_影响电极电势因素_的微型化实验设计

_影响电极电势因素_的微型化实验设计
_影响电极电势因素_的微型化实验设计

电极电势变化对电极反应速率的影响

电极电势变化对电极反应速率的影响 电极上电势变化是怎样影响反应速率的?布特勒尔(Butler)和伏尔默(Volmer)假 设得电子或失电子的步骤均为基元步骤,并应用化学动力学中的过渡态理论导出了电极过程动力学的基本方程-"布特勒尔-伏尔默方程"-以说明这一问题。布特勒尔-伏尔默提出的模型简单,能说明一些实验规律,为一重要关系式。但分析问 题时仅从能量观点出发,没有虑及可能存在的过程细节,故有一定的局限性。 在化学动力学中,反应速率r与反应速度常数k以及反应级数n之间有如下关系: 对于以下电极基元反应,在不考虑电子的作用时,反应为一级的: 由活化络合物理论可知,反应速率常数取决于反应物通过势垒的频率以及反应的活化焓(),即 而电极反应速率r与电流密度i之间满足下式: 将上式联系起来: 在一定温度下为一常数。式(11-72)表述了电极反应在无外加电场影响(即电极表面不带电荷)时的反应速率(以电流密度表示)。在这种条件下进行的反应为纯化学反应,而非电极反应,其速率常数以k区别之。 事实上,电极上同时进行着还原反应和氧化反应:

若以分别表示还原电流密度和氧化电流密度,而c1和c2分别表示氧化态物质和还原物质浓度,其对应的常数分别为k0,1和k0,2,则: 在加上外加电压条件下,例如,在阴极加上一电势φi(φi为负值),则额外能量为,这一能量中,将有一部分用于加速还原反应而另一部分用于减慢氧化反应的进行。设作用于还原部分为a,而作用于氧化反应为(1-a),a称为对称因子(Symmetry factor)。由动力学观点,这相当于使还原反应的活化焓由变为,因为φi为负电势,实质上相当于使其势垒降低,反应加速。而氧化反应的活化焓则由变为,相当于使其势垒提高,反应减慢(参考图)。而还原电流密度和氧化电流密度分别可表示为:

电极电势

电极电势 一,电极电势(electrode potential)的产生—双电层理论 德国化学家能斯特(H.W.Nernst)提出了双电层理论(electron double layer theory)解释电极电势的产生的原因。当金属放入溶液中时,一方面金属晶体中处于热运动的金属离子在极性水分子的作用下,离开金属表面进入溶液。金属性质愈活泼,这种趋势就愈大;另一方面溶液中的金属离子,由于受到金属表面电子的吸引,而在金属表面沉积,溶液中金属离子的浓度愈大,这种趋势也愈大。在一定浓度的溶液中达到平衡后,在金属和溶液两相界面上形成了一个带相反电荷的双电层(electron double layer),双电层的厚度虽然很小(约为10-8厘米数量级), 但却在金属和溶液之间产生了电势差。通常人们就把产生在金属和盐溶液之间的双电层间的电势差称为金属的电极电势(electrode potential),并以此描述电极得失电子能力的相对强弱。电极电势以符号E Mn+/ M表示, 单位为V(伏)。如锌的电极电势以EZn2+/ Zn 表示, 铜的电极电势以ECu2+/Cu 表示。 电极电势的大小主要取决于电极的本性,并受温度、介质和离子浓度等因素的影响。 2.标准电极电势 为了获得各种电极的电极电势数值,通常以某种电极的电极电势作标准与其它各待测电极组成电池,通过测定电池的电动势, 而确定各种不同电极的相对电极电势E值。1953年国际纯粹化学与应用化学联合会(IUPAC)的建议,采用标准氢电极作为标准电极,并人为地规定标准氢电极的电极电势为零。 (1)标准氢电极电极符号: Pt|H2(101.3kPa)|H+(1mol.L-1) 电极反应: 2H+ + 2e = H2(g) E?H+/ H2 = 0 V 右上角的符号“?”代表标准态。 标准态要求电极处于标准压力(100kPa或1bar)下,组成电极的固体或液体物质都是纯净物质;气体物质其分压为100kPa;组成电对的有关离子(包括参与反应的介质)的浓度为1mol.L-1(严格的概念是活度)。通常测定的温度为298K。 (2) 标准电极电势:用标准氢电极和待测电极在标准状态下组成电池,测得该电池的电动势值,并通过直流电压表确定电池的正负极,即可根据E池 = E (+)- E(-)计算各种电极的标准电极电势的相对数值。 例如在298k,用电位计测得标准氢电极和标准Zn电极所组成的原电池的电动势(E池)为0.76v,根据上式计算Zn2+/Zn电对的标准电极为-0.76v。用同样的办法可测得Cu2+/Cu电对的电极电势为+0.34v。 电极的 E?为正值表示组成电极的氧化型物质,得电子的倾向大于标准氢电极中的H+,如铜电极中的 Cu2+;如电极的为负值,则组成电极的氧化型物质得电子的倾向小于标准氢电极中的H+,如锌电极中的Zn2+。 实际应用中,常选用一些电极电势较稳定电极如饱和甘汞电极和银-氯化银电极作为参比电极和其它待测电极构成电池,求得其它电极的电势。饱和甘汞电极的电极电势为0.24V。银-氯化银电极的电极电势为0.22V。 3. 标准电极电势表

