必修五不等式练习题含答案

必修五不等式练习题含答案
必修五不等式练习题含答案

不等式练习题 第一部分

1. 下列不等式中成立的是(

)

A. 若a b ,则 2 ac bc 2

B

.若 a b ,则 a 2

b 2 C. 若a b 0, 则a 2 ab

b 2

D

.若a b 0,则

1 1 a b

1 1

3

已知 3 3

3 4

3 4

2. a

,b

,c

,则a,b,c 的大小关系是( )

5

5

2

(A) .c a b (B) a b c (C) b a c (D) c b a 3.已知a,b,c 满足c b a 且ac 0,下列选项中不一.定.成立的是( )

(A ) ab ac (B ) c b a

0 (C ) cb 2 ab 2

(D ) ac(a c) 0 4. 规定记号表示-

-种运算, 定义 a ? b= . ab a

b (a , b

为正实

数),

若1O k 2<3,则k 的取值范围为 ( )

A. 1 k 1 B .0 k

1

C

1 k 0

D . 0 k 2

5. 若a,b,c 为实数,则下列命题正确的是(

)

A. 若 a b ,则 ac 2 bc 2

B. 若a b 0,则a 2 ab b 2

C. 若a b 0,则丄

1

a b

D. 若a b 0,则b

a

a

b

6. 设 a 2 0.5, b log 3 ,c log 4 2,则( )

A. b a c

B. b c

a C. a

b

c D. a c b

7.在R 上定义运算 :x y x(1 y ),若不等式(x a ) (x a ) 1对任意实数x

成 、立 ,则实数a 的取值范围是( ).

A. {a| 1 a 1} B .{a| 0 a 2}

C. 1

3、

{a

^

- a -} D

.{a|

3

11 a ~}

2 2

2

2

8. 已知正实数x,y 满足 x 2y 4

,则丄丄 的最小值为

4x y

9. 设x, y 为正实数,a

..x 2 xy y 2,b

p.、xy,c x

y . 试比较 a 、c 的大小.

6.

10 ?已知不等式ax 2 5x 2 0的解集是M ?

(1) 若2 M ,求a 的取值范围; (2)

若M x\2 x 2,求不等式ax 2 5x a 2 1 0的解集

第二部分

1 ?给出以下四个命题:

1 1

2 2

①若a>b ,则-<匚; ②若ac >bc ,则a>b ;

a b ③若 a>| b|,则 a>b ; ④若 a>b ,则 a 2>b 2. 其中正确的是(

1 1 7?设a>0, b>0.若?.3是3a 与3b 的等比中项,则b 的最小值为( )

A. 8

2 6

A.②④

B ?②③

C .①② D.①③

2.设 a , b € R, A. b -a>0 B

若a — | b|>0,贝U 下列不等式中正确的是(

)

C . b + a>0

D . a 2— b 2<0 3.在下列函数中,最小值是 2的是(

)

A.

x + 2 .y = x +1(x >0)

C. y = sin x + cscx , x € (0 ,

4. 已知log a (a 2+ 1)

C.

+ x)

5. f (x) = ax 2

+ ax — 1在R 上满足f (x)<0,则a 的取值范围是( )

A. (",0]

B. (—x,— 4)

C. (—4,0)

D. (—4,0]

B. D.

B. 4

1

C. 1 D

4

8. ________________________________________________________________ 已知当x>0时,不等式x2—m灶4>0恒成立,则实数m的取值范围是_________ .

9. 已知A= {x| x2—3x + 2<0}, B= {x| x2—(a+ 1)x + a<0}.

(1)若A B,求a的取值范围;

⑵若B? A,求a的取值范围

1 9

10. 已知x>0, y>0,且- + -= 1,求x+ y的最小值.

x y

11. 已知a, b, c都是正数,且a+ b+ c = 1.

求证:(1 —a)(1 —b)(1 —c) >8abc.

证明??? a、b、c都是正数,且a+ b+ c= 1,

/. 1 —a= b+ c>2 bc>0,

1 —b = a+ c>

2 ac>0,

1 —c = a+ b>

2 ab>0.

(1 —a)(1 —b)(1 —c) >2 bc ?2 . ac ?2 ab= 8abc.

2

12. 不等式kx —2x+ 6k<0(k工0).

(1) 若不等式的解集为{x|x< —3或x> —2},求k的值;

(2) 若不等式的解集为R,求k的取值范围.

