汽车构造原理图解

合集下载

汽车发动机构造图解优秀课件

汽车发动机构造图解优秀课件
火花塞 分电器 汽油泵 油尺 机油滤清器 水泵组件
第3页
发动机的主要组成部分
发动机主要由:两个机构、五个系统组成。
➢ 机体及曲柄连杆机构 ➢ 配气机构 ➢ 燃油供给系统 ➢ 点火系统(柴油机通常没有此系统) ➢ 冷却系统 ➢ 润滑系统 ➢ 起动系统
2020/11/18
第4页
一、机体及曲柄连杆机构
拨叉杆 单向器 飞轮
2020/11/18
电枢
点火开关 电磁开关
蓄电池
第24页
第25页
高压油轨 喷油器
第15页
2、汽油直喷式燃油供给系统图解之二
2020/11/18
燃油供给系统
第16页
3、汽油直喷式燃油供给系统图解之三
高压油泵
油压阀
滚动挺杆
凸轮轴
2020/11/18
蓄压管
主油管
油压传感器 喷油器
第17页
4、化油器式燃油供给系统图解之一 化油器
汽油泵
汽油滤清器
2020/11/18
2020/11/18
第11页
4.2、摇臂式配气机构摇臂总成实物展示
洛柴摇臂
玉柴摇臂
潍柴摇臂
2020/11/18
第12页
4.2、摇臂式配气机构的气门挺杆图解
2020/11/18
第13页
三.燃油供给系统
燃料供给系统是根据使用的燃料不同,分为汽油机 燃料供给系和柴油机燃料供给系两种。
汽油燃料供给系又分”化油器式“和”燃油直接喷射式“两种。
2020/11/18
液压挺杆
气门组件 活塞 连杆
曲轴
第7页
2.1、直推式配气机构的气门挺杆图解
弹簧座 复位弹簧(小) 复位弹簧(大)

《汽车构造》课件——14.制动原理

《汽车构造》课件——14.制动原理

辽 制动系统原理(鼓式制动器)
15.1 制动原理


3.车轮制动器


主要由旋转部分、固定部分和张开机构组成。
业 技
旋转部分是制动鼓,它固定在车轮上,随车轮旋转。
术 学
固定部分包括制动蹄和制动底板等。在固定不

动的制动底板上,有两个支承销,支承着两个弧形
制动蹄的下端。
制动蹄的外圆面上装有摩擦片,上端用制动蹄
院 动机动作,并带动制动卡钳活塞移动产生机械夹紧力从而完成驻车。可以看到,EPB
电子手刹和手动拉线式手刹都是对后轮进行制动。
辽 电子手刹
15.1 制动原理


只要启用AUTO HOLD功能,便会启动相应的自动驻车功能。AUTO HOLD自动驻车

职 功能可使车辆在等红灯或者上下坡停车时自动启动四轮制动。即使是在D档或者N档,

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%

术 的传递动力,基本原理是驾驶员踩下刹车踏板,向刹车总泵中的刹车油施加压力,

院 液体将压力通过管路传递到每个车轮刹车卡钳的活塞上,卡钳夹紧刹车盘从而产生
巨大摩擦力令车辆减速。
一般制动系的基本结构与工作原理, 可用一种简单的液压行车制动系的结构 和工作原理示意图来说明。

职 1.机械式手刹

技 我们在驾校时,教练几乎都会重复“停车拉手刹”的教导,作为最常见的一种
术 学
驻车制动类型,你几乎可以在绝大多数车上见到。

传统手刹由制动杆、拉索、制动机构和回
位弹簧组成,作用于传动轴或者后轮制动,达
到稳定车辆的目的。

「图解·汽车」一篇看懂,发动机外部结构

「图解·汽车」一篇看懂,发动机外部结构

「图解·汽车」一篇看懂,发动机外部结构燃料供给系统发动机燃料系统的功能是把发动机所需的燃油与空气按照机器自身的设计方式混合成一定浓度的气体供给燃烧室,并将燃烧后的废气排掉。

燃料供给系统•汽油机燃料供给系统汽油机燃料供给系统的任务是根据发动机各种不同工况的要求,配制出一定数量和浓度的可燃混合气,进入气缸,使之在临近压缩终了时点火燃烧而膨胀做功。

