微元法在电磁感应现象中的应用

微元法在电磁感应现象中的应用
微元法在电磁感应现象中的应用

论电磁感应现象的发现发展历程

论电磁感应的发现历程 古之成大事者,不惟有超世之才,亦必有坚忍不拔之志。昔禹之治水,凿龙门,决大河,而放之海。方其功之未成也,盖亦有溃冒冲突可畏之患,惟能前知其当然,事至不惧而徐为之图,是以得至于成功。电磁感应的发现与发展,凝结了无数人的智慧。 伟大的哲学家康德曾经说过:“各种自然现象之间是相互联系和相互转化的。”在1820年,丹麦物理学家、化学家奥斯特在一次实验中发现了电流的磁效应,这一惊人发现使当时整个科学界受到很大的震动,从此拉开了电磁联系的序幕,“物理学将不再是关于运动、热、空气、光、电、磁以及我们所知道的各种其他现象的零散的罗列,我们将把整个宇宙纳在一个体系中。” 奥斯特发现电流的磁现象后不久,各国各地的科学家们展开了对称性的思考:电和磁是一对和谐对称的自然现象,既然存在磁化和静电感应现象,那么磁体或电流也应能在附近导体中感应出电流来。于是,当时许多著名的科学家如法国的安培、菲涅尔、阿拉果和英国的沃拉斯顿等都纷纷投身于探索磁与电的关系之中。 仅仅空有满腔热血是远远不够的,还需要有科学的方法以及持之以恒的毅力,勇于突破思维的局限。安培曾做了很多实验,以期能实现“磁生电”,但他把分子电流理论看的

过分重要,完全被自己的理论囚禁起来了,以致尽管在一次实验中展现出了磁生电的迹象,但却没有引发他的正确认识。 1823年,瑞士物理学家科拉顿曾企图用磁铁在线圈中运动获得电流。他把一个线圈与电流计连成一个闭合回路。为了使磁铁不至于影响电流计中的小磁针,特意将电流计用长导线连后放在隔壁的房间里,他用磁棒在线圈中插入或拔出,然后一次又一次地跑到另一房间里去观察电流计是否偏转。由于感应电流的产生与存在是瞬时的暂态效应,他当然观察不到指针的偏转,发现电磁感应的机会也失之交臂。 为了证明磁能生电,1820年至1831年期间,法拉第用实验的方法探索这一课题,最初也是像上述物理学家一样,利用通常的思想方法,做了大量的实验,但磁生电的迹象却始终未出现。失败并没有使他放弃实验,因为他坚信自然力是统一的、和谐的,电和磁是彼此有关联的。 1825年,斯特詹发明了电磁铁,这给法拉第的研究带来了新的希望。1831年,法拉第终于在一次实验中获得了突破性进展。而这次实验就是著名的法拉第圆环实验。 这一实验使法拉第豁然开朗:由磁感应电的现象是一种暂态效应。发现了这一秘密后,他设计了另外一些实验,并证实了自己的想法。就这样经过近10年的思考与探索,法拉第克服了思维定势采用了新的实验方法,终于发现了电磁

电磁感应的发现

中学高二年级选修3-2 册物理学科导学案(学生版) 课题:电磁感应的发现 【学习目标】(清晰、具体、可检测性强) 1.了解电磁感应现象的发现过程,认识电磁感应现象的时代背景和思想历程。 2.知道电磁感应现象产生的电流叫感应电流。 3.知道科学探究的的一般方法,了解相关的实验。 【学习重点】 认识电磁感应现象,了解相关实验 【学习过程】(预热衔接、问题引领、自主学习、交流互助、学生展示、质疑探究、精彩点评) 一、复习:奥斯特-----电流的磁效应。 阅读教材并回忆有关奥斯特发现电流磁效应的内容。 (1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景? (2)奥斯特发现电流磁效应的过程是怎样的?回忆学过的知识如何解释? (3)电流磁效应的发现有何意义?谈谈自己的感受。 二、学习过程: 1.法拉第发现电磁感应现象。 (1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的观点? (2)法拉第做了大量实验都是以失败告终,失败的原因是什么? (3)法拉第经历了多次失败后,终于发现了电磁感应现象,他发现电磁感应现象的具体的过程是怎样的?之后他又做了大量的实验都取得了成功,他认为成功的“秘诀”是什么? (4)从法拉第探索电磁感应现象的历程中,你学到了什么?谈谈自己的体会。 2.电磁感应现象的分类。 阅读教材并回答: 法拉第发表的论文中,把电磁感应现象分为五类: ①、 ②、

③、 ④、 ⑤、 学生活动:自主完成。 3.感应电流:由产生的电流叫感应电流。 (1)讨论交流,设计实验,如何利用提供的器材产生感应电流?(画出设计草图) (2)观察演示实验,认识感应电流。 4.电磁感应现象发现的意义。 阅读教材并思考回答电磁感应发现的意义: (1)电磁感应的发现,使人们发明了,把能转化为能。 (2)电磁感应的发现,使人们发明了,解决了电能远距离传输中的能量大量损耗的问题。 (3)电磁感应的发现,使人们制造了,反过来把能转化为能,比如生活中的、、。 【课堂总结】 1、我们可以通过哪些实验与现象来说明(证实)磁现象与电现象有联系? 2、如何让磁生成电? 3、生活中电磁有关的现象? 【当堂训练】 【例1】发电的基本原理是电磁感应。发现电磁感应现象的科学家是(C) A.安培B.赫兹C.法拉第D.麦克斯韦 【例2】发现电流磁效应现象的科学家是__奥斯特__,发现通电导线在磁场中受力规律的科学家是_安培_,发现电磁感应现象的科学家是_法拉第_,发现电荷间相互作用力规律的的科学家是_库仑_。 【例3】下列现象中属于电磁感应现象的是(B) A.磁场对电流产生力的作用B.变化的磁场使闭合电路中产生电流 C.插在通电螺线管中的软铁棒被磁化D.电流周围产生磁场 【作业】思考:产生感应电流的条件?