2. D 【解析】

C 选项不一定成立.故选C. 4. A

【解析】根据题意1e k 2 魔2 1 k 2 3化简为k 2 k 2 0,对k 分情况去 绝对值如下:

当k 0时,原不等式为k k 2 0解得2 k 1,所以 0 k 1 ; 当k 0时, 原不等式为 2 0成立,所以k

0 ;

当k 0时, 原不等式为k 2

k 2 0,解得

1 k 2,所以 1 k 0 ;

综上, 1 k 1,所以选择 A. 5. B

【解析】对于A,当c 0时,不等式不成立,故 A 错;对于C,因为a b 0 ,

11

1 1

两边同时除以ab 0,所以丄丄,故C 错;对于D,因为a b 0 , -

-

0 ,

a b

b

a

所以a b ,故D 错,所以选B.

b a

6. A

【解析a 2 0.5, b log 3 , c log 42 , 1> 2°.5 =丄 > -,

罷2

1. D.

【解析】对于A ,若c 不成立;对于C,若a

1

所以丄

a

参考答案 第一部分

0 ,显然ac 2 b 0,则 a 2 ;故选D

bc 2不成立;对于B ,若b a 0,则a 2 ab b 2,所以C 错;对于D,若a b

b 2

3

3 4 2 3. C 【解析】

1所以c

综上,

所以答案为: D.

c, ac 0,

0,a (1) Qb

c,a

0,

ab ac;

⑵Qb

a, 0,

0, c b

0 ;(3)

Q c a,

,Q ac 0, ac a

?⑷

b a 且

c 0, a 0, 0或b 0或b 0,

cb 2和ab 2的大小不能确定,即

1 、log3>1, log42= - b>a>c .故选:A.

2

7. C

【解析】根据题意化简不等式为(x a)(1 (x a)) 1,即x2 x (a2 a 1) 0对

任意实数x成立,所以根据二次恒成立0,解得1 a -.

2 2

8. 1

【解析】

由x 2y 4 化为y 4 x代入y 1得

2 4x y

4 x 1 1 1 1 1 1 x 2y 1

2 4x y 2x y 8 2x y 4 8

1 y x 5

1 ,因为x 0,y 0,所以

4 x y 2 8

y 1 1 y x 5 1 1

1

厂x 5 1

2-g 1

4x y 4 x y 2 8 4 V x y 2 8

(当且仅当“ x y - ”时,取“ ”),故最小值为1.

3

2 2 2 2 2 2 2 2

9. a2 x2 xy y2, c2 x2 2xy y2 c2 a2 xy ;

x 0, y 0, xy 0,即 c a ;

1

10. (1) a 2 (2) x 3 x 1

【解析】(1)由2 M,说明元素2满足不等式ax2 5x 2 0,代入即可求出a 的取值范围;(2)由M xg x 2,i,2是方程ax2 5x 2 0的两个根,由

韦达定理即可求出a 2,代入原不等式解一元二次不等式即可;

2

(1)v 2 M,二 a 2 5 2 2 0,??? a 2

2 v M x|1 x 2 ,二1,2是方程ax2 5x 2 0 的两个根,

1

???由韦达定理得2

1 2

a

解得a 2

2

第二部分

由 a —|b|>0? |b|va? — a0,故选 C. x 2

y = 2+ —的值域为(一x,— 2] U [2 ,+x );

2 X

x + 2 ------ 1 y = x +1= x + 1+ x + 1>2(x >0); 1 y =sinx +cscx =sinx +snr 2(0

y = 7x + 7一x >2(当且仅当x = 0时取等号).

a +

b 1 = 2?

1 1

=二》匚=4.

ab 1 4

所以 x + y = (x + y)( 1+ 9) = y + 翌 + 10>2

x y x y y 9x 1 9

当且仅当x =「时,等号成立,又因为x +-=1.

入 y

入 y

4

?不等式ax 2 5x

a 2

0即为:2x 2 5x 3 0其解集为x

7.解析 .3是 3a 与3b 的等比中项? 3a ?3b = 3a +

b =3? a + b = 1, ?/ a>0,b>0, /. ab

2.解析

3.解析 1 1 a + b …a + b = ab

11.解析

因为 x>0, y>0, x + 9=

1,

9x

-9

-+ 10= 16. y

1

所以当x = 4, y = 12 时,(x + y)min= 16.

函数y = 3x + x^+1的最小值是()

A.

C.

