勾股定理经典复习题及答案

合集下载

勾股定理练习题及标准答案(共6套)

勾股定理练习题及标准答案(共6套)

勾股定理课时练(1)1.在直角三角形 ABC 中,斜边 AB=1 ,则 AB 2BC 2AC 2的值是()A.2B.4C.6D.82.如图 18-2- 4 所示 ,有一个形状为直角梯形的零件ABCD ,AD ∥ BC,斜腰 DC 的长为10 cm,∠ D=120°,则该零件另一腰 AB 的长是 ______ cm(结果不取近似值) .3.直角三角形两直角边长分别为 5 和 12,则它斜边上的高为 _______.4.一根旗杆于离地面12 m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16 m,旗杆在断裂之前高多少m ?5. 如图,如下图,今年的冰雪灾害中,一棵大树在离地面 3 米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米 .3m“路”4m第5题图第2题图6. 飞机在空中水平飞行, 某一时刻刚好飞到一个男孩子头顶正上方4000 米处 , 过了 20 秒, 飞机距离这个男孩头顶 5000 米, 求飞机每小时飞行多少千米 ?7.如图所示,无盖玻璃容器,高 18 cm,底面周长为 60 cm,在外侧距下底 1 cm的点 C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口 1 cm的 F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度 .8.一个零件的形状如图所示,已知AC=3cm, AB=4cm,BD=12cm。

求 CD的长 .9.如图,在四边形 ABCD中,∠ A=60°,∠ B=∠ D=90°, BC=2,CD=3,求 AB 的长 .10. 如图,一个牧童在小河的南4km 的 A 处牧马,而他正位于他的小屋B 第的西7 8km题图北 7km处,第 8题图. 他要完成这件事情所走的最短路程是多少?他想把他的马牵到小河边去饮水,然后回家11 如图,某会展中心在会展期间准备将高5m, 长 13m,宽2m 的楼道上铺地毯 , 已知地毯平方米 18 元,请你帮助计算一下,铺完这个楼第9题图道至少需要多少元钱 ?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻13m5m 找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为 15 千米.早晨 8:00甲先出发,他以 6 千米 / 时的第 11题速度向东行走, 1 小时后乙出发,他以 5 千米 / 时的速度向北行进,上午10:00,甲、乙二人相距多远?还第一课时答案:1.A ,提示:根据勾股定理得BC2AC21,所以 AB2BC 2AC 2=1+1=2 ;2.4 ,提示:由勾股定理可得斜边的长为 5 m ,而 3+4-5=2 m ,所以他们少走了4 步.3.60 ,提示:设斜边的高为 x ,根据勾股定理求斜边为12252169 13 ,再利13用面积法得,15 12 1 13 x, x60 ; 2 2134. 解:依题意, AB=16 m , AC=12 m ,在直角三角形 ABC 中 ,由勾股定理 ,BC 2 AB 2AC 2162 122202,所以 BC=20 m ,20+12=32( m ), 故旗杆在断裂之前有 32 m 高.5.86. 解: 如图 , 由题意得 ,AC=4000 米 , ∠C=90° ,AB=5000 米 , 由勾股定理得BC=50002 400023000 ( 米 ),3所以飞机飞行的速度为540( 千米 / 小时 )2036007. 解:将曲线沿 AB 展开,如图所示,过点 C 作 CE ⊥ AB 于 E.在Rt CEF , CEF 90 , EF=18-1-1=16 ( cm ),1CE= 30(cm) ,2. 60CE2EF230 2 16 234( )由勾股定理,得 CF=8. 解:在直角三角形 ABC 中,根据勾股定理,得22222在直角三角形 CBD 中,根据勾股定理,得 2222CD=BC+BD=25+12 =169,所以 CD=13.9. 解:延长 BC 、AD 交于点 E. (如图所示)∵∠ B=90°,∠ A=60°,∴∠ E=30°又∵ CD=3,∴ CE=6,∴ BE=8, 设 AB=x ,则 AE=2x ,由勾股定理。