微元法解电磁感应

微元法解电磁感应压轴 1【石家庄期末】如图所示,相距l=0.5m足够长的两根光滑导轨与水平面成37°角,导轨电阻不计,上、下端分别连接阻值都为2Ω的电阻R,导轨处在磁感应强度B=2T的匀强磁场中,磁场方向垂直导轨平面向上.一质量为0.5kg、电阻为1Ω的金属棒ab水平放置在导轨上且与导轨接触良好,现将ab棒从静止释放,ab棒沿轨道下滑4m时,速度达到最大值Vm(g=10m/s2,sin37°=0.6.cos37°=0.8)求: (1)ab棒的最大速度Vm; (2)该过程中电路产生的焦耳热; (3)该过程中通过导轨下端电阻R的电荷量q。 2【2016石家庄一模】(19分)如图所示,间距为L平行且足够长的光滑导轨由两部分组成:倾斜部分与水平部分平滑相连,倾角为θ,在倾斜导轨顶端连接一阻值为r的定值电阻.质量为m、电阻也为r的金属杆MN垂直导轨跨放在导轨上,在倾斜导轨区域加以垂直导轨平面向下、磁感应强度为B的匀强磁场;在水平导轨区域加另一垂直轨道平面向下、磁感应强度也为B的匀强磁场.闭合开关S,让金属杆MN从图示位置由静止释放,已知金属杆运动到水平轨道前,已达到最大速度,不计导轨电阻且金属杆始终与导轨接触良好,重力加速度为g.求: (1)金属杆MN在倾斜导轨上滑行的最大速率Vm; (2)金属杆MN在倾斜导轨上运动,速度未达到最大速度Vm前,当流经定值电阻的电流从零增大到I的过程中,通过定值电阻的电荷量为q,求这段时间内在定值电阻上产生的焦

耳热Q; (3)金属杆MN在水平导轨上滑行的最大距离Xm。 3【2017昆明二模】(20分)如图所示,平行光滑金属导轨AA1和CC1与水平地面之间的夹角均为θ,两导轨间距为L,A,C两点间连接有阻值为R的电阻,一根质量为m,电阻为r 的直导体棒EF跨在导轨上,两端与导轨接触良好.在边界ab,cd之间存在垂直导轨平面的匀强磁场,磁场的磁感应强度为B,ab和cd与导轨垂直,将导体棒EF从图示位置由静止释放,EF 进入磁场就开始匀速运动,穿过磁场过程中电阻R产生的热量为Q,整个运动过程中,导体棒EF与导轨始终垂直且接触良好,除R和r之外,其余电阻不计,取重力加速度为g. (1)求导体棒EF刚进入磁场时的速率; (2)求磁场区域的宽度s; (3)将磁感应强度变化为0.5B,仍让导体棒EF从图示位置由静止释放,若导体棒离开磁场前后瞬间的加速度大小之比为1:2,求导体棒通过磁场的时间.

电磁感应现象及电磁在生活中的应用

电磁感应现象及电磁在生活中的应用 摘要:电磁感应,也称为磁电感应现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流。 电磁反应是一个复杂的过程,其运用到现实生活中的技术(例如:电磁炉、微波炉、蓝牙技术、磁悬浮列车等等)。是经过很多人的探索和努力一步一步走到现在的。 正文: 电磁感应的定义:闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。由电磁感应现象产生的电流叫做感应电流。 电磁感应的发现:1831年8月,法拉第把两个线圈绕在一个铁环上,线圈A 接直流电源,线圈B接电流表,他发现,当线圈A的电路接通或断开的瞬间,线圈B中产生瞬时电流。法拉第发现,铁环并不是必须的。拿走铁环,再做这个实验,上述现象仍然发生。只是线圈B中的电流弱些。为了透彻研究电磁感应现象,法拉第做了许多实验。1831年11月24日,法拉第向皇家学会提交的一个报告中,把这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。法拉第之所以能够取得这一卓越成就,是同他关于各种自然力的统一和转化的思想密切相关的。正是这种对于自然界各种现象普遍联系的坚强信念,支持着法拉第始终不渝地为从实验上证实磁向电的转化而探索不已。这一发现进一步揭示了电与磁的内在联系,为建立完整的电磁理论奠定了坚实的基础。 电磁感应是指因磁通量变化产生感应电动势的现象。电磁感应现象的发现,乃是电磁学中伟大的成就之一。它不仅让我们知道电与磁之间的联系,而且为电与磁之间的转化奠定了基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。 若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s.ε为产生的感应电动势,单位为V。 磁通量:设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S。(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量。 (2)公式:Φ=BS 当平面与磁场方向不垂直时: Φ=BS⊥=BScosθ(θ为两个平面的二面角) (3)物理意义