人教版高中数学必修五教案1

第一章解三角形 1.1正弦定理和余弦定理 1.1.1正弦定理 知识结构梳理 几何法证明 正弦定理的证明 向量法证明 已知两角和任意一边 正弦定理正弦定理 正弦定理的两种应用 已知两边和其中一角的对角 解三角形 知识点1 正弦定理及其证明 1正弦定理: 2.正弦定理的证明: (1)向量法证明 (2)平面几何法证明 3.正弦定理的变形 知识点2 正弦定理的应用 1.利用正弦定理可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和另一角; (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角。 2.应用正弦定理要注意以下三点: (1) (2) (3) 知识点3 解三角形

1.1.2余弦定理 知识点1 余弦定理 1. 余弦定理的概念 2. 余弦定理的推论 3. 余弦定理能解决的一些问题: 4. 理解应用余弦定理应注意以下四点: (1) (2) (3) (4) 知识点2 余弦定理的的证明 证法1: 证法2: 知识点3 余弦定理的简单应用 利用余弦定理可以解决以下两类解三角的问题: (1)已知三边求三角; (2)已知两边和它们的夹角,可以求第三边,进而求出其他角。 例1(山东高考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,tanC=73. (1) 求C cos ; (2) 若 =2 5 ,且a+b=9,求c.

1.2应用举例 知识点1 有关名词、术语 (1)仰角和俯角: (2)方位角: 知识点2 解三角形应用题的一般思路 (1)读懂题意,理解问题的实际背景,明确已知和所求,准确理解应用题中的有关术语、名称,如仰角、俯角、视角、方位角等,理清量与量之间的关系; (2)根据题意画出示意图,将实际问题抽象成解三角形模型; (3)合理选择正弦定理和余弦定理求解; (4)将三角形的解还原为实际问题,注意实际问题中的单位、结果要求近似等。 1.3实习作业 实习作业的方法步骤 (1)首先要准备皮尺、测角仪器,然后选定测量的现场(或模拟现场),再收集测量数据,最后解决问题,完成实习报告。要注意测量的数据应尽量做到准确,为此可多测量几次,取平均值。要有创新意识,创造性地设计实施方案,用不同的方法收集数据,整理信息。 (2)实习作业中的选取问题,一般有:○1距离问题,如从一个可到达点到一个不可到达点之间的距离,或两个不可到达点之间的距离;②高度问题,如求有关底部不可到达的建筑物的高度问题。一般的解决方法就是运用正弦定理、余弦定理解三角形。

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编) 变 2.下列结论正确的是 ( ) A .若a b >,则ac bc > B .若a b >,则22a b > C .若a c b c +<+,0c <,则a b > D >a b > 3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是 例2、解下列不等式 (1)2230x x --≥ (2)2280x x -++> (3) 405x x ->- (4)405 x x -≥- (5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .

变、若不等式02<--b ax x 的解集为{} 32<

例5、 1. 积为定值 (1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12 p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4) 变、 (1 )2y = 的最小值是 . (2) . 2. 和为定值 (1) ,y=x(4-x) 的最大值是 . (2), 的最大值是 . 例6、“1”的妙用 1. 2.已知正数,x y 满足21x y +=,则 y x 11+的最小值为______

必修五不等式单元测试题

人教版必修五《不等式》单元测试题 一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x の解集是( ) A .{x |x ≥2} B .{x |x ≤2} C .{x |0≤x ≤2} D .{x |x ≤0或x ≥2} 2.下列说法正确の是( ) A .a >b ?ac 2>bc 2 B .a >b ?a 2>b 2 C .a >b ?a 3>b 3 D .a 2>b 2?a >b 3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域の是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2) 4.不等式x -1 x +2 >1の解集是( ) A .{x |x <-2} B .{x |-2N B .M ≥N C .M 2 B .m <-2或m >2 C .-20时,f (x )>1,那么当x <0时,一定有( ) A .f (x )<-1 B .-11 D .0log 1 2(x +13)の解集是_________. 13.函数f (x )=x -2 x -3 +lg 4-x の定义域是__________. 14.x ≥0,y ≥0,x +y ≤4所围成の平面区域の周长是________. 15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份 销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、