人教版数学八年级下册 第17章 勾股定理 单元复习试题 含答案

人教版数学八年级下册 第17章 勾股定理 单元复习试题  含答案

第17章勾股定理一.选择题(共10小题)1.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个2.如图,将一副三角板如图放置,如果DB=2,那么点E到BC的距离为()A.﹣1 B.3﹣C.2﹣2 D.+13.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=2,BC=,则CD为()A.B.2 C.D.34.如图,将△ABC放在正方形网格中(图巾每个小正方形边长均为1)点A,B,C恰好在网格图中的格点上,那么∠ABC的度数为()A.90°B.60°C.45°D.30°5.如图,已知数轴上点P表示的数为﹣1,点A表示的数为1,过点A作直线l垂直于PA,在l上取点B,使AB=1,以点P为圆心,以PB为半径作弧,弧与数轴的交点C所表示的数为()A.B.C.D.6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A.5 B.C.9D.67.如图,设小方格的面积为1,则图中以格点为端点且长度为的线段有()A.2条B.3条C.4条D.5条8.如图,已知在Rt△ABC中,E,F分别是边AB,AC上的点,AE=AB,AF=AC,分别以BE、EF、FC为直径作半圆,面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A.S1+S3=2S2 B.S1+S3=4S2C.S1=S3=S2 D.S2=(S1+S3)9.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺10.一云梯AB长25米,如图那样斜靠在一面墙上,云梯底端离墙7米,如果云梯的顶端下滑了4米,那么它的底端在水平方向滑动BB'的长是()A.10米B.8米C.6米D.4米二.填空题(共6小题)11.若△ABC的三边长分别为a,b,c.下列条件:①∠A=∠B﹣∠C;②a2=(b+c)(b﹣c);③∠A:∠B:∠C=3:4:5;④a:b:c=5:12:13.其中能判断△ABC是直角三角形的是(填序号).12.已知,△ABC的三边长分别为:2,,,则△ABC的面积是.13.如图,BD为△ABC的中线,AB=10,AD=6,BD=8,△ABC的周长是.14.若8,a,17是一组勾股数,则a=.15.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8.AD平分∠BAC交BC边于点D,则BD=.16.如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=8cm,AB=6cm,BC=10cm,点Q 从点A出发以1cm/s的速度向点D运动,点P从点B出发以2cm/s的速度向C点运动,P、Q两点同时出发,其中一点到达终点时另一点也停止运动.若DP≠DQ,当t=s 时,△DPQ是等腰三角形.三.解答题(共6小题)17.如图,在Rt△ABC中,∠B=90°.点D为BC边上一点,线段AD将Rt△ABC分为两个周长相等的三角形.若CD=2,BD=6,求△ABC的面积.18.如图,在△ABC中,AB=AC,△ABC的高BH,CM交于点P.(1)求证:PB=PC.(2)若PB=5,PH=3,求AB.19.已知:如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长.(2)求AB的长.20.平面直角坐标系中如果任意两点A、B的坐标分别为(x1,y1)、(x2,y2),则A、B两点之间的距离可表示为|AB|=;在平面直角坐标系中.(1)若点C的坐标为(3,4),O为坐标原点,则C、O两点之间的距离为.(2)若点E(﹣2,3)、F(4,﹣5),求E、F两点之间的距离.21.如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)分别求出AB,BC,AC的长;(2)试判断△ABC是什么三角形,并说明理由.22.阅读下列材料:小明遇到一个问题:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC 的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.参考小明解决问题的方法,完成下列问题:(1)图2是一个6×6的正方形网格(每个小正方形的边长为1).①利用构图法在答卷的图2中画出三边长分别为、、的格点△DEF;②计算①中△DEF的面积为;(直接写出答案)(2)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,正方形PRDE,连接EF.①判断△PQR与△PEF面积之间的关系,并说明理由.②若PQ=,PR=,QR=3,直接..写出六边形AQRDEF的面积为.参考答案一.选择题(共10小题)1.解:①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5或,错误;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠C=90°,错误;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,正确;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形,正确;故选:C.2.解:作EF⊥BC于F,设EF=x,则BF=x,BE=x,CE=2x,则AC=,AE=﹣x,则(﹣x)2+()2=(2x)2,x2+2x﹣6=0,解得x1=3﹣,x2=﹣3﹣(舍去).故点E到BC的距离为3﹣.故选:B.3.解:在Rt△ABC中,AC=2,BC=,根据勾股定理得:AB==3,∵△ABC中,∠C=90°,CD⊥AB,∴S△ABC=AC•BC=AB•CD,即AC•BC=AB•CD,∴CD==2,故选:B.4.解:由勾股定理得:AC2=12+22=5,BC2=12+32=10,AB2=12+22=5,∴AB=AC,AC2+AB2=BC2,∴△ACB是等腰直角三角形,∴∠ABC=45°,故选:C.5.解:PB=,∴PB=PC,∴OC=PC﹣1=﹣1,∴点C的数为﹣1,故选:B.6.解:如图所示:∵Rt△ABC的周长为15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405﹣225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD===6;故选:D.7.解:∵=,∴是直角边长为2,3的直角三角形的斜边,如图所示,AB,CD,BE,DF的长都等于;故选:C.8.解:∵在Rt△ABC中,AE=AB,AF=AC,∴AE=BE,AF=CF,EF2=AE2+AF2,∴EF2=BE2+CF2.∴π•EF2=π•(BE2+CF2),即S2=(S1+S3).∴S1+S3=4S2.故选:B.9.解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故选:D.10.解:由题意可得:AB=25m,OB=7m,则OA==24(m),当云梯的顶端下滑了4米,则A′O=24﹣4=20(m),故OB′==15(m),则BB′=CB′﹣BC=(15﹣7)m=8m.答:它的底部在水平方向滑动了8米,故选:B.二.填空题(共6小题)11.解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△ABC是直角三角形,故①符合题意;∵a2=(b+c)(b﹣c)∴a2+c2=b2,∴△ABC是直角三角形,故②符合题意;∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故③不符合题意;∵a:b:c=5:12:13,∴a2+b2=c2,∴△ABC是直角三角形,故④符合题意;故答案为:①②④.12.解:∵△ABC的三边长分别为:2,,,∴22+()2=()2,∴△ABC是直角三角形,斜边为,∴△ABC的面积为=,故答案为:.13.解:∵AB=10,AD=6,BD=8,∴AB2=AD2+BD2=100,∴△ABD是直角三角形且AD⊥BD.又BD为△ABC的中线,∴AB=BC=10,AD=CD=6.∴,△ABC的周长=AB+BC+AD=2AB+2AD=20+12=32.故答案是:32.14.解:①a为最长边,a==,不是正整数,不符合题意;②17为最长边,a==15,三边是整数,能构成勾股数,符合题意.故答案为:15.15.解:作DE⊥AC于E,如图所示:∵∠B=90°,AB=6,BC=8.∴DB⊥AB,AC==10,∵AD平分∠BAC,DE⊥AC,∴DE=DB,在Rt△AED和Rt△ABD中,,∴Rt△AED≌Rt△ABD(HL),∴AE=AB=6,∴CE=AC﹣AE=4,设DE=DB=x,则CD=8﹣x,在Rt△CDE中,由勾股定理得:x2+42=(8﹣x)2,解得:x=3,∴BD=3;故答案为:3.16.解:由运动知,AQ=t,BP=2t,∵AD=8,BC=10,∴DQ=AD﹣AQ=(8﹣t)(cm),PC=BC﹣BP=(10﹣2t)(cm),∵△DPQ是等腰三角形,且DQ≠DP,∴①当DP=QP时,∴点P在DQ的垂直平分线上,∴AQ+DQ=BP,∴t+(8﹣t)=2t,∴t=,②当DQ=PQ时,如图,Ⅰ、过点Q作QE⊥BC于E,∴∠BEQ=∠OEQ=90°,∵AD∥BC,∠B=90°,∴∠A=∠B=90°,∴四边形ABEQ是矩形,∴EQ=AB=6,BE=AQ=t,∴PE=BP﹣BE=t,在Rt△PEQ中,PQ==,∵DQ=8﹣t∴=8﹣t,∴t=,∵点P在边BC上,不和C重合,∴0≤2t<10,∴0≤t<5,∴此种情况符合题意,即t=或s时,△DPQ是等腰三角形.故答案为:或.三.解答题(共6小题)17.解:根据题意可知,△ACD与△ADB的周长相等,∴AC+CD+AD=AD+BD+AB.∴AC+CD=BD+AB.∵CD=2,BD=6,∴AC+2=6+AB,BC=CD+BD=8,∴AC=AB+4,设AB=x,则AC=4+x.在Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+4)2.∴x2+64=16+x2+8x.∴x=6.∵经检验,x=6为原方程的解,∴原方程的解为x=6.∴.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB.∵BH,CM为△ABC的高,∴∠BMC=∠CHB=90°.∴∠ABC+∠BCM=90°,∠ACB+∠CBH=90°.∴∠BCM=∠CBH.∴PB=PC.(2)解:∵PB=PC,PB=5,∴PC=5.∵PH=3,∠CHB=90°,∴CH=4.设AB=x,则AH=x﹣4.在Rt△ABH中,∵AH2+BH2=AB2,∴(x﹣4)2+(5+3)2=x2.∴x=10.即AB=10.19.解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,∵BC=15、DB=9,∴CD===12;(2)在Rt△ACD中,∵AC=20、CD=12,∴AD===16,则AB=AD+DB=16+9=25.20.解:(1)∵O为原点,∴O坐标为(0,0),∵点C的坐标为(3,4),∴CO==5,故答案为:5;(2)∵点E(﹣2,3)、F(4,﹣5),E、F两点之间的距离可表示为|EF|=,∴EF===10.21.解:(1),,;(2)△ABC是直角三角形,理由如下:∵,AC2=52=25,∴AB2+BC2=AC2,∴△ABC是直角三角形.22.解:(1)①如图所示:②△DEF的面积为4×5﹣×2×3﹣×2×4﹣×2×5=8;(2)①如图3,△PEF的面积为6×2﹣×1×6﹣×1×3﹣×3×2=,△PQR的面积为×3×3=,∴△PQR与△PEF面积相等;②六边形AQRDEF的面积为()2+++()2=13+9+10=32.故答案为:8;32.。