供给系统还应将燃烧产物——废气排入大气中。

化油器式燃料供给系统汽油机燃料供给系统分为化油器式燃料供给系统和电子燃油喷射式供给系统。

•化油器化油器是在发动机工作产生的真空作用下,将一定比例的汽油与空气混合的机械装置。

化油器作为一种精密的机械装置,它对发动机的重要作用可以被称为发动机的“心脏”,其完整的装置应包括启动装置、怠速装置、中等负荷装置、全负荷装置、加速装置。

化油器会根据发动机的不同工作状态需求,自动配比出相应的浓度,输出相应的量的混合气,为了使配出的混合气混合的比较均匀,化油器还具备使燃油雾化的效果,以供机器正常运行。

典型化油器•化油器原理内燃机工作时,吸入的空气流经喉管时流速增高,使该处产生真空,将浮子室中的燃油经主量孔和喷口吸出,喷入喉管。

燃油被高速空气流所雾化,并与之混合,混合过程一直延续到气缸内。

化油器原理汽油机电子控制燃油喷射系统电子控制燃油喷射系统(EFI)简称为“电控燃油喷射系统”“电喷系统”,是以电控单元为控制中心,并利用安装在发动机上的各种传感器测出发动机的各种运行参数,再按照电脑中预存的控制程序精确地控制喷油器的喷油量,使发动机在各种工况下都能获得最佳空燃比的可燃混合气。

电子控制燃油喷射系统电子燃油喷射系统组成电子燃油喷射系统结构EFI主要部件•喷油器多点喷射系统的喷油器位于进气口处。

进气口喷射发动机喷油器的作用是接受ECU送来的喷油脉冲信号,精确地控制燃油喷射量。

喷油器结构•空气流量计空气流量计将吸入的空气流量转换成电信号送至电控单元(ECU),作为决定喷油的基本信号之一,是用来测定吸入发动机的空气流量的传感器。

图解汽车底盘构造

图解汽车底盘构造

图解汽车底盘构造.图解汽车底盘构造底盘:底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。

底盘由传动系、行驶系、转向系和制动系四部分组成。

一传动系传动系一般由离合器、变速器、万向传动装置、主减速器、差速器和半轴等组成。

一传动系的功用汽车发动机所发出的动力靠传动系传递到驱动车轮。

传动系具有减速、变速、倒车、中断动力、轮间差速和轴间差速等功能,与发动机配合工作,能保证汽车在各种工况条件下的正常行驶,并具有良好的动力性和经济性。

二传动系的种类和组成传动系可按能量传递方式的不同,划分为机械传动、液力传动、液压传动、电传动等。

三转向系图3-27为转向系结构图,主要由转向操纵机构和转向传动机构组成。

转向操纵机构包括转向盘1和安全转向柱2;转向传动机构包括转向器8、左右横拉杆6、转向节臂5和转向节3等。

图3-27转向系l-转向盘2-安全转向柱3-转向节4-车轮5-转向节臂6-左、右横拉杆7-转向减振器8-转向器汽车转向时,司机转动转向盘,安全转向柱和转向器中的转向齿轮一起转动,带动转向器中的转向齿条横向移动}转向齿条带动左右转向横拉杆移动,横拉杆与左右转向节臂相连,推动转向节臂转动;转向节臂与转向节固定在一起,转向节随着转于是转向车轮被转向节带动偏转一个转向,动;转向节上装有转向车轮带动转向车轮,转向完了,转向盘转回原位使汽车改变行驶方向角度,. ,恢复原位汽车恢复直线行驶。

制动系四汽车底盘构造(图)底盘示意图底盘:底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。

底盘由传动系、行驶系、转向系和制动系四部分组成。

传动系简介(组图)传动系简介传动系一般由离合器、变速器、万向传动装置、主减速器、差速器和半轴等组成。

一.传动系的功用汽车发动机所发出的动力靠传动系传递到驱动车轮。

传动系具有减速、变速、倒车、中断动力、轮间差速和轴间差速等功能,与发动机配合工作,能保证汽车在各种工况条件下的正常行驶,并具有良好的动力性和经济性。

史上最全的发动机内部构造图解(彩图)