高二数学必修五不等式测试题

不等式测试题 一、选择题(本大题共12小题,每小题5分,共60分。) 1.设a 1b B .1a-b >1 a C .a b > D .a 2>b 2 2.设,a b R ∈,若||0a b ->,则下列不等式中正确的是( ) A .0b a -> B .330a b +< C .220a b -< D .0b a +> 3.如果正数a b c d ,,,满足4a b cd +==,那么( ) A .ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B .ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C .ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D .ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 4.已知直角三角形的周长为2,则它的最大面积为( ) A .3-2 2 B .3+2 2 C .3- 2 D .3+ 2 5.已知0,0a b >>,则11 a ++ ) A .2 B . C .4 D .5 6.若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是( ) A .1122a b a b + B .1212a a bb + C .12 21a b a b + D .12 7.当0∣3-x ∣的解集是( ) A .(3,+∞) B .(-∞,-3)∪(3,+∞) C .(-∞,-3)∪(-1,+∞) D .(-∞,-3)∪(-1,3)∪(3,+∞) 11.设y=x 2+2x+5+ 21 25 x x ++,则此函数的最小值为( ) A .174 B .2 C .26 5 D .以上均不对

最新高一下学期期末复习之——必修五不等式知识点及主要题型-讲义含解答

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、, ac b 42-=?, 0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2

一元二次方程 ()的根 2 > = + + a c bx ax 有两相异实根 ) ( , 2 1 2 1 x x x x< 有两相等实根 a b x x 2 2 1 - = =无实根的解集 )0 ( 2 > > + + a c bx ax{} 2 1 x x x x x> <或 ? ? ? ? ? ? - ≠ a b x x 2 R 的解集 )0 ( 2 > < + + a c bx ax{} 2 1 x x x x< ?>≥?? ≠ ? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f>在区间D上恒成立,则等价于在区间D上() min f x A >若不等式()B x f<在区间D上恒成立,则等价于在区间D上() max f x B < (三)线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax+By+C=0同一侧的所有点(y x,),把它的坐标(y x,)代入

必修五数学不等式单元测试卷含答案

必修五数学不等式单元测试卷 学校:__________ 班级:__________ 姓名:__________ 考号:__________ 一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 , ) 1. 若a ,b ,c ∈R ,且a >b ,则下列不等式中一定成立的是( ) A.a +b ≥b ?c B.ac ≥bc C. c 2a?b >0 D.(a ?b)c 2≥0 2. 不等式组{x +3y +6≥0 x ?y +2<0 表示的平面区域是( ) A. B. C. D. 3. 已知x >?1,则x +4 x+1的最小值是( ) A.1 B.3 C.4 D.5 4. 不等式1 x <3等价于( ) A.x >1 3或x <0 B.01 3 D.x <0 5. 已知a ,b 为非零实数,且a 1 b D.ac 21 B.x

7. 若关于x 的不等式xe x ?ax +a <0的解集为(m,?n)(n <0),且(m,?n)中只有一个整数,则实数a 的取值范围是( ) A.[1 e 2,?1 e ) B.[ 23e 2 ,?1 2e ) C.[1e 2,?2 e ) D.[ 23e 2 ,?1 e ) 8. 三个数(2 5 )?1 5,(6 5 )?1 5,(6 5 )?2 5的大小顺序是( ) A.(6 5 )?1 5<(6 5 )?2 5<(2 5 )?1 5 B.(6 5)?2 5<(6 5)?1 5<(2 5)?1 5 C.(6 5)?1 5<(2 5)?1 5<(6 5)?2 5 D.(2 5)?1 5<(6 5)?1 5<(6 5)?2 5 9. 已知a ,b ,c ,d 是四个互不相等的正实数,满足a +b >c +d ,且|a ?b|<|c ?d|,则下列选项正确的是( ) A.a 2+b 2>c 2+d 2 B.|a 2?b 2|<|c 2?d 2| C.√a +√b <√c +√d D.|√a ?√b|<|√c ?√d| 10. 若直线l:x =my +n(n >0)过点A(4,?4√3),若可行域{x ≤my +n √3x ?y ≥0y ≥0的外接圆的面 积为64π3,则实数n 的值为( ) A.8 B.7 C.6 D.9 11. 若|log a 1 4 |=log a 1 4 ,|log b a|=?log b a ,则a ,b 满足的条件是( ) A.a >1,b >1 B.01 C .a >1,0

人教A版高中数学必修五不等式测试题

不等式测试题 一、选择题(本大题共12小题,每小题5分,共60分。) 1.设a 1b B .1a-b >1 a C .a b > D .a 2>b 2 2.设,a b R ∈,若||0a b ->,则下列不等式中正确的是( ) A .0b a -> B .330a b +< C .220a b -< D .0b a +> 3.如果正数a b c d ,,,满足4a b cd +==,那么( ) A .ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B .ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C .ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D .ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 4.已知直角三角形的周长为2,则它的最大面积为( ) A .3-2 2 B .3+2 2 C .3- 2 D .3+ 2 5.已知0,0a b >>,则11 a b ++ ) A .2 B . C .4 D .5 6.若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是( ) A .1122a b a b + B .1212a a bb + C .12 21a b a b + D .1 2 7.当0