电磁感应微元法

电磁感应中的“微元法”和“牛顿第四定律” 江苏省特级教师 江苏省丰县中学 戴儒京 所谓:“微元法” 所谓“微元法”,又叫“微小变量法”,是解物理题的一种方法。 1.什么情况下用微元法解题?在变力作用下做变变速运动(非匀变速运动)时,可考虑用微元法解题。 2. 关于微元法。在时间t ?很短或位移x ?很小时,非匀变速运动可以看作匀变速运动,运动图象中的梯形可以看作矩形,所以x t v ?=?,s x l t lv ?=?=?。微元法体现了微分思想。 3. 关于求和∑。许多小的梯形加起来为大的梯形,即∑?=?S s ,(注意:前面的s 为小写,后面的S 为大写),并且0v v v -=?∑,当末速度0=v 时,有∑=?0v v ,或初速度00=v 时,有∑=?v v ,这个求和的方法体现了积分思想。 4. 无论物理规律用牛顿定律,还是动量定理或动能定理,都可以用微元法. 如果既可以用动量定理也可以用动能定理解。对于使用老教科书的地区,这两种解法用哪一种都行,但对于使用课程标准教科书的地区就不同了,因为课程标准教科书把动量的内容移到了选修3-5,如果不选修3-5,则不能用动量定理解,只能用动能定理解。 微元法解题,体现了微分和积分的思想,考查学生学习的潜能和独创能力。 电磁感应中的微元法 一些以“电磁感应”为题材的题目。可以用微元法解,因为在电磁感应中,如导体切割 磁感线运动,产生感应电动势为B L v E =,感应电流为R BLv I =,受安培力为 v R L B B I L F 2 2 = =,因为是变力问题,所以可以用微元法. 1.只受安培力的情况 例1. 如图所示,宽度为L 的光滑金属导轨一端封闭,电阻不计,足够长,水平部分有竖直向上、磁感应强度为B 的匀强磁场中。质量为m 、电阻为r 的导体棒从高度为h 的斜轨上从静止开始滑下,由于在磁场中受安培力的作用,在水平导轨上滑行的距离为S 而停下。 (1) 求导体棒刚滑到水平面时的速度0v ; (2) 写出导体棒在水平导轨上滑行的速度v 与在水平导轨上滑行的距离x 的函数关 系,并画出x v -关系草图。 (3)求出导体棒在水平导轨上滑行的距离分别为S/4、S/2时的速度1v 、2v ;

教科版必修(32)《电磁感应现象的发现》word教案

2012-2013学年第一学期高二物理学案(008) 班级 高二( )班 学生姓名 ______ _ 完成时间: (学案A 等级要求:书写规范,全部完成,有用红笔订正,正确率80%以上) 课题:电磁感应现象的发现 课型:新授课 单元5课时:第1课时 【学习目标】 1、 法拉第和电磁感应现象,知道感应电流的产生是由于穿过闭合回路的磁通量发生改变 而引起的 2、 了解电源电动势的概念 目标1:法拉第和电磁感应现象 自主学习 1、丹麦物理学家 偶然发现,接通电流时导线附近的小磁针忽然 。 奥斯特实验发现了 ,说明电流能够产生磁场,它使人们第一次认识到电和磁之间确实存在着某种联系,为此后一系列电磁规律的发现奠定了基础。 2、电能产生磁,那磁能不能生电,开始思考并研究这个问题的物理学家是 3、电磁感应现象 如果螺线管中有电流,电流计的指针就会 实验发现当 磁铁时,电流计的指针会偏 转说明,此时螺线管内有 5、磁通量用Φ表示,Φ= ,其中B 表示 ,S 表示 。磁通量的单位是 ,简称 ,符号为 。 6、产生电流的原因:通过闭合回路的 发生改变。 我能做 1、首先发现电流磁效应和电磁感应现象的科学家分别是( )

A.安培和法拉第 B.奥斯特和法拉第 C.库仑和法拉第 D. 奥斯特和麦克斯韦 2、如图所示,矩形区域abcd内有匀强磁场,闭合线圈由位置1通过这个磁场运动到位置2.线圈在运动过程的哪几个阶段有感应电流,哪几个阶段没有感应电流?为什么? 目标2:了解电源电动势的概念 自主学习 1、在下面的电路图里,闭合开关的时候,灯泡会亮,是由的 原因,普通的1号干电池的电动势是。 2、电动势,描述, 称为电动势。电动势的符号是,它的单位与电压的单位同样是 ,符号是。 3、 在这个实验中,电流计会偏转,是在充当电 源的。 这个电源的电动势和一般的干电池电源不一样,是由于 通过螺线管的 的改变,感应产生的,我们称 为。 (简单的理解就是螺线管在这里充当电源) 我能做: 1、安培于1821年时用类似于图的通电线圈进行过探求感应电流的实验,但没有发现电磁感应现象,他失败的原因是() A.他的实验电路有问题 B.他的仪器连接有问题 C.他只关注到稳定时的情形 D.他没有留意磁铁插入或拔出的瞬间情形

电磁感应现象的应用

重点难点突破 一、电磁感应现象中的力学问题 1.通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本步骤是: (1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流强度.(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向).(4)列动力学方程或平衡方程求解. 2.对电磁感应现象中的力学问题,要抓好受力情况和运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,要抓住a=0时,速度v达最大值的特点. 二、电磁感应中的能量转化问题 导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式的能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本步骤是: 1.用法拉第电磁感应定律和楞次定律确定电动势的大小和方向. 2.画出等效电路,求出回路中电阻消耗电功率的表达式. 3.分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程. 三、电能求解的思路主要有三种 1.利用安培力的功求解:电磁感应中产生的电能等于克服安培力所做的功; 2.利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能; 3.利用电路特征求解:根据电路结构直接计算电路中所产生的电能. 四、线圈穿越磁场的四种基本形式 1.恒速度穿越; 2.恒力作用穿越; 3.无外力作用穿越; 4.特殊磁场穿越. 典例精析 1.恒速度穿越 【例1】如图所示,在高度差为h的平行虚线区域内有磁感应强度为B,方向水平向里的匀强磁场.正方形线框abcd的质量为m,边长为L(L>h),电阻为R,线框平面与竖直平面平行,静止于位置“Ⅰ”时,cd边与磁场下边缘有一段距离H.现用一竖直向上的恒力F提线框,线框由位置“Ⅰ”无初速度向上运动,穿过磁场区域最后到达位置“Ⅱ”(ab边恰好出磁场),线框平面在运动中保持在竖直平面内,且ab边保持水平.当cd边刚进入磁场时,线框恰好开始匀速运动.空气阻力不计,g=10 m/s2.求: (1)线框进入磁场前距磁场下边界的距离H; (2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F做的功为多少?线框产生的热量为多少? 【解析】(1)线框进入磁场做匀速运动,设速度为v1,有: E=BLv1,I=ER,F安=BIL 根据线框在磁场中的受力,有F=mg+F安