勾股定理练习题及答案

勾股定理练习题及答案

勾股定理练习题及答案问题一:已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。

解答一:根据勾股定理,斜边的平方等于两条直角边的平方和。

设斜边的长度为c,则有:c^2 = 3^2 + 4^2c^2 = 9 + 16c^2 = 25取平方根得到c = 5cm。

所以,斜边的长度为5cm。

问题二:已知直角三角形的斜边长度为10cm,一条直角边的长度为6cm,求另一条直角边的长度。

解答二:设另一条直角边的长度为a。

根据勾股定理,可得:a^2 + 6^2 = 10^2a^2 + 36 = 100a^2 = 100 - 36a^2 = 64取平方根得到a = 8cm。

所以,另一条直角边的长度为8cm。

问题三:已知直角三角形的一条直角边的长度为5cm,另一条直角边的长度为12cm,求斜边的长度。

解答三:设斜边的长度为c。

根据勾股定理,可得:c^2 = 5^2 + 12^2c^2 = 25 + 144c^2 = 169取平方根得到c = 13cm。

所以,斜边的长度为13cm。

问题四:已知直角三角形的斜边长度为15cm,一条直角边的长度为9cm,求另一条直角边的长度。

解答四:设另一条直角边的长度为a。

根据勾股定理,可得:a^2 + 9^2 = 15^2a^2 + 81 = 225a^2 = 225 - 81a^2 = 144取平方根得到a = 12cm。

所以,另一条直角边的长度为12cm。

问题五:已知直角三角形的一条直角边的长度为7cm,另一条直角边的长度为24cm,求斜边的长度。

解答五:设斜边的长度为c。

根据勾股定理,可得:c^2 = 7^2 + 24^2c^2 = 49 + 576c^2 = 625取平方根得到c = 25cm。

所以,斜边的长度为25cm。

以上是五道勾股定理练习题及答案的解答过程。

通过这些练习题,我们可以加深对勾股定理的理解,熟练掌握如何在已知条件下求解三角形的边长。

勾股定理在几何学和实际应用中都有广泛的应用,是数学中的重要概念之一。

人教版八年级数学下册 第17章 勾股定理 单元复习试题 附答案

人教版八年级数学下册 第17章 勾股定理  单元复习试题  附答案

第17章勾股定理一.选择题(共10小题)1.已知点A的坐标为(2,﹣1),则点A到原点的距离为()A.3B.C.D.12.满足下列条件的三角形中,不是直角三角形的是()A.三内角的度数之比为1:2:3B.三内角的度数之比为3:4:5C.三边长之比为3:4:5D.三边长的平方之比为1:2:33.一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为()A.B.13C.6D.254.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1B.2018C.2019D.20205.历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB 在一条直线上.证明中用到的面积相等关系是()A.S△EDA=S△CEBB.S△EDA+S△CEB=S△CDBC.S四边形CDAE=S四边形CDEBD.S△EDA+S△CDE+S△CEB=S四边形ABCD6.校园内有两棵树,相距12米,一棵树高为13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞()A.10米B.11米C.12米D.13米7.如图,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要()A.4米B.5米C.7米D.10米8.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+19.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB =50米,如果要在这块空地上种植草皮,按每平方米草皮a元计算,那么共需要资金()A.600a元B.50a元C.1200a元D.1500a元10.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是200米/分,小红用3分钟到家,小颖4分钟到家,小红和小颖家的直线距离为()A.600米B.800米C.1000米D.1400米二.填空题(共7小题)11.在Rt△ABC中,∠C=90°,BC=12,AC=9,则AB=.12.有一个直角三角形的两边为4、5,要使三角形为直角三角形,则第三边等于.13.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E 表示的实数是.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=,b=,c=.15.如图,正方形网格中,点A,B,C,D均在格点上,则∠ACD+∠BDC=°.16.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.如图在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D为BC边上一点,若△ABD为“准互余三角形”,则BD的长为.17.如图,四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°,若CD=4,则DE长为.三.解答题(共5小题)18.如图,△ABC中,∠ACB=90°,AB=,求斜边AB上的高CD.19.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.20.某消防队进行消防演练,在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12米,即AD=BC=12米,此时建筑物中距地面12.8米高的P 处有一被困人员需要救援,已知消防云梯的车身高AB是3.8米.为此消防车的云梯至少应伸长多少米?21.一架方梯AB长13米,如图,斜靠在一面墙上,梯子底端离墙OB为5米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了3米,那么梯子的底端在水平方向滑动了几米?22.这是某商场自动扶梯示意图,若将扶梯AC水平放置,则刚好与AB一样长.已知扶梯高度CE=5cm,CD=1cm,求扶梯AC的长.参考答案一.选择题(共10小题)1.C.2.B.3.A.4.D.5.D.6.D.7.C.8.D.9.A.10.C.二.填空题(共7小题)11.15.12.3或.13.﹣1.14.2n,n2﹣1,n2+1.15.90.16.或.17..三.解答题(共5小题)18.解:∵∠ACB=90°,AB=,∴AC==,∵×AB•CD=×AC•BC∴CD===.19.解:(1)三边分别为:3、4、5 (如图1);(2)三边分别为:、2、(如图2);(3)画一个边长为的正方形(如图3).20.某消防队进行消防演练,在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12米,即AD=BC=12米,此时建筑物中距地面12.8米高的P 处有一被困人员需要救援,已知消防云梯的车身高AB是3.8米.为此消防车的云梯至少应伸长多少米?解:由题意可知:AB=CD=3.8米,AD=12米,PC=12.8米,∠ADP=90°,∴PD=PC﹣CD=9米,在Rt△ADP中,AP==15米,答:此消防车的云梯至少应伸长15米.21.解:(1)∵AO⊥DO,∴AO===12(m),(2)∵AA′=3m,∴A′O=AO﹣AA′=9m,∴OB′===,∴BB′=OB′﹣OB=﹣5=2﹣5(m),∴梯子的底端在水平方向滑动了2﹣5米.22.解:设AC的长为x米,∵AC=AB,∴AB=AC=x米,∵EB=CD=1米,∴AE=(x﹣1)米,在Rt△ACE中,AC2=CE2+AE2,即:x2=52+(x﹣1)2,解得:x=13,答:扶梯AC的长为13米.。