A.2 B.23 C.4 D.43 8.下列不等式中,与不等式“x <3”同解的是( ) A .x (x +4)2<3(x +4)2 B .x (x -4)2<3(x -4)2 C .x +x-4 <3+ x-4 D .x +21-21x x +<3+21 21 x x -+ 9.关于x 的不等式(x-2)(ax-2)>0的解集为{x ︱x ≠2,x ∈R },则a=( ) A .2 B .-2 C .-1 D .1 10.不等式∣x 2-x-6∣>∣3-x ∣的解集是( ) A .(3,+∞) B .(-∞,-3)∪(3,+∞) C .(-∞,-3)∪(-1,+∞) D .(-∞,-3)∪(-1,3)∪(3,+∞) 11.设y=x 2+2x+5+ 21 25 x x ++,则此函数的最小值为( ) A . 174 B .2 C .26 5 D .以上均不对 12.若方程x 2-2x +lg(2a 2-a)=0有两异号实根,则实数a 的取值范围是( ) A .(12 ,+∞) ∪(-∞,0) B .(0,12 ) C .(-12 ,0) ∪(12 ,1) D .(-1,0) ∪(1 2 ,+∞) 二、填空题:(本大题共4小题,每小题5分,共20分。) 13.0,0,a b >> 则 a b ++ 的最小值为 . 14.当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 . 15.若关于x 的不等式22)12(ax x <-的解集为空集,则实数a 的取值范围是_______. 16.若21m n +=,其中0mn >,则12 m n +的最小值为_______. 三、解答题:(本大题共4小题,共40分。) 17(1)已知d c b a ,,,都是正数,求证:abcd bd ac cd ab 4))((≥++ (2)已知12,0,0=+>>y x y x ,求证:2231 1+≥+y x

高中数学必修五基本不等式学案

高中数学必修五基本不等式:ab≤a+b 2(学案) 学习目标:1.了解基本不等式的证明过程.2.能利用基本不等式证明简单的不等式及比较代数式的大小(重点、难点).3.熟练掌握利用基本不等式求函数的最值问题(重点). [自主预习·探新知] 1.重要不等式 如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”). 思考:如果a>0,b>0,用a,b分别代替不等式a2+b2≥2ab中的a,b,可得到怎样的不等式? [提示]a+b≥2ab. 2.基本不等式:ab≤a+b 2 (1)基本不等式成立的条件:a,b均为正实数; (2)等号成立的条件:当且仅当a=b时取等号. 思考:不等式a2+b2≥2ab与ab≤a+b 2成立的条件相同吗?如果不同各是 什么? [提示]不同,a2+b2≥2ab成立的条件是a,b∈R;ab≤a+b 2成立的条件 是a,b均为正实数. 3.算术平均数与几何平均数 (1)设a>0,b>0,则a,b的算术平均数为a+b 2,几何平均数为 (2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 思考:a+b 2≥ab与? ? ? ? ? a+b 2 2 ≥ab是等价的吗? [提示]不等价,前者条件是a>0,b>0,后者是a,b∈R. 4.用基本不等式求最值的结论 (1)设x,y为正实数,若x+y=s(和s为定值),则当x=y=s 2时,积xy有最

小值为2xy . (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =p 时,和x +y 有最大值为(x +y )2 4. 5.基本不等式求最值的条件 (1)x ,y 必须是正数. (2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值. (3)等号成立的条件是否满足. 思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值? [提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值. [基础自测] 1.思考辨析 (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( ) (2)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值.( ) (3)若xy =4,则x +y 的最小值为4.( ) (4)函数f (x )=x 2 +2 x 2+1 的最小值为22-1.( ) [答案] (1)× (2)√ (3)× (4)√ 2.设x ,y 满足x +y =40,且x ,y 都是正数,则xy 的最大值为________. 400 [因为x ,y 都是正数, 且x +y =40,所以xy ≤? ???? x +y 22 =400,当且仅当x =y =20时取等号.] 3.把总长为16 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 16 [设一边长为x m ,则另一边长可表示为(8-x )m ,则面积S =x (8-x )≤? ???? x +8-x 22 =16,当且仅当x =4时取等号,故当矩形的长与宽相等,都为4 m 时面积取到最大值16 m 2.]