高中物理11电磁感应现象的发现教案教科版

1.1 电磁感应现象的发现 [要点导学] 1、不同自然现象之间是有相互联系的,而这种联系可以通过我们的观察与思考来发现。例如摩擦生热则表明了机械运动与热运动是互相联系的,奥斯特之所以能够发现电流产生磁场,就是因为他相信不同自然现象之间是互相联系和互相转化的。 2、机遇总是青睐那些有准备的头脑,奥斯特的发现是必然中的偶然。发现中子的历史过程(在选修3-5中学习)也说明了这一点。小居里夫妇首先发现这种不带电的未知射线,他们误认为这是能量很高的射线,一项划时代的伟大发现就与小居里夫妇擦肩而过了。当查德威克遇到这种未知射线时,查德威克很快就想到这种不带电的射线可能是高速运动的中子流,因为查德威克的老师卢瑟神福早已预言中子的存在,所以查德威克的头脑是一个有准备的头脑,查德威克就首先发现了中子,并因此获得诺贝尔物理学奖。所以学会用联系的眼光看待世界,比记住奥斯特实验重要得多。 3、法拉第就是用联系的眼光看待世界的人,他坚信既然电流能够产生磁场,那么利用磁场应该可以产生电流。信念是一种力量,但信念不能代替事实。探索“磁生电”的道路非常艰苦,法拉第为此寻找了10年之久,我们要学习的就是这种百折不挠的探索精神。 4、法拉第为什么走了10年弯路,这个问题值得我们研究。原来自然界的联系不是简单的联系,自然界的对称不是简单的对称,“磁生电”不象“电生磁”那样简单,“磁生电”必须在变化、运动的过程中才能出现。法拉第的弯路应该使我们对自然界的联系和对称的认识更加深刻、更加全面。 [范例精析] 例1奥斯特的实验证实了电流的周围存在磁场,法拉第经过10年的努力终于发现了利用磁场产生电流的途径,法拉第认识到必须在变化、运动的过程中才能利用磁场产生电流。法拉第当时归纳出五种情形,请说出这五种情形各是什么。 解析法拉第把能引起感应电流的实验现象归纳为五类:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。它们都与变化和运动有关。 拓展法国物理学家安培也曾将恒定电流或磁铁放在导体线圈的附近,希望在线圈中看到被“感应”出来的电流,可是这种努力均无收获。因为“磁生电”是在变化或运动中产生的物理现象。 例2 自然界的确存在对称美,质点间的万有引力F=Gm1m2/r2和电荷间的库仑力F=kq1q2/r2就是一个对称美的例子。电荷间的相互作用是通过电场传递的,质点间的相互作用则是通过引力场传递的。点电荷q的在相距为r处的电场强度是E=kq/r2,那么质点m在相距为r 处的引力场强度是多少呢?如果两质点间距离变小,引力一定做正功,两质点的引力势能一定减少。如果两电荷间距离变小,库仑力一定做正功吗?两电荷的电势能一定减少吗?请简述理由。

电磁感应的应用论文

电磁感应现象在生活中的应用 摘要:自法拉利历经十年发现电磁感应现象后,电磁感应便开始运用于生活中。电话筒、录音机、汽车车速表、熔炼金属等,无一不与生活息息相关,极大的方便了我们的生活,推动了社会的进步,和发展。同时,它的利用也是理论向实践的不断进步的过程,理论唯有利用于实践才更能发挥它的作用。 动圈式话筒 在剧场里,为了使观众能听清演员的声音,常常需要把声音放大,放大声音的装置主要包括话筒,扩音器和扬声器三部分。话筒是把声音转变为电信号的装置。动圈式话筒是利用电磁感应现象制成的,当声波使金属膜片振动时,连接在膜片上的线圈(叫做音圈)随着一起振动,音圈在永久磁铁的磁场里振动,其中就产生感应电流(电信号),感应电流的大小和方向都变化,变化的振幅和频率由声波决定,这个信号电流经扩音器放大后传给扬声器,从扬声器中就发出放大的声音。 磁带录音机 磁带录音机主要由机内话筒、磁带、录放磁头、放大电路、扬声器、传动机构等部分组成,是录音机的录、放原理示意图。录音时,声音使话筒中产生随声音而变化的感应电流——音频电流,音频电流经放大电路放大后,进入录音磁头的线圈中,在磁头的缝隙处产生随

音频电流变化的磁场。磁带紧贴着磁头缝隙移动,磁带上的磁粉层被磁化,在磁带上就记录下声音的磁信号。放音是录音的逆过程,放音时,磁带紧贴着放音磁头的缝隙通过,磁带上变化的磁场使放音磁头线圈中产生感应电流,感应电流的变化跟记录下的磁信号相同,所以线圈中产生的是音频电流,这个电流经放大电路放大后,送到扬声器,扬声器把音频电流还原成声音。在录音机里,录、放两种功能是合用一个磁头完成的,录音时磁头与话筒相连;放音时磁头与扬声器相连。 ③汽车车速表 汽车驾驶室内的车速表是指示汽车行驶速度的仪表。它是利用电磁感应原理,使表盘上指针的摆角与汽车的行驶速度成正比。车速表主要由驱动轴、磁铁、速度盘,弹簧游丝、指针轴、指针组成。其中永久磁铁与驱动轴相连。在表壳上装有刻度为公里/小时的表盘。 永久磁铁一部分磁感线将通过速度盘,磁感线在速度盘上的分布是不均匀的,越接近磁极的地方磁感线数目越多。当驱动轴带动永久磁铁转动时,则通过速度盘上各部分的磁感线将依次变化,顺着磁铁转动的前方,磁感线的数目逐渐增加,而后方则逐渐减少。由法拉第电磁感应原理知道,通过导体的磁感线数目发生变化时,在导体内部会产生感应电流。又由楞次定律知道,感应电流也要产生磁场,其磁感线的方向是阻碍(非阻止)原来磁场的变化。用楞次定律判断出,顺着磁铁转动的前方,感应电流产生的磁感线与磁铁产生的磁感线方向相反,因此它们之间互相排斥;反之后方感应电流产生的磁感线方