勾股定理复习题及答案

勾股定理复习题及答案

一、选择题1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )A .20cmB .18cmC .25cmD .40cm2.如图,在23⨯的正方形网格中,AMB ∠的度数是( )A .22.5°B .30°C .45°D .60°3.已知长方体的长2cm 、宽为1cm 、高为4cm ,一只蚂蚁如果沿长方体的表面从A 点爬到B′点,那么沿哪条路最近,最短的路程是( )A .29cmB .5cmC .37cmD .4.5cm 4.如图,菱形ABCD 的对角线AC ,BD 的长分别为6cm ,8cm ,则这个菱形的周长为( )A .5cmB .10cmC .14cmD .20cm5.圆柱形杯子的高为18cm ,底面周长为24cm ,已知蚂蚁在外壁A 处(距杯子上沿2cm )发现一滴蜂蜜在杯子内(距杯子下沿4cm ),则蚂蚁从A 处爬到B 处的最短距离为( )A .813B .28C .20D .122 6.ABC 三边长为a 、b 、c ,则下列条件能判断ABC 是直角三角形的是( ) A .a =7,b =8,c =10B .a =41,b =4,c =5C .a =3,b =2,c =5D .a =3,b =4,c =67.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( )A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形8.如图,已知AB AC =,则数轴上C 点所表示的数为( )A .3-B .5-C .13-D .15-9.如图,在△ABC 中,AB=8,BC=10,AC=6,则BC 边上的高AD 为( )A .8B .9C .245D .1010.已知一个三角形的两边长分别是5和13,要使这个三角形是直角三角形,则这个三角形的第三条边可以是( )A .6B .8C .10D .12二、填空题11.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.12.已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为_____.13.如图,在Rt △ABC 中,∠ACB =90°,AB =7.5cm ,AC =4.5cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度移动,设运动的时间为t 秒,当△ABP 为等腰三角形时,t 的取值为_____.14.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.15.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.16.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.17.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.18.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________19.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.20.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.三、解答题21.如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD2、CE2和BC2之间的数量关系,并加以说明.22.定义:如图1,平面上两条直线AB、CD相交于点O,对于平面内任意一点M,点M到直线AB、CD的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O.(1)“距离坐标”为(1,0)的点有个;(2)如图2,若点M在过点O且与直线AB垂直的直线l上时,点M的“距离坐标”为(p,q),且∠BOD = 150︒,请写出p、q的关系式并证明;(3)如图3,点M的“距离坐标”为(1,3),且∠DOB = 30︒,求OM的长.23.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)24.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒;②求AB 的长.25.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.26.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225, (1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.27.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.28.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.29.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.30.阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,△ABC 的面积为S =()()()()a b c a b c a c b b c a +++-+-+-. (1)(举例应用)已知△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a =4,b =5,c =7,则△ABC 的面积为 ;(2)(实际应用)有一块四边形的草地如图所示,现测得AB =(26+42)m ,BC =5m ,CD =7m ,AD =46m ,∠A =60°,求该块草地的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为最短路径,由勾股定理求出A ′D 即圆柱底面周长的一半,由此即可解题.【详解】解:如图,将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A ',连接A B '交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长,即 25cm AF BF A B '+==,延长BG ,过A '作A D BG '⊥于D ,3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=,Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=--=, ∴该圆柱底面周长为:20240cm ⨯=,故选D .【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.C解析:C【分析】连接AB ,求出AB 、BM 、AM 的长,根据勾股定理逆定理即可求证AMB ∆为直角三角形,而AM=BM ,即AMB ∆为等腰直角三角形,据此即可求解.【详解】连接AB∵22125AM =+=,22125AB =+=,221310BM =+=∴22210AM AB BM +==∴AMB ∆为等腰直角三角形∴45AMB ∠=︒故选C .【点睛】本题考查了勾股定理的逆定理,重点是求出三条边的长,然后证明AMB ∆为直角三角形.3.B解析:B【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】解:根据题意,如图所示,最短路径有以下三种情况:(1)沿AA ',A C '',C B '',B B '剪开,得图1:22222(21)425AB AB BB '=+'=++=;(2)沿AC ,CC ',C B '',B D '',D A '',A A '剪开,得图2:222222(41)42529AB AC B C '=+'=++=+=;(3)沿AD ,'DD ,B D '',C B '',C A '',AA '剪开,得图3:222221(42)13637AB AD B D '=+'=++=+=;综上所述,最短路径应为(1)所示,所以225AB '=,即5cm AB '=.故选:B .【点睛】此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.4.D解析:D【解析】【分析】根据菱形的对角线互相垂直平分可得AC ⊥BD ,12OA AC =,12OB BD =,再利用勾股定理列式求出AB ,然后根据菱形的四条边都相等列式计算即可得解.【详解】 解:∵四边形ABCD 是菱形,∴AC ⊥BD ,11622OA AC ==⨯=3cm , 118422OB BD cm ==⨯= 根据勾股定理得,2222345cm AB OA OB =+=+= ,所以,这个菱形的周长=4×5=20cm.故选:D.【点睛】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记. 5.C解析:C【解析】分析:将杯子侧面展开,建立A 关于EF 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求.详解:如图所示,将杯子侧面展开,作A 关于EF 的对称点A ′,连接A ′B ,则A ′B 即为最短距离,A ′B 2222=1216A D BD '++ (cm )故选C.点睛:本题考查了勾股定理、最短路径等知识.将圆柱侧面展开,化曲面为平面并作出A关于EF的对称点A′是解题的关键.6.B解析:B【分析】根据勾股定理逆定理对每个选项一一判断即可.【详解】A、∵72+82≠102,∴△ABC不是直角三角形;B、∵52+42=)2,∴△ABC是直角三角形;C、∵2222,∴△ABC不是直角三角形;D、∵32+42≠62,∴△ABC不是直角三角形;故选:B.【点睛】本题主要考查勾股定理逆定理,熟记定理是解题关键.7.D解析:D【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,进而可得a=b或a2=b2+c2,进而判断△ABC的形状为等腰三角形或直角三角形.【详解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a2+b2=c2的三角形是直角三角形.8.D解析:D【分析】根据勾股定理求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【详解】由勾股定理得,AB====∴AC AB∵点A表示的数是1∴点C表示的数是1-故选D.【点睛】本题考查了勾股定理、实数与数轴,熟记定理并求出AB的长是解题的关键.9.C解析:C【分析】本题根据所给的条件得知,△ABC是直角三角形,再根据三角形的面积相等即可求出BC边上的高.【详解】∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式可知,S△ABC=12AB⋅AC=12BC⋅AD,∴AD=245.故选C.【点睛】本题考查了勾股定理的逆定理,需要先证得三角形为直角三角形,再利用三角形的面积公式求得AD的值.10.D解析:D【分析】此题要分两种情况:当5和13都是直角边时;当13是斜边长时;分别利用勾股定理计算出第三边长即可求解.【详解】当5和13当1312=;故这个三角形的第三条边可以是12.故选:D.【点睛】本题主要考查了勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.二、填空题11.322n【分析】根据等边三角形性质得出AB1=CB1=12,∠AB1B=∠BB1C=90°,由勾股定理求出BB1=2,求出△ABC 的面积是4;求出113ABB BCB S S ==B 1B 2,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,B 3B 4=B 4B 5=,推出B n ﹣1B n . 【详解】解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB SS ==⨯,12=×1×B 1B 2,B 1B 2=4,由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,2313112422B B =⨯⨯⨯,B 2B 3,B 3B 4,B 4B 5=32, …,B n ﹣1B n故答案为:32,2n .【点睛】本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.12..(3,4)或(2,4)或(8,4).【分析】题中没有指明△ODP的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P的坐标.【详解】解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP=22OP OC-=2254-=3,则P的坐标是(3,4).②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM中,PM=22PD DM-=3,当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).故P的坐标为:(3,4)或(2,4)或(8,4).故答案为:(3,4)或(2,4)或(8,4).【点睛】本题考查了等腰三角形的性质和勾股定理的运用等知识,注意正确地进行分类,考虑到所有可能的情况并进行分析求解是解题的关键.13.75或6或9 4【分析】当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP 时,分别求出BP的长度,继而可求得t值.【详解】在Rt△ABC中,BC2=AB2﹣AC2=7.52﹣4.52=36,∴BC=6(cm);①当AB=BP=7.5cm时,如图1,t=7.52=3.75(秒);②当AB=AP=7.5cm时,如图2,BP=2BC=12cm,t=6(秒);③当BP=AP时,如图3,AP=BP=2tcm,CP=(4.5﹣2t)cm,AC=4.5cm,在Rt△ACP中,AP2=AC2+CP2,所以4t2=4.52+(4.5﹣2t)2,解得:t=94,综上所述:当△ABP为等腰三角形时,t=3.75或t=6或t=94.故答案为:3.75或6或94.【点睛】此题是等腰三角形与动点问题,考查等腰三角形的性质,勾股定理,解题中应根据每两条边相等分情况来解答,不要漏解.14.71-【分析】分别找到两个极端,当M与A重合时,AP取最大值,当点N与C重合时,AP取最小,即可求出线段AP长度的最大值与最小值之差【详解】如图所示,当M与A重合时,AP取最大值,此时标记为P1,由折叠的性质易得四边形AP1NB是正方形,在Rt△ABC中,2222AB=AC BC=54=3--,∴AP的最大值为A P1=AB=3如图所示,当点N与C重合时,AP取最小,过C点作CD⊥直线l于点D,可得矩形ABCD,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt△PCD中,2222PD=PC CD=43=7--,∴AP的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为()1AP AP=347=71----故答案为71-【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.15.3.