史上最全的发动机内部构造图解(彩图)

史上最全的发动机内部构造图解(彩图)下面是小编从其他地方转载过来的史上最全的发动机内部构造图解彩图分享给大家,这些发动机构造图解非常清晰而且是彩色版的非常的少见哦,对于想了解发动机内部构造的朋友,赶紧收藏起来吧。

发动机机体组构造图解现代汽车发动机机体组主要由机体、气缸盖、气缸盖罩、气缸衬垫、主轴承盖以及油底壳等组成。

机体组是发动机的支架,是曲柄连杆机构、配气机构和发动机各系统主要零部件的装配基体。

气缸盖用来封闭气缸顶部,并与活塞顶和气缸壁一起形成燃烧室。

机体组部件气缸盖构造图解气缸盖用来封闭气缸并构成燃烧室。

气缸盖铸有水套、进水孔、出水孔、火花塞孔、螺栓孔、燃烧室等。

气缸盖气缸体构造图解气缸体是发动机的主体,它将各个气缸和曲轴箱连成一体,是安装活塞、曲轴以及其他零件和附件的支承骨架。

气缸体气缸垫构造图解气缸垫位于气缸盖与气缸体之间,其功用是填补气缸体和气缸盖之间的微观孔隙,保证结合面处有良好的密封性,进而保证燃烧室的密封,防止气缸漏气和水套漏水。

气缸垫活塞连杆组件构造图解活塞连杆组是发动机的传动件,它把燃烧气体的压力传给曲轴,使曲轴旋转并输出动力。

活塞连杆组主要由活塞、活塞环、活塞销及连杆等组成。

活塞连杆组件活塞构造图解活塞的主要功用是承受燃烧气体压力,并将此力通过活塞销传给连杆以推动曲轴旋转,此外活塞顶部与气缸盖、气缸壁共同组成燃烧室。

活塞是发动机中工作条件最严酷的零件,作用在活塞上的有气体力和往复惯性力。

活塞连杆构造图解连杆组包括连杆体、连杆盖、连杆螺栓和连杆轴承等零件。

连杆组的功用是将活塞承受的力传给曲轴,并将活塞的往复运动转变为曲轴的旋转运动。

连杆小头与活塞销连接,同活塞一起做往复运动;连杆大头与曲柄销连接,同曲轴一起做旋转运动,因此在发动机工作时连杆在做复杂的平面运动。

连杆曲轴飞轮组构造图解曲轴飞轮组包括曲轴、飞轮、扭转减振器、平衡轴。

曲轴飞轮组的作用是把活塞的往复运动转变为曲轴的旋转运动,为汽车的行驶和其他需要动力的机构输出扭矩;同时还储存能量,用以克服非做功行程的阻力,使发动机运转平稳。

汽车传动系统图解

汽车传动系统图解

汽车传动系统——传动系的种类图解机械式传动系一般组成及布置示意图1-离合器2-变速器3-万向节4-驱动桥5-差速器6-半轴7-主减速器8-传动轴图为传统的发动机纵向安装在汽车前部,后桥驱动的4×2汽车布置示意图。

发动机发出的动力经离合器、变速器、万向传动装置传到驱动桥。

在驱动桥处,动力经过主减速器、差速器和半轴传给驱动车轮。

发动机前置、纵置,前轮驱动的布置示意图1-发动机2-离合器3-变速器4-变速器输入轴5-变速器输出轴6-差速器7-车速表驱动齿轮8-主减速器从动齿轮发动机前置、纵置,前桥驱动,使得变速器和主减速器连在一起,省掉了它们之间的万向传动装置。

典型液力机械传动示意图1-液力变矩器2-自动器变速器3-万向传动4-驱动桥5-主减速器6-传动轴液力传动(此处单指动液传动)是利用液体介质在主动元件和从动元件之间循环流动过程中动能的变化来传递动力。