实验五氧化还原反应与电极电势(精)

实验五氧化还原反应与电极电势 一、实验目的 1、掌握电极电势对氧化还原反应的影响。 2、定性观察浓度、酸度对电极电势的影响。 3、定性观察浓度、酸度、温度、催化剂对氧化还原反应的方向、产物、速度的影响。 4、通过实验了解原电池的装置。 二、实验原理 氧化剂和还原剂的氧化、还原能力强弱,可根据她们的电极电势的相对大小来衡量。电极电势的值越大,则氧化态的氧化能力越强,其氧化态物质是较强氧化剂。电极电势的值越小,则还原态的还原能力越强,其还原态物质是较强还原剂。只有较强的氧化剂才能和较强还原剂反应。即φ氧化剂-φ还原剂﹥0时,氧化还原反应可以正方向进行。故根据电极电势可以判断氧化还原反应的方向。 利用氧化还原反应而产生电流的装置,称原电池。原电池的电动势等于正、负两极的电极电势之差:E = φ正-φ负。根据能斯特方程: 其中[氧化型]/[还原型]表示氧化态一边各物质浓度幂次方的乘积与还原态一边各物质浓度幂次方乘积之比。所以氧化型或还原型的浓度、酸度改变时,则电极电势φ值必定发生改变,从而引起电动势E将发生改变。准确测定电动势是用对消法在电位计上进行的。本实验只是为了定性进行比较,所以采用伏特计。浓度及酸度对电极电势的影响,可能导致氧化还原反应方向的改变,也可以影响氧化还原反应的产物。 三、仪器和药品 仪器:试管,烧杯,伏特计,表面皿,U形管 药品:2 mol·L-1 HCl,浓HNO3, 1mol·L-1 HNO3,3mol·L-1HAc,1mol·L-1 H2SO4,3mol·L-1 H2SO4,0.1mol·L-1 H2C2O4,浓NH3·H2O(2mol·L-1),6mol·L- 1NaOH,40%NaOH。 1mol·L-1 ZnSO4,1mol·L-1 CuSO4,0.1mol·L-1KI,0.1mol·L-