高中数学必修五教案-基本不等式

第一课时 3.4基本不等式 2a b +≤(一) 教学要求:通推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 教学重点: 2 a b +≤的证明过程; 教学难点:理解“当且仅当a=b 时取等号”的数学内涵 教学过程: 一、复习准备: 1. 回顾:二元一次不等式(组)与简单的线形规划问题。 2. 提问:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 二、讲授新课: 1. 教学:基本不等式 2a b +≤ ①探究:图形中的不等关系,将图中的“风车”抽象成如图,在 正方形ABCD 中右个全等的直角三角形。设直角三角形的两条直角边长为a,b 那么正方形的 4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。(教师提问→学生思考→师生总结) ②思考:证明一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a ③基本不等式:如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥, (a>0,b>0)2a b +≤ 2 a b +≤ : 用分析法证明:要证 2a b +≥, 只要证 a+b ≥ (2), 要证(2),只要证 a+b- ≥0(3)要证(3), 只要证( - )2(4), 显然,(4)是成立的。当且仅当a=b 时,(4)中的等号成立。 ⑤练习:已知x 、y 都是正数,求证:(1)y x x y +≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8 x 3y 3.

人教A版高中数学必修五讲义及题型归纳:基本不等式

基本不等式 1.均值定理:如果a , b +∈R (+R 表示正实数),那么 2 a b +,当且仅当a b =时,有等号成立. 此结论又称均值不等式或基本不等式. 2 2a b +2 a b +需要前提条件,a b +∈R . 2 a b +叫做a ,b a ,b 3.可以认为基本元素为ab ,a b +,22a b +;其中任意一个为定值,都可以求其它两个的最值. 考点1:常规基本不等式问题 例1.(1)已知0x >,则1 82x x +的最小值为( ) A .2 B .3 C .4 D .5 【解答】解:0x >Q ,1842x x ∴+=… 当且仅当1 82x x =即14x =时取等号, 故选:C . (2)已知3 05 x <<,则(35)x x -取最大值时x 的值为( ) A . 310 B .910 C . 95 D . 12 【解答】解:305 x << Q , 则2115359 (35)5(35)()5 5220 x x x x x x +--=?-?= ?, 当且仅当535x x =-即3 10 x =时取最大值 故选:A . (3)已知函数9 4(1)1 y x x x =-+>-+,当x a =时,y 取得最小值b ,则23a b +等于( ) A .9 B .7 C .5 D .3 【解答】解:1x >-Q ,10x ∴+>,

99 41511 y x x x x ∴=-+ =++-++ 5… 1=, 当且仅当9 11 x x += +,即2x =时取等号, y ∴取得最小值1b =,此时2x a ==, 237a b ∴+=. 故选:B . (4)已知0a >,0b >,且22a b +=,则ab 的最大值为( ) A . 12 B C .1 D 【解答】解:0a >Q ,0b >,且22a b +=, 则21 121(2)()2 222 a b ab a b +=??=g ? , 当且仅当2a b =且22a b +=即12a =,1b =时取得最大值1 2 . 故选:A . 考点2:基本不等式易错点 例2.(1)已知1x y +=,0y >,0x ≠,则1||2||1 x x y ++的最小值是( ) A . 1 2 B . 14 C . 34 D . 54 【解答】解:由1x y +=,0y >得10y x =->, 解得1x <且0x ≠, ①当01x <<时,1||12||121 x x x y x y +=+++, 122242x x x x x x x x +-=+=+ --, 12115()2442424 x x x x -= +++?=-…, 当且仅当 242x x x x -= -即23x =时取等号; ②当0x <时, 1||1()2||121 x x x y x y +=-+++,

必修五基本不等式题型分类(绝对经典)

一对一个性化辅导教案课题基本不等式复习 教学 重点 基本不等式 教学 难点 基本不等式的应用 教学目标掌握利用基本不等式求函数的最值学会灵活运用不等式 教学步骤及教学内容一、教学衔接: 1、检查学生的作业,及时指点; 2、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。 二、内容讲解: 1.如果那么当且仅当时取“=”号). 2.如果那么(当且仅当时取“=”号) 3、在用基本不等式求函数的最值时,应具备三个条件:一正二定三相等。 ①一正:函数的解析式中,各项均为正数; ②二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③三取等:函数的解析式中,含变数的各项均相等,取得最值。 三、课堂总结与反思: 带领学生对本次课授课内容进行回顾、总结 四、作业布置: 见讲义 管理人员签字:日期:年月日 作1、学生上次作业评价:○好○较好○一般○差 备注:

基本不等式复习

知识要点梳理 知识点:基本不等式 1.如果(当且仅当时取“=”号). 2.如果(当且仅当时取“=”号). 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等。 ①一正:函数的解析式中,各项均为正数; ②二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③三取等:函数的解析式中,含变数的各项均相等,取得最值。 类型一:利用(配凑法)求最值 1.求下列函数的最大(或最小)值. (1)求的最小值; (2)若 (3)已知,,且. 求的最大值及相应的的值变式1:已知 类型二:含“1”的式子求最值

2.已知且,求的最小值. 变式1:若 变式2: 变式3:求函数 类型三:求分式的最值问题 3. 已知,求的最小值 变式1:求函数

(完整word版)高中数学必修五不等式单元测试.doc

高中数学必修五 不等式单元测试 时间: 60 分钟 满分: 100 分 2019 年 5 月 一、选择题(每题 5 分,共 40 分) 1、已知集合 Ρ { x x 2 2 x ≥ 3} , Q { x 2 x 4} ,则 ΡI Q A . 3,4 B . 2,3 C . 1,2 D . 1,3 2、若 a b 0 , c d 0 ,则一定有 a b a b C . a b D . a b A . d B . d d c d c c c 3、关于 x 的不等式 x 2 2ax 8a 2 0 ( a 0 )的解集为 (x 1, x 2 ) , 且 x 2 x 1 15 ,则 a 5 B . 7 C . 15 15 A . 2 4 D . 2 2 4、若 2x 2 y 1,则 x y 的取值范围是 A . [ 0,2] B . [ 2,0] C . [ 2, ) D . ( , 2] 5、若正数 x, y 满足 x 3 y 5xy ,则 3x 4 y 的最小值是 24 28 C . 5 D . 6 A . B . 5 5 6、小王从甲地到乙地的往返时速分别为 a 和 b ( a b ),其全程的平均时速为 v ,则 A . a v ab B . v = ab C . ab < v < a b D . v = a b 2 2 7、设 0 a b ,则下列不等式中正确的是 A . C . a b a b B . a a b ab 2 ab b 2 a ab a b D . a b b 2 ab a b 2 x y 1(a 0, b 0) 过点 (1,1),则 a b 的最小值等于 8、若直线 b a A . 2 B .3 C . 4 D . 5 题号 1 2 3 4 5 6 7 8 答案 二、填空题 (每题 8 分,共 32 分) 9、不等式 x 2 3x 4 0 的解集为 ___________.(用区间表示)

高中数学必修五《基本不等式》优秀教学设计

课题:基本不等式 一、教材分析: 本节课选自《普通高中课程标准实验教科书·数学5·必修》(人教A版)中第三章第四节。本节课主要研究基本不等式的几何背景、代数证明和实际生活中的应用。 基本不等式在现实生活中运用比较广泛。本节课通过从生活与几何背景中得到基本不等式、证明不等式与回归生活解决实际问题的思路,体现新课标“数学有用”的理念。同时,运用基本不等式求最值也是数列研究的基本问题。通过对本节的研究,培养学生数形结合的思想方法。 二、学情分析: 在本节课之前学生已经学习了不等关系与不等式和一元二次不等式及其解法,对不等关系的一般性质和不等式的求解证明有了一定的理解,为基本不等式的学习提供了基础。 授课班级为高一(1)班,我班学生整体基础知识一般、部分学生思维较活跃,能够较好的掌握教材上的内容,但处理、分析问题的能力还有待提高。 三、设计思想: 本课为新授课,积极践行新课程“数学有用”理念,倡导积极主动、勇于探索的学习精神和合作探究式的学习方式;注重提高数学思维能力,在教与学的和谐统一中体现数学思想和文化价值;注重信息技术与数学课程的整合。

四、教学目标: 1、知识与技能: (1) 师生共同探究基本不等式; (2) 了解基本不等式的代数、几何背景及基本不等式的证明; (3) 会简单运用基本不等式。 2、过程与方法: 通过基本不等式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力;遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出基本不等式,培养学生数形结合的思维能力。 3、情感、态度与价值观: (1)培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力; (2) 通过具体的现实问题提出、分析与解决,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功的快乐。 五、教学重点: (1)用数形结合的思想理解并探索基本不等式的证明; (2)运用基本不等式解决实际问题。 教学难点:基本不等式的运用。 重、难点解决的方法策略: 本课在设计上采用了由特殊到一般、从具体图形到抽象代数的教