液力传动装置串联一个有级式机械变速器,这样的传动称为液力机械传动。

静液式传动系示意图1-离合器2-油泵3-控制阀4-液压马达5-驱动桥6-油管液压传动也叫静液传动,是通过液体传动介质静压力能的变化来传递能量。

主要由发动机驱动的油泵、液压马达和控制装置等组成。

混合式电动汽车采用的电传动1-离合器2-发电机3-控制器4-电动机5-驱动桥6-导线电传动是由发动机驱动发电机发电,再由电动机驱动驱动桥或由电动机直接驱动带有减速器的驱动轮。

汽车传动系统——离合器总成结构图解机械式离合器的动作原理1-飞轮2-从动盘3-压盘4-膜片弹簧离合器的主动部分和从动部分借接触面间的摩擦作用,使两者之间可以暂时分离,又可逐渐接合,在传动过程中又允许两部分相互转动。

液力离合器结构与动作原理1-叶轮2-输出轮3-油4-油的流向液力偶合器靠工作液(油液)传递转矩,外壳与泵轮连为一体,是主动件;涡轮与泵轮相对,是从动件。

当泵轮转速较低时,涡轮不能被带动,主动件与从动件之间处于分离状态;随着泵轮转速的提高,涡轮被带动,主动件与从动件之间处于接合状态.磁粉式电磁离合器的动作原理1-粉末2-输入侧3-输出侧4-激磁线圈5-线型粉末6-磁通电磁离合器靠线圈的通断电来控制离合器的接合与分离。

汽车发动机构造

汽车发动机构造
1. 上止点 活塞到达的最上位置
上止点动画
1.2往复活塞式内燃机的基本术语
2. 下止点 活塞到达的最下位置
下止点动画
1.2往复活塞式内燃机的基本术语
3. 行程 活塞上、下两止点间的距离
活塞行程动画
1.2往复活塞式内燃机的基本术语
4. 气缸工作容积 上下止点间的气缸容积
气缸工作容积动画
1.2往复活塞式内燃机的基本术语
3.2发动机的特性
发动机特性及特性曲线的定义
3.2.1发动机的速度特性
汽油机的速度特性:外特性; 部分负荷特性; 柴油机的速度特性:
3.2.2发动机的负荷特性
汽油机的负荷特性 柴油机的负荷特性
3.2.3发动机的万有特性
万有特性的意义 汽、柴油机万有特性的比较
ε=16~22 压缩行程末喷油器向气缸内喷油(不是点火) 作功行程:Pm=6~9Mpa,Tm=2000~2500K PE=0.2~0.4Mpa; TE=1200~1500K 排气行程:PE=0.105~0.125Mpa; TE=800~1000K
1.3.3四冲程发动机的工作特点
1 .每个循环曲轴转两圈(720°) 2. 在四个冲程中只有作功冲程是活塞带动曲轴转动,
5.发动机的排量 发动机所有气缸工作容积的总和
气缸工作容积动画
1.2往复活塞式内燃机的基本术语
6.燃烧室容积 上止点上方的气缸容积
燃烧室容积动画
1.2往复活塞式内燃机的基本术语
7. 气缸总容积 下止点上方的气缸容积 (燃烧室容积与气缸工作容积的和)
气缸总容积动画
1.2往复活塞式内燃机的基本术语
其他三个冲程都是曲轴带动活塞运动 。 3. 在整个循环过程中,进气门、排气门各开启一次。 4 .发动机自行运转之前需要外力完成进气压缩两个冲

汽车内部构造透明图片 最新汽车构造与原理高清课件,汽车维修秘籍,汽车保养秘诀 完整版

汽车内部构造透明图片 最新汽车构造与原理高清课件,汽车维修秘籍,汽车保养秘诀 完整版

汽车发动机所发出的动力靠传动系传递到驱动车轮。传动系具有减速、 变速、倒车、中断动力、轮间差速和轴间差速等功能,与发动机配合 工作,能保证汽车在各种工况条件下的正常行驶,并具有良好的动力 性和经济性
底盘的组成
底盘部分
行驶系
传动系
转向系
制动系
17
底盘的组成
底盘部分
传动系 行驶系 转向系 制动系
18
前置后驱
后置后驱
四轮驱动
最新汽车构造与原理高清课件,汽车维修秘籍,汽车保养秘诀 完整版
经典汽车维修课件 ——高级汽车内部构造图片
车身部分
发动机
ห้องสมุดไป่ตู้
电气系统
底盘部分
6
车身部分
发动机
电气系统
底盘部分
12
车身部分
发动机
电气系统
底盘部分
13
底盘-传动系
离合器 变速器
传动轴
万向传动装置 主减速器 差速器 半轴
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车构造(发动机,底盘,车身,电气设备)1. 发动机:发动机2大机构5大系:曲柄连杆机构;配气机构;燃料供给系;冷却系;润滑系;点火系;起动系。

