课培训计划>>> 培训报名表下载>>> /download/dgSignUp.doc2.选择检验统计量,给出拒绝的形式这个假设检验问题涉及正态均值μ。
第八章 假设检验
第八章 假设检验参数估计和假设检验是统计推断中的两类重要问题。
在前一章中我们讨论了用样本统计量来推断总体未知参数的方法—参数的点估计与区间估计,本章我们将讨论正态总体分布中的未知参数的假设检验以及总体分布函数的假设检验。
§8.1 假设检验的基本概念§8.1.1 问题的提出在实际工作中,我们经常要面对这样的问题:总体的分布函数的类型或分布函数中的一些参数是未知的,需要对总体分布函数的类型或分布函数中的未知参数提出某种"假设",然后通过已经获得的一个样本对提出的“假设”作出成立还是不成立的判断(或决策)。
为了介绍假设检验的基本思想,我们先来看一个例子:例8.1 某食品厂生产的罐头规定每听的标准重量为500克,这些罐头由一条生产线自动包装,在正常的情况下,由经验知道生产出的罐头重量(单位:克)服从正态分布N (500,22)。
质量管理中规定每隔一定时间要抽测5听罐头。
若某次抽测的5听罐头的重量为501,507,498,502,504(克),假定方差不变,这时我们是否可以得出生生产线运转正常(即这段时间生产的罐头的平均重量为500克)的判断呢?由题意知,罐头重量),2N(μ~X 2,记μ0=500,则要回答的问题是:μ=μ0吗? 我们可以先假定μ=μ0,并称之为待检假设或原假设,记为H 0:μ=μ0这个原假设可能成立也可能不成立。
当原假设不成立时,称μ的取值为备选假设,这里取“μ≠μ0”为备选假设,记为H 1:μ≠μ0所谓假设检验问题就是要利用样本提供给我们的信息,在原假设H 0与备选假设H 1之间作出拒绝哪一个、接受哪一个的判断,简称为H 0对H 1的检验问题。
在例8.1中,我们把问题归结成统计假设:H 0:μ=500,对H 1:μ≠500。
那么,如何来解决H 0对H 1的检验问题呢?由参数估计知,x 是μ的一个"好"估计量。
如果原假设H 0成立,即μ=500,那么,x 通常应很接近500,即|x -500|通常应很小;否则,就认为原假设H 0不成立,也即μ≠500。
第十三讲统计学-讲义
H0 的实际状态
H0 为真
H0 为非真
决策正确
犯第二类错误
犯第一类错误
决策正确
因为假设检验是根据样本数据对总体参数或概率分布所作的假设进 行统计推断,也就是说,由部分来推断整体,所以它不可能绝对准 确。我们希望犯这两类错误的可能性都尽可能小,但在样本容量一 定的情况下,不能同时做到α 和β 都很小,减少α 会使β 增大,减 少β 会使α 增大。如果想使α 和β 同时都很小,只有增加样本容量。 在实际应用中,一般先控制犯第一类错误的概率α ,给它规定一个 上限,而不考虑犯第二类错误的概率β ,我们把这种假设检验称为 显著性检验,把犯第一类错误的最大概率α 称为检验的显著性水平, 相应的检验称为水平α 的显著性检验。
α =P(V|H0 真)
对于第 3 种情况,H0 本来是非真的,却根据检验统计 量的值把它给接受了,在统计上,称为第二类错误,也称 取伪错误,这种错误发生的概率通常用β 表示,即
β =P(V |H0 非真)
表 6.1.1 给出了上述 4 种情况。
表 6.1.1 假设检验的四种可能结果
对假设 H0 采取的决策
原假设和备择假设的选取说明
• 假设检验是控制犯第一类错误的概率,所以检验本身对原假设起 保护的作用,决不轻易拒绝原假设,因此原假设与备择假设的地 位是不相等的,正因为如此,常常把那些保守的、历史的、经验 的取为原假设,而把那些猜测的、可能的、预期的取为备择假设。