【分析】作点B 关于AD 的对称点B′,过点B′作B′N ⊥AB 于N 交AD 于M ,根据轴对称确定最短路线问题,B′N 的长度即为BM+MN 的最小值,根据∠BAC=60°判断出△ABB′是等边三角形,再根据等边三角形的性质求解即可.【详解】如图,作点B 关于AD 的对称点B′,由垂线段最短,过点B′作B′N ⊥AB 于N 交AD 于M ,B′N 最短,由轴对称性质,BM=B′M ,∴BM+MN=B′M+MN=B′N ,由轴对称的性质,AD 垂直平分BB′,∴AB=AB′,∵∠BAC=60°,∴△ABB′是等边三角形,∵AB=2,∴33 即BM+MN 3.3.【点睛】本题考查了轴对称确定最短路线问题,等边三角形的判定与性质,确定出点M 、N 的位置是解题的关键,作出图形更形象直观.162【分析】连接CE .根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE ,【详解】解:(1)如图,连接CD、CF.∵Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC,∴∠DCF-∠DCA=∠DFC-∠DFE,即∠GCF=∠GFC,∴GC=GF,∴EG+CG=EG+GF=EF=BE,∴△ECG的周长2,2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..17.10【分析】首先作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN 的最小值,易得△ONN′为等边三角形,△OMM′为等边三角形,∠N′OM′=90°,继而可以求得答案.【详解】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,OM′=OM=6,ON′=ON=8,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°.在Rt△M′ON′中,M′N22.''OM ON故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.18.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式.19.5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.20.4913【解析】【分析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线 1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,222251213AC CG AG =+=+=13CE AB AC ==∴=由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013CF = 12049131313EF CE CF ∴=-=-= 故答案为:4913.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.三、解答题21.(1)证明见解析;(2)5;(3)CD2+CE2=BC2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论.(3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD2+CE2=2(AP2+CP2),再判断出CD2+CE2=2AC2.即可得出结论.【详解】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=12∠ADE=12×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD5.(3)CD2、CE2、BC2之间的数量关系为:CD2+CE2=BC2,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A 作AP ⊥DE 于点P .∵△ADE 为等腰直角三角形,AP ⊥DE ,∴AP =EP =DP .∵CD 2=(CP +PD )2=(CP +AP )2=CP 2+2CP •AP +AP 2,CE 2=(EP ﹣CP )2=(AP ﹣CP )2=AP 2﹣2AP •CP +CP 2,∴CD 2+CE 2=2AP 2+2CP 2=2(AP 2+CP 2),∵在Rt △APC 中,由勾股定理可知:AC 2=AP 2+CP 2,∴CD 2+CE 2=2AC 2.∵△ABC 为等腰直角三角形,由勾股定理可知:∴AB 2+AC 2=BC 2,即2AC 2=BC 2,∴CD 2+CE 2=BC 2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD ,解(2)(3)的关键是判断出BE ⊥DE ,是一道中等难度的中考常考题.22.(1)2;(2)3q p =;(3)27OM =【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M 作MN ⊥CD 于N ,根据已知得出MN q =,OM p =,求出∠MON =60°,根据含30度直角三角形的性质和勾股定理求出223MN MO NO p =-=即可解决问题;(3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点,首先证明OM OE OF EF ===,求出2MF =,23ME =,然后过F 作FG QM ⊥,交QM 延长线于G ,根据含30度直角三角形的性质求出1FG =,3MG =,再利用勾股定理求出EF 即可.【详解】解:(1)由题意可知,在直线CD 上,且在点O 的两侧各有一个,共2个,故答案为:2;(2)过M 作MN CD ⊥于N ,∵直线l AB ⊥于O ,150BOD ∠=︒,∴60MON ∠=︒,∵MN q =,OM p =,∴1122NO MO p ==, ∴2232MN MO NO p =-=, ∴3q p =; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点.∴OFP OMP △≌△,OEQ OMQ △≌△,∴FOP MOP ∠=∠,EOQ MOQ ∠=∠,OM OE OF ==,∴260EOF BOD ∠=∠=︒,∴△OEF 是等边三角形,∴OM OE OF EF ===,∵1MP =,3MQ =∴2MF =,3ME =,∵30BOD ∠=︒,∴150PMQ ∠=︒,过F 作FG QM ⊥,交QM 延长线于G ,∴30FMG ∠=︒,在Rt FMG △中,112FG MF ==,则3MG =, 在Rt EGF 中,1FG =,33EG ME MG =+=, ∴22(33)127EF =+=,∴27OM =.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.23.(1)见解析;(2)CD 2AD +BD ,理由见解析;(3)CD 3+BD【分析】(1)由“SAS ”可证△ADB ≌△AEC ;(2)由“SAS ”可证△ADB ≌△AEC ,可得BD =CE ,由直角三角形的性质可得DE 2AD ,可得结论;(3)由△DAB ≌△EAC ,可知BD =CE ,由勾股定理可求DH =32AD ,由AD =AE ,AH ⊥DE ,推出DH =HE ,由CD =DE +EC =2DH +BD 3AD +BD ,即可解决问题;【详解】证明:(1)∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );(2)CD 2AD +BD ,理由如下:∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠BAC =90°,AD =AE ,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH32AD,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD3+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.24.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.【详解】解:(1)BC−AC =AD .理由如下:如图(a ),在CB 上截取CE =CA ,连接DE ,∵CD 平分∠ACB ,∴∠ACD =∠ECD ,又CD =CD ,∴△ACD ≌△ECD (SAS ),∴DE =DA ,∠A =∠CED =60°,∴∠CED =2∠CBA ,∵∠CED =∠CBA +∠BDE ,∴∠CBA =∠BDE ,∴DE =BE ,∴AD =BE ,∵BE =BC−CE =BC−AC ,∴BC−AC =AD .(2)①如图(b ),在AB 上截取AM =AD ,连接CM ,∵AC 平分∠DAB ,∴∠DAC =∠MAC ,∵AC =AC ,∴△ADC ≌△AMC (SAS ),∴∠D =∠AMC ,CD =CM =12,∵CD =BC =12,∴CM =CB ,∴∠B =∠CMB ,∵∠CMB +∠CMA =180°,∴∠B +∠D =180°;②设BN =a ,过点C 作CN ⊥AB 于点N ,∵CB =CM =12,∴BN =MN =a ,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=, 解得:a =3,即BN=MN=3,则AB=8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.25.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,∵ED2CD,∴BD2+AD2=2CD2,(3)解:连接EF,设BD=x,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2, ∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.26.(1)a =8,b =15,c =17;(2)能,60【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a 、b 、c 的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a ,b ,c 88a a --|c ﹣17|+b 2﹣30b +225, 2881||7(15)a a c b --+-=﹣,∴a ﹣8=0,b ﹣15=0,c ﹣17=0,∴a =8,b =15,c =17;(2)能.∵由(1)知a =8,b =15,c =17,∴82+152=172.∴a 2+c 2=b 2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40; 三角形的面积=12×8×15=60. 【点睛】此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状. 27.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =73【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23,再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB 2222126AB AO -=-3∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE 222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD ()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以OC=22228373AC OA +=+=所以BC=2OC=273,在Rt △BCD 中,CD=()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以AB=22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.28.(1)CD=8;(2)t=4;(3)12-=t v t (26t ≤<) 【分析】(1)作AE⊥BC于E,根据等腰三角形三线合一的性质可得BE=12BC,然后利用勾股定理求出AE,再用等面积法可求出CD的长;(2)①过B作BF⊥AC于F,易得BF=CD,分别讨论Q点在AF和FC之间时,根据△BQF≌△CPD,得到PD=QF,建立方程即可求出t的值;(3)同(2)建立等式关系即可得出关系式,再根据Q在FC之间求出t的取值范围即可.【详解】解:(1)如图,作AE⊥BC于E,∵AB=AC,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt△CPD≌Rt△BQF(HL)在Rt △ACD 中,CD=8,AC=AB=10 ∴22AD=AC CD =6-同理可得AF=6∴PD=AD=AP=6-t ,QF=AF-AQ=6-2t由PD=QF 得6-t=6-2t ,解得t=0,∵t >0,∴此种情况不符合题意,舍去;当Q 点在FC 之间时,如图所示,此时PD=6-t ,QF=2t-6由PD=QF 得6-t=2t-6,解得t=4,综上得t 的值为4.(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6,整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤<所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.29.(1),CM ME CM EM =⊥;(2)见解析;(3)25CM =【解析】(1)证明ΔFME ≌ΔAMH ,得到HM=EM ,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A 、E 、C 在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC ,EM ,由(1)(2)可知,△CME 是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM =ME ,CM ⊥EM .理由:∵AD ∥EF ,AD ∥BC ,∴BC ∥EF ,∴∠EFM =∠HBM ,在△FME 和△BMH 中,EFM MBH FM BMFME BMH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△FME ≌△BMH (ASA ),∴HM =EM ,EF =BH ,∵CD =BC ,∴CE =CH ,∵∠HCE =90°,HM =EM ,∴CM =ME ,CM ⊥EM .(2)如图2,连接BD ,∵四边形ABCD 和四边形EDGF 是正方形,∴45,45FDE CBD ︒︒∠=∠=∴点B E D 、、在同一条直线上,∵90,90BCF BEF ︒︒∠=∠=,M 为BF 的中点, ∴12CM BF =,12EM BF =,∴CM ME =, ∵45EFD ∠=︒,∴135EFC ∠=︒,∵CM FM ME ==,∴,MCF MFC MFE MEF ∠=∠∠=∠∴135MCF MEF ∠+∠=︒,∴36013513590CME ∠=︒-︒-︒=︒,∴CM ME ⊥.(3)如图3中,连接EC ,EM .。