2. 底盘:底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。

底盘由传动系、行驶系、转向系和制动系四部分组成。

3. 车身:车身安装在底盘的车架上,用以驾驶员、旅客乘坐或装载货物。

轿车、客车的车身一般是整体结构,货车车身一般是由驾驶室和货箱两部分组成。

4. 电气设备:电气设备由电源和用电设备两大部分组成。

电源包括蓄电池和发电机;用电设备包括发动机的起动系、汽油机的点火系和其它用电装置。

性能参数1. 整车装备质量(kg):汽车完全装备好的质量,包括润滑油、燃料、随车工具、备胎等所有装置的质量。

2. 最大总质量(kg):汽车满载时的总质量。

3. 最大装载质量(kg):汽车在道路上行驶时的最大装载质量。

4. 最大轴载质量(kg):汽车单轴所承载的最大总质量。

与道路通过性有关。

5. 车长(mm):汽车长度方向两极端点间的距离。

6. 车宽(mm):汽车宽度方向两极端点间的距离。

7. 车高(mm):汽车最高点至地面间的距离。

8. 轴距(mm):汽车前轴中心至后轴中心的距离。

9. 轮距(mm):同一车轿左右轮胎胎面中心线间的距离。

10. 前悬(mm):汽车最前端至前轴中心的距离。

11. 后悬(mm):汽车最后端至后轴中心的距离。

12. 最小离地间隙(mm):汽车满载时,最低点至地面的距离。

13. 接近角(°):汽车前端突出点向前轮引的切线与地面的夹角。

14. 离去角(°):汽车后端突出点向后轮引的切线与地面的夹角。

15. 转弯半径(mm):汽车转向时,汽车外侧转向轮的中心平面在车辆支承平面上的轨迹圆半径。

转向盘转到极限位置时的转弯半径为最小转弯半径。

16. 最高车速(km/h):汽车在平直道路上行驶时能达到的最大速度。

17. 最大爬坡度(%):汽车满载时的最大爬坡能力。

18. 平均燃料消耗量(L/100km):汽车在道路上行驶时每百公里平均燃料消耗量。

19. 车轮数和驱动轮数(n×m):车轮数以轮毂数为计量依据,n代表汽车的车轮总数,m 代表驱动轮数。

缸数:汽车发动机常用缸数有3、4、5、6、8、10、12缸。

排量1升以下的发动机常用三缸,1~2.5升一般为四缸发动机,3升左右的发动机一般为6缸,4升左右为8缸,5.5升以上用12缸发动机。

一般来说,在同等缸径下,缸数越多,排量越大,功率越高;在同等排量下,缸数越多,缸径越小,转速可以提高,从而获得较大的提升功率。

气缸的排列形式:一般5缸以下的发动机的气缸多采用直列方式排列,少数6缸发动机也有直列方式的,过去也有过直列8缸发动机。

直列发动机的气缸体成一字排开,缸体、缸盖和曲轴结构简单,制造成本低,低速扭矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛,缺点是功率较低。