• 比如:对于双侧检验,这选择问题应该比较简单,一般都是“是 不是”、“等不等于”和“变没变”这一类的问题,一般我们期 待的结果多为“不是”、“不等于”和“变了”这样的结果,所 以把不等号的设为备择假设的。
• 对于单侧检验,一般都是“增加了”、“提高了”或“减少了”、 “降低了”这一类问题,比如某产品的在使用了新技术生产后, 问产品质量是否提高了,我们期待的结果是提高了,这样就把大 于号定为备择假设,相反的小于等于号定为原假设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设检验的一般问题
引言
假设检验是统计学中常用的一种方法,用于判断一个统计推断关于总体的假设
是否成立。
通过对样本数据进行分析,我们可以根据假设检验的结果来进行决策,判断我们的研究结果是否具有统计显著性。
在进行假设检验时,我们需要了解一些基本的概念和步骤。
本文将介绍假设检
验的一般问题,包括问题的提出、假设的建立、显著性水平的选择、检验统计量的计算和P值的解释等内容。
问题的提出
假设检验的一般问题通常由一个研究问题或观察问题引出。
例如,我们想要研
究一种新药物对某种疾病的治疗效果是否显著,我们可以提出以下问题:新药物是否显著地降低了患者的疾病症状?在这个问题中,我们的研究目的是判断新药物是否具有统计显著性。
假设的建立
在假设检验中,我们通常需要建立一个零假设和一个备择假设。
零假设(H0)是我们要进行检验的假设,通常是默认的假设,表示没有效果、没有差异或没有关联。
备择假设(H1或Ha)是与零假设相反的假设,表示我们要确认的效果、差异或关联。
在上述药物治疗效果的例子中,我们可以建立如下的假设: - 零假设(H0):
新药物对患者的疾病症状没有显著降低的效果。
- 备择假设(H1):新药物对患
者的疾病症状有显著降低的效果。
显著性水平的选择
显著性水平(Significance Level)是在假设检验中预先设定的一个概率阈值,
用于判断检验结果是否具有统计显著性。
常见的显著性水平选择包括0.05和0.01。
在上述药物治疗效果的例子中,我们可以选择0.05作为显著性水平。
这意味
着我们允许5%的概率犯下错误地拒绝零假设,即错误地认为新药物有显著效果。
检验统计量的计算
在假设检验中,我们需要计算一个检验统计量(Test Statistic),用于评估样
本数据与假设之间的偏离程度。
检验统计量的具体计算方法与所研究的问题和数据类型相关。
以药物治疗效果的例子为例,我们可以选择计算平均差异或相关系数作为检验统计量,用于衡量新药物的疗效。
P值的解释
在假设检验中,P值(P-value)是在给定零假设为真的情况下,观察到样本结果或更极端结果发生的概率。
P值的计算方法与所用的统计方法相关。
P值通常与显著性水平进行比较,如果P值小于或等于显著性水平,则我们有足够的证据来拒绝零假设,认为研究结果具有统计显著性。
如果P值大于显著性水平,则我们无法拒绝零假设,即无法得出显著结论。
在上述药物治疗效果的例子中,如果计算得到的P值小于等于0.05,我们可以拒绝零假设,认为新药物具有显著降低疾病症状的效果。
结论
假设检验是统计学中重要的一种方法,用于判断一个统计推断关于总体的假设是否成立。
通过了解假设检验的一般问题,我们可以更好地进行统计分析和研究。
本文介绍了假设检验问题的提出、假设的建立、显著性水平的选择、检验统计量的计算和P值的解释等内容。
这些步骤是进行假设检验分析的基本要素,能够帮助我们进行科学的实证研究。
希望通过本文对假设检验的一般问题的介绍,读者能对假设检验有进一步的了解并在实际应用中运用得当。