勾股定理练习题及答案

勾股定理练习题及答案

勾股定理练习题及答案勾股定理是数学中的经典定理之一,它描述了直角三角形边长之间的关系。

在勾股定理的基础上,可以衍生出许多有趣的练习题,通过解答这些题目,我们不仅可以巩固对勾股定理的理解,还能培养数学思维和解决问题的能力。

接下来,我将给大家分享一些勾股定理的练习题及答案。

练习题一:已知直角三角形的一条直角边长为3cm,斜边长为5cm,求另一条直角边的长度。

解答:根据勾股定理,直角边的平方和等于斜边的平方。

设另一条直角边的长度为x,则有x^2 + 3^2 = 5^2。

解方程得到x = 4cm。

练习题二:已知直角三角形的一条直角边长为6cm,另一条直角边长为8cm,求斜边的长度。

解答:同样根据勾股定理,直角边的平方和等于斜边的平方。

设斜边的长度为y,则有6^2 + 8^2 = y^2。

解方程得到y = 10cm。

练习题三:已知直角三角形的两条直角边分别为5cm和12cm,求斜边的长度。

解答:根据勾股定理,直角边的平方和等于斜边的平方。

设斜边的长度为z,则有5^2 + 12^2 = z^2。

解方程得到z = 13cm。

通过以上练习题,我们可以看到勾股定理的应用范围很广。

不仅可以求解直角三角形的边长,还可以用于解决其他几何问题。

接下来,我将给大家分享一些扩展的练习题。

练习题四:已知一个直角三角形的两条直角边分别为a和b,求斜边的长度。

解答:根据勾股定理,直角边的平方和等于斜边的平方。

设斜边的长度为c,则有a^2 + b^2 = c^2。

这是勾股定理的一般形式,适用于任意直角三角形。

练习题五:已知一个直角三角形的斜边长为c,一条直角边长为a,求另一条直角边的长度。

解答:根据勾股定理,直角边的平方和等于斜边的平方。

设另一条直角边的长度为b,则有a^2 + b^2 = c^2。

这个问题可以看作是已知斜边和一条直角边,求另一条直角边的问题。

通过以上练习题,我们可以发现勾股定理的灵活性和实用性。

不仅可以用于解决直角三角形的问题,还可以应用于其他几何形状的计算。

人教版八年级数学下册 第17章 勾股定理 单元复习试题 含答案

人教版八年级数学下册 第17章 勾股定理 单元复习试题  含答案

第17章勾股定理一.选择题(共10小题)1.下列各组数是勾股数的是()A.2,3,4 B.0.3,0.4,0.5C.7,24,25 D.,,2.△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.a=5,b=12,c=13C.∠A:∠B:∠C═3:4:5 D.∠A=∠B+∠C3.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为()A.﹣1 B.﹣1 C.2 D.4.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=4,BC=6,将四个直角三角形中边长为4的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.56 B.24 C.64 D.325.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3 C.D.56.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和7.如图,今年第9号台风利奇马”过后,市体育中心附近一棵大树在高于地面3米处折断,大树顶部落在距离大树底部4米处的地面上,那么树高是()A.7m B.8m C.9m D.12m8.将一根长为25厘米的筷子置于底面直径为5厘米,高为12厘米的圆柱形水杯中,设筷子露在杯子外的长为h厘米,则h的取值范围是()A.12≤h≤13 B.11≤h≤12 C.11≤h≤13 D.10≤h≤129.如图,已知1号、4号两个正方形的面积和为7,2号、3号两个正方形的面积和为4,则a,b,c三个正方形的面积和为()A.11 B.15 C.10 D.2210.如图,高速公路上有A、B两点相距25km,C、D为两村庄,已知DA=10km,CB=15km.DA ⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则AE的长是()km.A.5 B.10 C.15 D.25二.填空题(共6小题)11.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8.AD平分∠BAC交BC边于点D,则BD=.12.如图,有赵爽弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=27,S3=1,则S1的值是.13.观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262;…;你有没有发现其中的规律?请用你发现的规律写出接下来的式子:.14.如图,有一块田地的形状和尺寸如图所示,则它的面积为.15.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范同内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则AD=米.16.如图,△ABC是边长为12cm的正三角形,动点P从A向B以2cm/s匀速运动,同时动点Q从B向C以1cm/s匀速运动,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t秒,则t=时,△PBQ为直角三角形.三.解答题(共5小题)17.如图,已知在四边形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,∠ABC=90°.(1)连结AC,求AC的长;(2)求∠ADC的度数;(3)求出四边形ABCD的面积18.分析探索题:细心观察如图,认真分析各式,然后解答问题.OA22=()2+1=2 S1=;OA32=()2+1=3 S2=;OA42=()2+1=4 S3=…(1)请用含有n(n为正整数)的式子表示S n=;(2)推算出OA10=.(3)求出S12+S22+S32+…+S102的值.19.《中华人民共和国道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过70千米/时,如图,一辆小汽车在某城市街道直道上行驶,某一时刻刚好行驶到路对面车速检测仪A(观测点)正前方30米处的C处,过了2秒钟后,测得小汽车与车速检测仪间的距离为50米,问:这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)20.如图1,在△ABC中,∠B=22.5°,AC=5,AD是BC边上的高,AB的垂直平分线交AB 于点E,交BC于点F.(1)判别AD与DF的数量关系并证明;(2)过F点作FG⊥AC于点G,交AD于点O(如图2),若OD=3,求BC的长度.21.如图,在Rt△ABC中,AB=3,BC=4,动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q 的运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止运动,连接PQ,设它们的运动时间为t(t>0)秒.