一般1升以下的汽油机多采用3缸直列,1~2.5升汽油机多采用直列4缸,有的四轮驱动汽车采用直列6缸,因为其宽度小,可以在旁边布置增压器等设施。

直列6缸的动平衡较好,振动相对较小,所以也为一些中、高级轿车采用,如老上海轿车。

6~12缸发动机一般采用V形排列,其中V10发动机主要装在赛车上。

V形发动机长度和高度尺寸小,布置起来非常方便,而且一般认为V形发动机是比较高级的发动机,也成为轿车级别的标志之一。

V8发动机结构非常复杂,制造成本很高,所以使用的较少,V12发动机过大过重,只有极个别的高级轿车采用。

大众公司近来开发出W型发动机,有W8和W12两种,即气缸分四列错开角度布置,形体紧凑。

气门数:国产发动机大多采用每缸2气门,即一个进气门,一个排气门;国外轿车发动机普遍采用每缸4气门结构,即2个进气门,2个排气门,提高了进、排气的效率,同时气门的重量也减小,有利于提高发动机转速和功率;国外有的公司开始采用每缸5气门结构,即3个进气门,2个排气门,主要作用是加大进气量,使燃烧更加彻底。

气门数量并不是越多越好,5气门确实可以提高进气效率,但是结构极其复杂,加工困难,采用较少,国内生产的新捷达王就采用五气门发动机。

排气量:气缸工作容积是指活塞从上止点到下止点所扫过的气体容积,又称为单缸排量,它取决于缸径和活塞行程。

发动机排量是各缸工作容积的总和,一般用升(L)来表示。

发动机排量是最重要的结构参数之一,它比缸径和缸数更能代表发动机的大小,发动机的许多指标都同排气量密切相关。

对轿车来说,排量只是一个比较重要的技术参数,它说明汽车的大致功率、装备和价格水平,但是在中国轿车发动机排量却具有了其它的意义。

由于干部配车按级别按排量,所以排量就相当于级别。

在社会上,对排量也有盲目的崇拜,特别是对奔驰这样的华贵轿车,车尾上的数字简直被神化了,有人认为越大越好,300以下的都不过瘾,非400、500、600不可。

在香港,有人甚至改装出了奔驰1000、6000……最高输出功率:最高输出功率一般用马力(PS)或千瓦(KW)来表示。

发动机的输出功率同转速关系很大,随着转速的增加,发动机的功率也相应提高,但是到了一定的转速以后,功率反而呈下降趋势。

一般在汽车使用说明书中最高输出功率同时用每分钟转速来表示(r/min),如100PS/5000r/min,即在每分钟5000转时最高输出功率100马力。

最大扭矩:发动机从曲轴端输出的力矩,扭矩的表示方法是N.m/r/min,最大扭矩一般出现在发动机的中、低转速范围,随着转速的提高,扭矩反而会下降。

风阻系数:空气阻力是汽车行驶时所遇到最大的也是最重要的外力。

空气阻力系数,又称风阻系数,是计算汽车空气阻力的一个重要系数。

它是通过风洞实验和下滑实验所确定的一个数学参数, 用它可以计算出汽车在行驶时的空气阻力。

制动距离(mm):制动距离是衡量一款车的制动性能的关键性参数之一,它的意思就人们在车辆处于某一时速的情况下,从开始制动到汽车完全静止时,车辆所开过的路程。

驱动方式:前置前驱(FF):所谓前置前驱,是指发动机前置,前轮驱动的驱动形式。

这是1970年代后才真正兴起和在技术上得以完善的驱动形式,目前大多数中、小型轿车都采用了这种驱动形式。

其将变速器和驱动桥做成了一体,固定在发动机旁将动力直接输送到前轮驱动车辆前进,用形象的话来说,是“拉”着车辆前进。

前置后驱(FR):所谓前置后驱,是指发动机前置,后轮驱动的驱动形式。

这是一种传统的驱动形式,广州人所熟悉的广州标致轿车,就是一种典型的前置后驱轿车。

采用这种驱动形式的轿车,其前车轮负责转向任务,后轮承担驱动工作。

发动机输出的动力通过离合器、变速器、传动轴输送到后驱动桥上,驱动后轮使汽车前进,用形象的话来说,是“推”着车辆前进。

前置后驱的车辆转弯时易出现转向过度的情况。

后备箱体积:也叫行李箱,其容积的大小衡量一款车携带行李或其他备用物品的能力。

油箱容积(L):其容积的大小衡量一款车所能承装油量的能力。

发动机型式:指动力装置的特征,如燃料类型、气缸数量、排量和静制动功率等。

装在轿车或多用途载客车上的发动机,都按规定标明了发动机专业制造厂、型号及生产编号。

最常见的是按照发动机的排列及缸数进行分类,有W型12缸发动机、V型12缸发动机、W型8缸发动机、V型8缸发动机、对置6缸发动机、V型6缸发动机、直列5缸发动机和直列4缸发动机。