电磁感应现象及其应用生活实践中

西北农林科技大学 电磁感应现象及其应用 学院:风景园林艺术学院 班级:园林134 姓名:崔苗苗 学号:2913911465 134

电磁感应现象及其在生活中的应用 西北农林科技大学风景园林艺术学院 姓名崔苗苗班级园林134班学号 2013011465 摘要自法拉第历经十年发现电磁感应现象后,电磁感便开始应用生活中。话筒, 电磁炉,电视机,手机等生活用品,无不与人类生活息息相关,极大地方便了我们的生活,推动了社会历史的进步和发展。同时,它的应用也是理论向实践不断探索和改进的过程,理论唯有应用于实践,才更能发挥它的价值。 关键词电磁感应现象生活应用 电磁感应现象的发现不仅揭示了电与磁之间的内在联系,而且为电与磁之间的转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在生活中具有重大的意义。它的发现,标志着一场重大的工业和技术革命的到来。在电工技术,电子技术以及电磁测量等方面都有广泛的应用,人类社会从此迈入电气化时代,对推动生产力和科学技术发展发挥了重要作用。物理发现的重要性由此可见。本文主要介绍了电磁感应现象及其在人类生活中的相关应用。 一.电磁感应现象定义 闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。而闭合电路中由电磁感应现象产生的电流叫做感应电流。 二.电磁感应发现历程 电磁学是物理学的一个重要分支,初中时代的奥斯特实验为我们打开电磁学的大门,此后高中三年这一部分内容也一直是学习的重中之重。继1820奥斯特实验之后,电与磁就不再是互不联系的两种物质,电流磁效应的发现引起许多物理学家的思考。当时,很多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题,而迈克尔·法拉第即为其中一位。他在1821年发现了通电导线绕磁铁转动的现象,然后经历10年坚持不懈的努力,最终于1831年取得突破性进展。 法拉第将两个线圈绕在一个铁环上,其中一个线圈接直流电源,另一个线圈接电流表。他发现,当接直流电源的线圈电路接通或断开的瞬间,接电流表的线圈中会产生瞬时电流。而在这个过程中,铁环并不是必须的。无论是否拿走铁环,再做这个实验的时候,上述现象仍然发生,只是线圈中的电流弱些。 为了透彻研究电磁感应现象,法拉第又继续做了许多的实验。终于,在1831年11月24日,他在向皇家学会提交的一个报告中,将这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、

高中物理电磁感应微元法专题

电磁感应中的“微元法” 1走近微元法 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学思想或物理方法处理,进而使问题求解。使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。 “微元法”,又叫“微小变量法”,是解物理题的一种常用方法。 2如何用微元法 1.什么情况下用微元法解题?在变力求功,变力求冲量,变化电流求电量等等情况下,可考虑用微元法解题。 2. 关于微元法。一般是以时间和位移为自变量,在时间t ?很短或位移x ?很小时,此元过程内的变量可以认为是定值。 比如非匀变速运动求位移时在时间t ?很短时可以看作匀速运动,在求速度的变化量时在时间t ?很短时可以看作匀变速运动。 运动图象中的梯形可以看作很多的小矩形,所以,s x t v ?=?=?。

微元法体现了微分的思想。 3. 关于求和∑。许多小的梯形加起来为大的梯形,即∑?=?S s ,(注意:前面的s 为小写,后面的S 为大写), 比如0v v v -=?∑,当末速度0=v 时,有∑-=?0v v ,或初速度00=v 时,有∑=?v v ,这个求和的方法体现了积分思想。 4.物理量有三种可能的变化情况 ①不变(大小以及方向)。可以直接求解,比如恒力的功,恒力的冲量,恒定电流的电量和焦耳热。 ②线性变化(方向不变,大小线性变化)。比如力随位移线性变化可用平均力来求功,力随时间线性变化可用平均力来求冲量,电流随时间线性变化可用平均电流来求电量。 电流的平方随时间线性变化可用平方的平均值来求焦耳热。 ③非线性变化。可以考虑用微元法。 值得注意微元法不是万能的,有时反而会误入歧途,微元法解题,本质上是用现了微分和积分的思想,是一种直接的求解方法,很多时候物理量的非线性变化可以间接求解,比如动能定理求变力的功,动量定理求变力的冲量,能量方程求焦耳热等等。 当然微元法是一种很重要的物理方法,在教学过程中有意识的不断渗透微元法,可以培育和加强学生分析问题处理物理问题的能力。