高中数学必修五不等式测精彩试题(卷)

必修五阶段测试三(第三章 不等式) 时间:120分钟 满分:150分 一、选择题(本大题共12小题,每小题5分,共60分) 1.(2017·期末)不等式x (x -2)>0的解集是( ) A .(-∞,-2)∪(0,+∞) B .(-2,0) C .(-∞,0)∪(2,+∞) D .(0,2) 2.(2017·金溪县一中月考)直线a >b >0,那么下列不等式成立的是( ) A .-a >-b B .a +c 1 b D .(-a )2>(- b )2 3.y =log a ? ?? ??x 2-4x +3·1 x 2 +x -2的定义域是( ) A .{x |x ≤1或x ≥3} B .{x |x <-2或x >1} C .{x |x <-2或x >3} D .{x |x ≤-2或x >3} 4.若x ,y ∈R, x 2+y 2=1,则(1-xy )(1+xy )有( ) A .最小值12和最大值1 B .最小值3 4和最大值1 C .最小值12和最大值3 4 D .最小值1 5.(2017·鸡西期末)若x ,y 满足条件???? ? x ≥y , x +y ≤1 y ≥-1, ,则z =-2x +y 的最大值为( ) A .1 B .-1 2 C .2 D .-5 6.设a =log 37,b =21.1,c =0.83.1,则( ) A .b

7.已知a >0,b >0,则1a +1 b +2 ab 的最小值是( ) A .2 B .2 2 C .4 D .5 8.(2017·武城二中期末)不等式3x 2+2x +2 x 2+x +1≥m 对任意实数x 都成立,则实数m 的取 值围是( ) A .m ≤2 B .m <2 C .m ≤3 D .m <3 9.x ,y 满足约束条件???? ? x +y -2≤0,x -2y -2≤0, 2x -y +2≥0, 若z =y -ax 取得最大值的最优解不唯一, 则实数a 的值为( ) A.12或-1 B .2或1 2 C .2或1 D .2或-1 10.(2017·期中)在△ABC 中,角A ,B ,C 所对边长分别为a ,b ,c ,若b 2+c 2=2a 2,则cos A 的最小值为( ) A. 32 B.22 C.12 D .-1 2 11.已知圆C :(x -a )2 +(y -b )2 =1,平面区域Ω:???? ? x +y -7≤0, x -y +3≥0, y ≥0. 若圆心C ∈Ω, 且圆C 与x 轴相切,则a 2+b 2的最大值为( ) A .5 B .29 C .37 D .49 12.若对满足条件3x +3y +8=2xy (x >0,y >0)的任意x 、y ,(x +y )2-a (x +y )+16≥0恒成立,则实数a 的取值围是( ) A .(-∞,8] B .[8,+∞) C .(-∞,10] D .[10,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)

必修五不等式大复习-知识点加练习-适合整章复习

必修五不等式综合 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若 ,a b c d ><,则a c b d ->-) ,但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除, 但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >> 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 练习一、: (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 1 1,0<<<则若; ⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c -> ->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (3)已知c b a >>,且,0=++c b a 则a c 的取值范围是______ 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。 练习二;(1)设0,10>≠>t a a 且,比较21 log log 21+t t a a 和的大小 (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小 (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小 三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积

必修五不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2 112a b a b ++(当a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结:

高中数学必修五第三章《不等式》单元测试题(含答案)

高中数学必修五第三章单元测试题 《不等式》 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.给出以下四个命题: ①若a >b ,则1a <1 b ; ②若a c 2>bc 2,则a >b ; ③若a >|b |,则a >b ; ④若a >b ,则a 2>b 2. 其中正确的是( ) A .②④ B .②③ C .①② D .①③ 2.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A .b -a >0 B .a 3+b 2<0 C .b +a >0 D .a 2-b 2<0 3.设集合U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是( ) A .M =P B .P M C .M P D .?U M ∩P =? 4.设集合A ={x |x >3},B ={x |x -1 x -4 <0},则A ∩B =( ) A .? B .(3,4) C .(-2,1) D .(4,+∞) 5.在下列函数中,最小值是2的是( ) A .y =x 2+2 x B .y = x +2 x +1 (x >0) C .y =sin x +csc x ,x ∈(0,π 2) D .y =7x +7-x

6.已知log a (a 2+1)0,b >0.若3是3a 与3b 的等比中项,则1a +1 b 的最小值为( )

相关文档
最新文档