汽缸数:汽车发动机常用缸数有3、4、5、6、8、10、12缸。

排量1升以下的发动机常用三缸,1~2.5升一般为四缸发动机,3升左右的发动机一般为6缸,4升左右为8缸,5.5升以上用12缸发动机。

一般来说,在同等缸径下,缸数越多,排量越大,功率越高;在同等排量下,缸数越多,缸径越小,转速可以提高,从而获得较大的提升功率。

缸径×冲程:就是单缸的排气量,再乘以汽缸数目,所得到的乘积,就是发动机的排气量。

压缩比:就是发动机混合气体被压缩的程度,用压缩前的气缸总容积与压缩后的气缸容积(即燃烧室容积)之比来表示。

压缩比与发动机性能有很大关系,通常的低压压缩比指的是压缩比在10以下,高压缩比在10以上,相对来说压缩比越高,发动机的动力就越大。

汽车变速器:通过改变传动比,改变发动机曲轴的转拒,适应在起步、加速、行驶以及克服各种道路阻碍等不同行驶条件下对驱动车轮牵引力及车速不同要求的需要。

通俗上分为手动变速器(MT),自动变速器(AT),手动/自动变速器,无级式变速器。

主减速比:对汽车的动力性能和燃料经济性有较大的影响。

一般来说,主减速比越大,加速性能和爬坡能力较强,而燃料经济性比较差。

但如果过大,则不能发挥发动机的全部功率而达到应有的车速。

主减速比越小,最高车速较高,燃料经济性较好,但加速性和爬坡能力较差。

悬架:悬架是车架与车桥之间的一切传力连接装置的总称。

汽车悬架包括弹性元件,减振器和传力装置等三部分。

这三部分分别起缓冲,减振和力的传递作用。

我们常见轿车的前悬挂一般为麦弗逊式悬挂麦弗(Macphersan)式悬挂。

麦弗逊式是当今最为流行的独立悬挂之一,一般用于轿车的前轮。

其次是四连杆前悬挂系统多用于豪华轿车,它通过运动学原理巧妙地将牵引力、制动力和转向力分离,同时赋予车辆精确的转向控制。

四连杆式悬挂系统在奥迪A4、A6以及中华轿车上都可以看到。

后悬架系统的种类要比前悬架要多,原因是驱动方式的不同决定着后车轴的有无,并与车身重量有关。

主要有连杆式和摆臂式两种。

制动装置:是按照需要使汽车减速或在最短的距离内停车,(使汽车)在保证安全的前提下尽量发挥出高速行驶的性能的装置。

一般分为鼓式和盘式两种。

鼓式制动器的优点是,成本低,防尘,便于同时作为驻车制动器。

缺点是尺寸大,质量重,制动热量不易散发出去,制动稳定性不好。

盘式制动器:是目前轿车前轮常用的制动器。

一般都是钳盘式制动器。

盘式制动器与传统的鼓式制动器比较,有以下有点:散热条件好,因此制动稳定性好,抗热衰退性强;尺寸和质量小。

转向器型式:目前常用的有齿轮齿条式、蜗杆曲柄销式和循环球式。

它的作用是增大转向盘传到转向传动机构的力和改变力的传递方向。

轮胎的类型与规格:国际标准的轮胎代号,以毫米为单位表示断面高度和扁平比的百分数,后面加上:轮胎类型代号,轮辋直径(英寸),负荷指数(许用承载质量代号),许用车速代号。

例如:175/70R 14 77H中175代表轮胎宽度是175MM,70表示轮胎断面的扁平比是70%,即断面高度是宽度的70%,轮辋直径是14英寸,负荷指数77,许用车速是H级。

车门数:指汽车车身上含后备箱门在内的总门数。

可作为汽车用途的标志,公务用途的轿车都是四门,家用轿车既有四门也有三门和五门(后门为掀起式),而用于运动用途的跑车则都是两门。

相关文档
最新文档