(1)设△CBQ的面积为S,请用含有t的代数式来表示S;(2)线段PQ的垂直平分线记为直线l,当直线l经过点C时,求AQ的长.参考答案一.选择题(共10小题)1.解:A、22+32≠42,故此选项错误;B、0.3,0.4,0.5不是正整数,故此选项错误;C、72+242=252,故此选项正确;D、()2+()2≠()2,同时它们也不是正整数,故此选项错误.故选:C.2.解:A、∵a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故本选项不符合题意;B、∵a=5,b=12,c=13,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故本选项不符合题意;C、∵∠A:∠B:∠C=3:4:5,∴最大角∠C=×180°≠90°,∴△ABC是直角三角形,故本选项符合题意;D、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,即△ABC是直角三角形,故本选项不符合题意;故选:C.3.解:∵AB=3,AD=1,∴AC==,∵点A为圆心,AC的长为半径作弧交数轴于点M,AM=AC=,∵A点表示﹣1,∴M点表示的数为:﹣1,故选:A.4.解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=82+62=100所以x=10所以“数学风车”的周长是:(10+4)×4=56.故选:A.5.解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2﹣EB2=22﹣12=3,∴正方形ABCD的面积=BC2=3.故选:B.6.解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的宽=a﹣(c﹣b),长=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.7.解:根据勾股定理可知:折断的树高==5米,则这棵大树折断前的树高=3+5=8米.故选:B.8.解:当筷子与杯底垂直时h最大,h最大=25﹣12=13cm.当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===13cm,故h=25﹣13=12cm.故h的取值范围是12cm≤h≤13cm.故选:A.9.解:利用勾股定理可得S a=S1+S2,S b=S2+S3,S c=S3+S4,∴S a+S b+S c=S a=S1+S2+S2+S3+S3+S4=7+4+4=15.故选:B.10.解:设AE=x,则BE=25﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=102+x2,在Rt△BCE中,CE2=BC2+BE2=152+(25﹣x)2,由题意可知:DE=CE,所以:102+x2=152+(25﹣x)2,解得:x=15km.所以,E应建在距A点15km处.故选:C.二.填空题(共6小题)11.解:作DE⊥AC于E,如图所示:∵∠B=90°,AB=6,BC=8.∴DB⊥AB,AC==10,∵AD平分∠BAC,DE⊥AC,∴DE=DB,在Rt△AED和Rt△ABD中,,∴Rt△AED≌Rt△ABD(HL),∴AE=AB=6,∴CE=AC﹣AE=4,设DE=DB=x,则CD=8﹣x,在Rt△CDE中,由勾股定理得:x2+42=(8﹣x)2,解得:x=3,∴BD=3;故答案为:3.12.解:∵八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,∴CG=NG,CF=DG=NF,∴S1=(CG+DG)2=CG2+DG2+2CG•DG=GF2+2CG•DG,S2=GF2,S3=(NG﹣NF)2=NG2+NF2﹣2NG•NF,∴S1+S2+S3=GF2+2CG•DG+GF2+NG2+NF2﹣2NG•NF=3GF2=27,∴GF2=9,∴S2=9,∵S3=1,∴S1的值是17.故答案为17.13.解:根据规律,下一个式子是:352+122=372.14.解:作辅助线:连接AB,因为△ABD是直角三角形,所以AB===5,因为52+122=132,所以△ABC是直角三角形,则要求的面积即是两个直角三角形的面积差,即×12×5﹣×3×4=30﹣6=24.15.解:如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,则AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD===1.5(米)故答案是:1.5.16.解:∵△ABC是等边三角形,∴AB=BC=6cm,∠A=∠B=∠C=60°,当∠PQB=90°时,∠BPQ=30°,∴BP=2BQ.∵BP=12﹣2x,BQ=x,∴12﹣2x=2x,解得x=3;当∠QPB=90°时,∠PQB=30°,∴BQ=2PB,∴x=2(12﹣2x),解得x=.答:3或秒时,△BPQ是直角三角形.故答案为3或.三.解答题(共5小题)17.解:(1)连接AC,在Rt△ABC中,∠ABC=90°,∵AB=20cm,BC=15cm,∴由勾股定理可得:AC=cm;(2)∵在△ADC中,CD=7cm,AD=24cm,∴CD2+AD2=AC2,∴∠ADC=90°;(3)由(2)知,∠ADC=90°,∴四边形ABCD的面积=,18.解:(1)+1=n+1Sn=(n是正整数);故答案是:;(2)∵OA12=1,OA22=()2+1=2,OA32=()2+1=3,OA42=()2+1=4,∴OA12=,OA2=,OA3=,…∴OA10=;故答案是:;(3)S12+S22+S32+…+S102=()2+()2+()2+…+()2=(1+2+3+ (10)=.即:S12+S22+S32+…+S102=.19.解:在Rt△ABC中,AC=30m,AB=50m,由勾股定理可得:BC==40(m),∴小汽车的速度为v=40÷2=20(m/s)=20×3.6(km/h)=72(km/h),∵72(km/h)>70(km/h),∴这辆小汽车超速行驶.答:这辆小汽车超速了.20.(1)AD=DF,理由如下:证明:如图1,连结AF,∵EF是AB的垂直平分线,∴BF=AF,∴∠BAF=∠B=22.5°,∴∠AFD=45°,∵AD是BC边上的高,∴△AFD是等腰直角三角形,∴AD=DF;(2)解:∵FG⊥AC,AD⊥BC,∴∠FGC=∠ADF=90°,∠GFC+∠C=90°,∠DAC+∠C=90°,∴∠GFC=∠DAC,∵AD=DF,∴△ODF≌△CDA,∴OD=CD=3,在Rt△ACD中,由勾股定理得AD===4,连结AF,在Rt△ADF中,AD=DF=4,∴AF===4,∴BF=AF=4,∴BC=BF+DF+CD=4+4+3=7+4.21.解:(1)如图1,当0<t≤3时,BQ=t,BC=4,∴S=×4×t=2t;如图2,当3<t≤5时,,AQ=t﹣3,则BQ=3﹣(t﹣3)=6﹣t,∴S=×4×(6﹣t)=12﹣2t;(2)连接CQ,如图3,∵QP的垂直平分线过点C,∴CP=CQ,∵AB=3,BC=4,∴AC===5,∴42+t2=(5﹣t)2,解得t=;或42+(6﹣t)2=(5﹣t)2,显然不成立;∴AQ=3﹣=.。