电磁感应中微元法的应用技巧及实例

电磁感应中微元法的应用技巧及实例 无锡市第六高级中学 曹钱建 摘要:微元法是电磁学中极其重要的一种研究方法,电磁学中无时无刻都在利用微元法处理问题,使复杂问题简化和纯化,从而确定变量为常量达到理想化的效果。间题中的信息进行提炼加工,突出主要因素,忽略次要因素,恰当处理,构建新的物理模型,从而更好地应用微元法,学好电磁感应这部分内容。。 关键词:微元法;电磁感应;高考 新课标物理教材中涉及到微分的思想,相应的派生出大量的相关问题。而微元法与电磁感应相结合的问题更是常考点也是难点,本文将就此类问题的解决提供一套简便实用的方法,及部分经典实例。 电磁感应问题中的动生电动势模型中,金属杆在达到稳定之前的过程是一个变加速过程(其中涉及到的v 、E 、I 、安F 、a 都是变量),常规的原理、公式都无法直接使用,使得很多学生遇到此类问题都觉得无从下手,但此类问题却在近两年各地模拟卷和江苏高考卷中,作为压轴题出现。其实这时可以采取“微元法”,即将所研究的变加速物理过程,分割成许多微小的单元,从而将非理想物理模型变成理想物理模型;将变加速运动过程变成匀加速运动过程,然后选择微小的单元,利用下面介绍的方法进行分析和讨论,可用一种比较简单且相对固定的模式解决此类问题。 例1、如图甲所示,光滑绝缘 水平面上一矩形金属线圈 abcd 的质量为m 、电阻为R 、ad 边长度为L ,其右侧是有左右边界的匀强磁场,磁场方向垂直纸面向外,磁感应强度大小为B ,ab 边长度与有界磁场区域宽度相等,在 t =0时刻线圈以初速度v 0进入磁场,在t=T 时刻线圈刚好全部进入磁场且速度为v l ,此时对线圈施加一沿运动方向的变力F ,使线圈在t =2T 时刻线圈全部离开该磁场区,若上述过程中线圈的v —t 图象如图乙所示,整个图象关于t=T 轴对称. (1)求t=0时刻线圈的电功率; (2)线圈进入磁场的过程中产生的焦耳热和穿过磁场过程中外力F 所做的功分别为多少? (3)若线圈的面积为S ,请运用牛顿第二运动定律和电磁学规律证明:在线圈进入磁场过程中m R LS B v v 210=- 解:t =0时,E=BLv 0 线圈电功率R v L B R E P 20222== (2)线圈进入磁场的过程中动能转化为焦耳热 21202 121mv mv Q -= 外力做功一是增加动能,二是克服安培力做功 2120mv mv W F -= (3)根据微元法思想,将时间分为若干等分,每一等分可看成匀变速,利用牛顿第二定律分析可得: B v v 乙

高中物理电磁感应微元法专题

电磁感应中的“微元法” 1走近微元法 微元法是分析、解决物理问题中的常用方法,也是从部分到整体 的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理 规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题 时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵 循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将 “元过程”进行必要的数学思想或物理方法处理,进而使问题求解。 使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加 深认识和提高能力的作用。 “微元法”,又叫“微小变量法”,是解物理题的一种常用方法。 2如何用微元法 1.什么情况下用微元法解题?在变力求功,变力求冲量,变化电流 求电量等等情况下,可考虑用微元法解题。 2. 关于微元法。一般是以时间和位移为自变量,在时间t ?很短或 位移x ?很小时,此元过程的变量可以认为是定值。 比如非匀变速运动求位移时在时间t ?很短时可以看作匀速运动, 在求速度的变化量时在时间t ?很短时可以看作匀变速运动。 运动图象中的梯形可以看作很多的小矩形,所以,s x t v ?=?=?。

微元法体现了微分的思想。 3. 关于求和∑。许多小的梯形加起来为大的梯形,即∑?=?S s , (注意:前面的s 为小写,后面的S 为大写), 比如0v v v -=?∑,当末速度0=v 时,有∑-=?0v v ,或初速度0 0=v 时,有∑=?v v ,这个求和的方法体现了积分思想。 4.物理量有三种可能的变化情况 ①不变(大小以及方向)。可以直接求解,比如恒力的功,恒力 的冲量,恒定电流的电量和焦耳热。 ②线性变化(方向不变,大小线性变化)。比如力随位移线性变 化可用平均力来求功,力随时间线性变化可用平均力来求冲量,电流 随时间线性变化可用平均电流来求电量。 电流的平方随时间线性变化 可用平方的平均值来求焦耳热。 ③非线性变化。可以考虑用微元法。 值得注意微元法不是万能的,有时反而会误入歧途,微元法解题,本质上是用现了微分和积分的思想,是一种直接的求解方法,很多时 候物理量的非线性变化可以间接求解,比如动能定理求变力的功,动 量定理求变力的冲量,能量方程求焦耳热等等。 当然微元法是一种很重要的物理方法,在教学过程中有意识的不断 渗透微元法,可以培育和加强学生分析问题处理物理问题的能力。

电磁感应在生活中的应用

电磁感应在生活中的应用 摘要:电磁感应现象是放在变化磁通量中的导体,会产生电动势,一般表现为两种形式,即动生电动势与感生电动势。对这两种电动势从产生机制、能量转换等角度分别进行描述,来理解它们的统一和区别。电磁感应现象在生活中有很多的应用,对常见的几种例子分别进行阐述,对该现象有更具体的理解。 关键词:电磁感应定律电动势应用 一、电磁感应定律 不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就产生感应电动势,电路已经具备了随时输出电能的能力。如果电路闭合,将会在回路中产生感应电流。这一现象是迈克尔·法拉第于1831年发现的,因此被称之为法拉第电磁感应定律。这是自奥斯特发现了电流产生磁场之后,在电磁学中的另一伟大发现,它不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了基础。 通过实验表明,只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电动势和感应电流。若电路不闭合,则电路没有电流,只存在感应电动势,感应电动势与穿过这一电路相对任一参照形成闭合环路的磁通量变化率成正比,方向用楞次定律判断。即无论回路是否闭合,都会产生感应电动势: ε = -dφ/dt 感应电动势的存在不以导体存在为前提,根据复合函数求导及磁通量与磁感应强度关系,当上式中线圈匝数 n = 1 时,又可写为 ε = -d( ∫BdS) / dt = -∫( B / t) dS -∫B ( dS) / t 二、电动势 上式中,第一项表示线圈不动时磁感应强度 B随时间变化所产生的感应电动势,又称感生电动势,变压器及无线信号的接收天线是其典型应用; 第二项表示空间磁场不变,线圈面积变化产生的感应电动势,又称动生电动势,其典型应用于发电机。 1.动生电动势 回路或其一部分在磁场中的相对运动所产生的感应电动势,即变,称之为动生电动势。动生电动势的产生是由于外力的作用,驱使导体在磁场内运动,整个过程中洛伦兹力与导 体的运动方向垂直,即洛伦兹力不做功。因此,动生电动势能量的变化是外力的机械能转化为电能。 2.感生电动势 仅由磁场的变化而产生的感应电动势,即变,称之感生电动势。感生电动势时,导体或导体回路不动,而磁场变化。因此产生感生电动势的原因不可能是洛仑兹力。英国物理学家麦克斯韦指出:变化的磁场会在其周围空间激发出一种电场,称为感生电场,其电场线为闭合曲线,所以又称为涡旋电场。产生感生电动势的非静电力是感生电场力(或称为涡旋电场力)。 三、电磁感应的应用 电磁感应现象的发现为电和磁的转化铺平了道路,工程及生活应用中很多发明都是根据电磁感应原理制成的,如我们熟知的发电机、电磁炉以及将来肯定会普及的无接触式充电电池,等等。

电磁感应现象及其应用.doc

第九章电磁感应现象及其应用本章以磁场及电场等知识为基础,研究电磁感应的一系列现象,总结出产生感应电流的条件,形成了导体做切割磁感线运动而产生的感应电动势的计算公式,应用右手定则判断感应电动势的方向也是解决问题的关键。 [基本规律与概念] 一.电磁感应现象 1.感应电动势 2.感应电流产生的条件及方向的判断 二.电磁感应现象的应用 1.自感现象 2.交变电流 ①交变电流的定义 ②正弦交流电的产生及规律 a.产生 b.规律:函数形式:e=NBSωsinωt(从中性面开始计时) 图象 c.表征交流电的物理量 (1)瞬时值 (2)峰值 (3)有效值 (4)周期和频率 ③应用:(1)变压器(2)远距离输电 3.电磁场和电磁波 a.麦克斯韦电磁场理论 b.电磁波 [应用] 1.用丝线悬挂闭合金属环,悬于O点,虚线左边有匀强磁 场,右边没有磁场。 (1)金属环的摆动会很快停下来,试解释这一现象。 (2)若整个空间都有向外的匀强磁场,会有这种现象吗?2.如图所示,矩形线圈abcd质量为m,电阻为R,宽为d,长为L,在竖直平面内由静止开始自由下落,其下方存在如图示方向的磁感强度为B的匀强磁场,磁场上、下边界水平,宽度也为d。 (1)线圈ab进入磁场时,感应电流的方向? (2)如果矩形线圈在ab边刚进入磁场就开始做匀速直线运动,那么,矩形线圈的ab边应该距离磁场的上边界多高的位置开始下落? 3.上海的部分交通线路上已开始使用“非接触式IC卡”。该卡应用到物理学上的电磁感应原理。持卡者只要将卡在车门口的一台小机器前一晃,机器就能发出通过的信号。 (1)电磁感应现象的最早发现者是(A) A.法拉第 B.格拉姆 C.西门子 D.爱迪生 (2)与这一发现有关的科技革命的突出成就不包括 ...(D) A.电力的广泛应用 B.内燃机和新交通工具的创新 C.新的通讯手段的发明 D.计算机信息技术的出现 4.照明电路中,为了安全,一般在电能表后面电路上按接一个漏电保护器,如右图所示,当漏电保护器的ef两端未有电压时,脱扣开关K 能始终保持接通。当ef两端一有电压时,脱扣 开关K立即会断开,下列说法正确的是 A.当用户家的电流超过一定值时,脱扣开关 会自动断开,即有过流保护作用 B.当相线和零线间电压太高时,脱扣开关会 自动断开,即有过压保护作用 C.站在地面上的人触及b线时(单线触电),脱扣开关会自动断开,即有触电保护作用 B O a b c d

教学设计《电磁感应现象的应用》(新课标初中物理教案).

《电磁感应现象的应用》教学设计 广州市九十五中学李琼 一、教材内容分析 (一)教材内容 电磁感应现象在日常生活和生产中应用的例子很多,本节选讲变压器和汽车防抱死系统,主要考虑是:1.电能是日常生活和生产中不可缺少的能源,电能的生产和输送都离不开电磁感应原理;2.汽车防抱死系统是社会生活对物理学提出的问题,解决实际问题要依靠科学技术的发展进步,汽车防抱死系统是近年发展的一项成熟的技术.通过本节的学习,让学生体会所学知识的时代性以及人类探索自然规律的科学态度和科学精神. (二)教学重点:知道在日常生活和生产中哪些地方应用了电磁感应现象,了解变压器工作原理 (三)教学难点:汽车防抱死系统工作原理 二、教学对象分析 学生在初中已学习电磁感应的有关知识,但不够深入,另外本校学生素质较差,基础知识不扎实,尤其是文科生理科成绩较差。学生的自主探究能力、独立思考问题的能力较弱,对生活常见现象的想象能力还有待提高。 针对此种情况,在教学中需充分利用多媒体手段,加上实验的现象,使所要掌握的知识更加形象生动地展现出来。 三、教学目标 1.知识与技能 (1)了解变压器的工作原理. (2)了解汽车防抱死制动系统(ABS)的工作原理 2.过程与方法 (1)读图2-3-1,2-3-2,2-3-5及本节最后一段,了解电磁感应原理在日常生活和生产中的应用