勾股定理复习题及答案

勾股定理复习题及答案

一、选择题1.勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A .121B .110C .100D .902.直角三角形的面积为 S ,斜边上的中线为 d ,则这个三角形周长为 ( ) A .22d S d ++ B .2d S d -- C .22d S d ++D .()22d S d ++3.如图,在四边形ABCD 中,∠DAB =30°,点E 为AB 的中点,DE ⊥AB ,交AB 于点E ,DE =3,BC =1,CD =13,则CE 的长是( )A .14B .17C .15D .134.如图是一块长、宽、高分别为6cm 、4cm 、3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )A .cmB .cmC .cmD .9cm5.在ΔABC 中,211a b c=+,则∠A( ) A .一定是锐角B .一定是直角C .一定是钝角D .非上述答案6.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()A .22B .32C .62D .82 7.在ABC 中,90C ∠=︒,30A ∠=︒,12AB =,则AC =( )A .6B .12C .62D .638.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( ) A .直角三角形 B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形 9.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或3410.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm ,则该圆柱底面周长为( )A .12cmB .14cmC .20cmD .24cm二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S1,S2,S3,若S 1+S 2+S 3=10,则S2的值是_________.12.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.13.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是_____.14.在△ABC中,AB=15,AC=13,高AD=12,则ABC的周长为_______________.15.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=13,EF=7,那么AH等于_____.16.如图,在Rt△ABC中,∠B=90°,以AC为斜边向外作等腰直角三角形COA,已知BC=8,OB=102,则另一直角边AB的长为__________.17.在Rt△ABC中,直角边的长分别为a,b,斜边长c,且a+b=35,c=5,则ab的值为______.18.如图,△ABC中,∠ABC=45°,∠BCA=30°,点D在BC上,点E在△ABC外,且AD=AE=CE,AD⊥AE,则ABBD的值为____________.19.如图,直线l上有三个正方形a,b,c,若a,c的边长分别为5和12,则b的面积为_________________.的角平分线,E是AD上的动点,F 20.如图,△ABC中,AB=AC=13,BC=10,AD是BAC是AB边上的动点,则BE+EF的最小值为_____.三、解答题21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?△中,∠ACB = ∠DCE=90°.22.如图,在两个等腰直角ABC和CDE(1)观察猜想:如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是;△绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?(2)探究证明:把CDE说明理由;△绕点C在平面内自由旋转,若AC = BC=10,DE=12,当A、E、(3)拓展延伸:把CDED三点在直线上时,请直接写出 AD的长.23.定义:如图1,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转90︒);(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长.24.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.25.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求ADAB的值.26.如图1,△ABC 中,CD ⊥AB 于D ,且BD : AD : CD =2 : 3 : 4, (1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40cm 2,如图2,动点M 从点B 出发以每秒2cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以每秒1cm 速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止. 设点M 运动的时间为t (秒), ①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.图1 图2 备用图 27.阅读下列一段文字,然后回答下列问题.已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离()()22121212PP x x y y =-+-直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y . (1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.28.(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,①则线段BC,DC,EC之间满足的等量关系式为;②求证:BD2+CD2=2AD2;(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.29.如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.(1)求∠EDF= (填度数);(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;(3)①若AB=6,G是AB的中点,求△BFG的面积;②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.30.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB 对称,点D在线段AB上.(1)如图1,若m=8,求AB的长;(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE2DE;(3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】延长AB 交KF 于点O ,延长AC 交GM 于点P ,可得四边形AOLP 是正方形,然后求出正方形的边长,再求出矩形KLMJ 的长与宽,然后根据矩形的面积公式列式计算即可得解. 【详解】解:如图,延长AB 交KF 于点O ,延长AC 交GM 于点P ,则四边形OALP 是矩形.90CBF ∠=︒,90ABC OBF ∴∠+∠=︒,又直角ABC ∆中,90ABC ACB ∠+∠=︒,OBF ACB ∴∠=∠,在OBF ∆和ACB ∆中,BAC BOF ACB OBF BC BF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()OBF ACB AAS ∴∆≅∆,AC OB =∴,同理:ACB PGC ∆≅∆,PC AB ∴=, OA AP ∴=,所以,矩形AOLP 是正方形, 边长347AO AB AC =+=+=,所以,3710KL =+=,4711LM =+=, 因此,矩形KLMJ 的面积为1011110⨯=,故选B .【点睛】本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键.2.D解析:D 【解析】 【分析】根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页
勾股定理经典复习题
一、基础达标:
1. 下列说法正确的是( )
A.若 a、b、c是△ABC的三边,则a2+b2=c2;
B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;
C.若 a、b、c是Rt△ABC的三边,90A,则a2+b2=c2;
D.若 a、b、c是Rt△ABC的三边,90C,则a2+b2=c2.
2. △ABC的三条边长分别是a、b、c,则下列各式成立的是( )
A.cba B. cba C. cba D.
222
cba

3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为
( )
A.121 B.120 C.90 D.不能确定
4.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )
A.42 B.32 C.42 或 32 D.37 或 33
5.斜边的边长为cm17,一条直角边长为cm8的直角三角形的面积是 .
6.假如有一个三角形是直角三角形,那么三边a、b、c之间应满足 ,其中 边
是直角所对的边;如果一个三角形的三边a、b、c满足222bca,那么这个三角形
是 三角形,其中b边是 边,b边所对的角是 .
7.一个三角形三边之比是6:8:10,则按角分类它是 三角形.
8. 若三角形的三个内角的比是3:2:1,最短边长为cm1,最长边长为cm2,则这个三角
形三个角度数分别是 ,另外一边的平方是 .
9.如图,已知ABC中,90C,15BA,12AC,以直
角边BC为直径作半圆,则这个半圆的面积是 .
10. 一长方形的一边长为cm3,面积为212cm,那么它的一
条对角线长是 .
二、综合发展:

A
C

B
第 2 页

11.如图,一个高4m、宽3m的大门,需要在对角线的顶点间加固一个木条,求木条的
长.
12.一个三角形三条边的长分别为cm15,cm20,cm25,这个三角形最长边上的高是多少?
13.如图,小李准备建一个蔬菜大棚,棚宽4m,高3m,长20m,棚的斜面用塑料
薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.
14.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,
高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那
么这只小鸟至少几秒才可能到达小树与伙伴在一起?
15.“中华人民共与国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超
过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到
路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为
50
m,这辆小汽车超速了吗?

A
小汽车
小汽车
B
C

观测
第 3 页

答案:
一、基础达标
1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角. 答案: D.
2. 解析:本题考察三角形的三边关系与勾股定理. 答案:B.

3. 解析:设另一条直角边为x,则斜边为(x+1)利用勾股定理可得方程,可以求出
x.然后再求它的周长. 答案:C.
4.解析:解决本题关键是要画出图形来,作图时应注意高AD是在三角形的内部还是
在三角形的外部,有两种情况,分别求解. 答案:C.
5. 解析: 勾股定理得到:22215817,另一条直角边是15,
所求直角三角形面积为21158602cm. 答案: 260cm.
6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.
答案:222cba,c,直角,斜,直角.
7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形. 答案:直
角.
8. 解析:由三角形的内角与定理知三个角的度数,断定是直角三角形. 答案:30、60、

90
,3.
9. 解析:由勾股定理知道:
222222

91215ACABBC

所以以直角边9BC为直径的半圆面积为10.125π. 答案:10.125π.
10. 解析:长方形面积长×宽,即12长×3,长
4
,所以一条对角线长为5. 答案:

cm5

二、综合发展
11. 解析:木条长的平方=门高长的平方+门宽长的平方. 答案:5m.
12解析:因为222252015,所以这三角形是直角三角形,设最长边(斜边)上的高为
xcm,由直角三角形面积关系,可得1115202522x,∴ 12x(cm
).答案:
12x

(cm).
第 4 页

13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可
以借助勾股定理求出. 答案:在直角三角形中,由勾股定理可得:直角三角形
的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m2) .
14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是
两树树梢之间的距离是13m,两再利用时间关系式求解. 答案:6.5s.
15.解析:本题与14题相似,可以求出BC的值,再利用速度等于路程除以时间后比
较.BC=40米,时间是2s,可得速度是20m/s=72km/h>70km/h. 答案:
这辆小汽车超速了.

相关文档
最新文档