(2)观察原、副线圈匝数与电压关系演示实验,培养学生的观察能力,体会物理学的研究方法 (3)通过讨论与交流变压器在日常生活中的应用,提高学生的表达能力 (4)参观发电站或变电站,体会电磁港英原理在生产中的应用 3.情感态度与价值观 (1)了解电磁感应原理对经济、社会发展的贡献,体会人类探索自然规律的科学态度和科学精神 (2)关注西电东送中有关电能输送的问题,树立可持续发展的意识 (3)通过解读ABS系统的工作原理,引导学生关注世界科技发展的现状与趋势(4)通过参观变电站或发电站,发展学生对科学的好奇心与求知欲 四、教学设计思想 针对文科学生的物理基础知识差、对物理不感兴趣或右畏惧心理,教学中要激发学生的学习兴趣,注重与实际生活的联系,应用多种的教学手段,在教学上采取讲授、实验探究、讨论交流等教学方法。 通过实验,让学生在自主探究中获取知识,培养他们的观察和思考能力;通过“讨论与交流”,发挥学生的主体作用,体现互动性,让他们在讨论中归纳总结,得出结论; 通过多媒体的教学手段,模拟汽车防抱死制动系统,更加形象,使学生更加容易接受; 通过例题的讲解、列举生活中实例,注重知识与生活的联系,激发学生的兴趣,让学生体现身边随处可见物理现象。 五、教学流程图

电磁感应微元法.

电磁感应中的“微元法” 所谓:“微元法” 所谓“微元法”,又叫“微小变量法”,是解物理题的一种方法。 1.什么情况下用微元法解题?在变力作用下做变变速运动(非匀变速运动)时,可考虑用微元法解题。 2. 关于微元法。在时间?t很短或位移?x很小时,非匀变速运动可以看作匀变速运动,运动图象中的梯形可以看作矩形,所以v?t=?x,lv?t=l?x=?s。微元法体现了微分思想。 3. 关于求和∑。许多小的梯形加起来为大的梯形,即 小写,后面的S为大写),并且∑?v=v-v0(注意:前面的s为∑?s=?S,,当末速度v=0时,有∑?v=v,或初速度0v0=0时,有∑?v=v,这个求和的方法体现了积分思想。 4. 无论物理规律用牛顿定律,还是动量定理或动能定理,都可以用微元法. 如果既可以用动量定理也可以用动能定理解。对于使用老教科书的地区,这两种解法用哪一种都行,但对于使用课程标准教科书的地区就不同了,因为课程标准教科书把动量的内容移到了选修3-5,如果不选修3-5,则不能用动量定理解,只能用动能定理解。微元法解题,体现了微分和积分的思想,考查学生学习的潜能和独创能力。电磁感应中的微元法 一些以“电磁感应”为题材的题目。可以用微元法解,因为在电磁感应中,如导体切割磁感线运动,产生感应电动势为E=BLv,感应电流为I=BLv,受安培力为R B2L2 F=BIL=v,因为是变力问题,所以可以用微元法. R 1.只受安培力的情况 例1. 如图所示,宽度为L的光滑金属导轨一端封闭,电阻不计,足够长,水平部分有竖直向上、磁感应强度为B的匀强磁场中。质量为m、电阻为r的导体棒从高度为h的斜轨上从静止开始滑下,由于在磁场中受安培力的作用,在水平导轨上滑行的距离为S而停下。 (1)求导体棒刚滑到水平面时的速度v0; (2)写出导体棒在水平导轨上滑行的速度v与在水平导轨上滑行的距离x的函数关 系,并画出v-x关系草图。 (3)求出导体棒在水平导轨上滑行的距离分别为S/4、S/2时的速度v1、v2;

教科版高中物理总复习知识讲解 物理学中微元法的应用

物理学中微元法的应用 : : 【高考展望】 随着新课程的改革,微积分已经引入了高中数学课标,列入理科学生的高考考试范围,为高中物理的学习提供了更好的数学工具。教材中很多地方体现了微元思想,逐步建立微元思想,加深对物理概念、规律的理解,提高解决物理问题的能力,不仅需要从研究方法上提升学习能力,而且还要提高利用数学方法处理物理问题的能力。高考试题屡屡出现“微元法” 的问题,较多地出现在机械能问题、动量问题、电磁感应问题中,往往一出现就是分值高、难度较大的计算题。在高中物理竞赛、自主招生物理试题中更是受到命题者的青睐,成为必不可少的内容。 【知识升华】 “微元法”又叫“微小变量法”,是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的。微元可以是一小段线段、圆弧、一小块面积、一个小体积、小质量、一小段时间……,但应具有整体对象的基本特征。这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题得到求解。利用“微元法”可以将非理想模型转化为理想模型,将一般曲线转化为圆甚至是直线,将非线性变量转化为线性变量甚至是恒量,充分体现了“化曲为直”、“化变为恒”的思想。 【方法点拨】 应用“微元法”解决物理问题时,采取从对事物的极小部分(微元)入手,达到解决事物整体的方法,具体可以分以下三个步骤进行:(1)选取微元用以量化元事物或元过程; (2)把元事物或元过程视为恒定,运用相应的物理规律写出待求量对应的微元表达式;(3)在微元表达式的定义域内实施叠加演算,进而求得待求量。微元法是采用分割、近似、求和、取极限四个步骤建立所求量的积分式来解决问题的。 【典型例题】 类型一、微元法在运动学、动力学中的应用 例1、设某个物体的初速度为0v ,做加速度为a 的匀加速直线运动,经过时间t ,则物 体的位移与时间的关系式为2 012 x v t at =+ ,试推导。 【思路点拨】把物体的运动分割成若干个微元,t ?极短,写出v t -图像下微元的面积的表 达式,即位移微元的表达式,最后求和,就等于总的位移。 【解析】作物体的v t -图像,如图甲、乙,把物体的运动分割成若干个小元段(微元),由于每一个小元段时间t ?极短,速度可以看成是不变的,设第i 段的速度为i v ,则在t ?时间内第i 段的位移为i i x v t =?,物体在t 时间内的位移为i i x x v t =∑=∑?,在v t -图像上则为若干个微小矩形面积之和。

相关文档
最新文档