第二节 电极电势

2-1 第二节 电极电势 知识要点 一、电极电势和电池电动势 1. 电极电势 (金属-金属离子电极) 在铜锌原电池中,为什么电子从Zn 原子转移给Cu 2+ 离子而不是从Cu 原子转移给Zn 2+ 离子? 这与金属在溶液中的情况有关,一方面金属M 表面构成晶格的金属离子和极性大的水分子互相吸引,有一种使金属棒上留下电子而自身以水合离子M n + (aq)的形式进入溶液的倾向,金属越活泼,溶液 越稀,这种倾向越大,另一方面,盐溶液中的M n + (aq) 离子又有一种从金属M 表面获得电子而沉积在金属表面上的倾向,金属越不活泼,溶液越浓,这种倾向越大.这两种对立着的倾向在某种条件下达到暂时的平衡: M n + (aq)+ne - M 在某一给定浓度的溶液中,若失去电子的倾向大于获得电子的倾向,到达平衡时的最后结果将是金属离子M n + 进入溶液,使金属棒 上带负电,靠近金属棒附近的溶液带正电,如右图所示,这时在金属和 盐溶液之间产生电位差,这种产生在金属定于温度. 在铜锌原电池中,Zn 片与Cu 片分别插在它们各自的盐溶液中,构成Zn 2+ /Zn 电极与Cu 2+ /Cu 电 极.实验告诉我们,如将两电极连以导线,电子流将由锌电极流向铜电极,这说明Zn 片上留下的电子要比Cu 片上多,也就是Zn 2+ /Zn 电极的上述平衡比 Cu 2+/Cu 电极的平衡更偏于右方,或Zn 2+ /Zn 电对与Cu 2+ /Cu 电对两者具有不同的电极电势,Zn 2+ /Zn 电对的电极电势比Cu 2+ /Cu 电对要负一些.由于两极电势不同,连以导线,电子流(或电流)得以通过. 2. 原电池的电动势 电极电势 φ表示电极中极板与溶液之间的电势差.当用盐桥将两个电极的溶液连通时,若认为两溶液之间等电势,则两极板之间的电势差即两电极的电极电势之差,就是电池的电动势.用 E 表示电动势,则有E =φ+ -φ- 若两电极的各物质均处于标准状态,则其电动势为电池的标准电动势,E ○— =φ ○— (+) -φ ○— (-) 电池中电极电势 φ大的电极为正极,故电池的电动势 E 的值为正.有时计算的结果 E 为负值,这说明计算之前对于正负极的判断有误.E > 0 是氧化还原反应可以自发进行的判据. 3. 标准氢电极 (气体 - 离子电极) 电极电势的绝对值无法测量,只能选定某种电极作为标准,其他电极与之比较,求得电极电势的相对值,通常选定的是标准氢电极. 标准氢电极是这样构成的:将镀有铂黑的铂片置于H +浓度(严格的说应为活度a )为 1.0mol·kg -1 的硫酸溶液(近似为 1.0mol·dm - 3)中,如右图.然后不断地通入压力为1.013×105Pa 的纯H 2,使铂黑吸附H 2达到饱和,形成一个氢电极.在这个电极的周围发生了如下的平衡: 2H + +2e - H 2 氢电极属于气体 -离子电极.标准氢电极作为负极时,可以表示为 Pt | H 2(1.013×105Pa) | H +(1mol·dm - 3) 这时产生在标准氢电极和硫酸溶液之间的电势,叫做氢的标准电极电势,将它作为电极电势的相对标准,令其为零.在任何温度下都规定标准氢电极的电极电势为零(实际上电极电势同温度有关).所以很难制得上述那种标准氢电极,它只是一种理想电极. 用标准氢电极与其他各种标准状态下的电极组成原电池,测得这些电池的电动势,从而计算各种电极的标准电极电势,通常测定时的温度为298K.所谓标准状态是指组成电极的离子其浓度为1mol·dm - 3(对于氧化还原电极来讲,为氧化型离 子和还原型离子浓度比为1),气体的分压为1.013×105Pa,液体或固体都是纯净物质.标准电极电势用符号φ○— 表示. 例如:标准氢电极与标准铜电极组成的电池,用电池符号表示为 (-)Pt | H 2(p ○— ) | H +(1mol·dm - 3)‖Cu 2+(1mol·dm - 3) | Cu(+) 在298K,用电位计测得该电池的电动势E ○— = 0.34V E ○— =φ○— (+) -φ○— (-),得φ○— (+) = E ○— +φ○— (-), 故φ○— ( Cu 2+/Cu)= E ○— +φ○— (H +/H 2)

电极电势

电极电势 1.电极电势的产生—双电层理论 德国化学家能斯特(H.W.Nernst)提出了双电层理论(electron double layer theory)解释电极电势的产生的原因。当金属放入溶液中时,一方面金属晶体中处于热运动的金属离子在极性水分子的作用下,离开金属表面进入溶液。金属性质愈活泼,这种趋势就愈大;另一方面溶液中的金属离子,由于受到金属表面电子的吸引,而在金属表面沉积,溶液中金属离子的浓度愈大,这种趋势也愈大。在一定浓度的溶液中达到平衡后,在金属和溶液两相界面上形成了一个带相反电荷的双电层(electron double layer),双电层的厚度虽然很小(约为10-8厘米数量级), 但却在金属和溶液之间产生了电势差。通常人们就把产生在金属和盐溶液之间的双电层间的电势差称为金属的电极电势(electrode potential),并以此描述电极得失电子能力的相对强弱。电极电势以符号E Mn+/ M表示, 单位为V(伏)。如锌的电极电势以EZn2+/ Zn 表示, 铜的电极电势以ECu2+/Cu 表示。 电极电势的大小主要取决于电极的本性,并受温度、介质和离子浓度等因素的影响。 2.标准电极电势 为了获得各种电极的电极电势数值,通常以某种电极的电极电势作标准与其它各待测电极组成电池,通过测定电池的电动势, 而确定各种不同电极的相对电极电势E值。1953年国际纯粹化学与应用化学联合会(IUPAC)的建议,采用标准氢电极作为标准电极,并人为地规定标准氢电极的电极电势为零。 (1)标准氢电极电极符号: Pt|H2(101.3kPa)|H+(1mol.L-1) 电极反应: 2H+ + 2e = H2(g) EφH+/ H2 =0 V 右上角的符号“φ”代表标准态。 标准态要求电极处于标准压力(101.325kPa)下,组成电极的固体或液体物质都是纯净物质;气体物质其分压为101.325kPa;组成电对的有关离子(包括参与反应的介质)的浓度为1mol.L-1(严格的概念是活度)。通常测定的温度为298K。 (2) 标准电极电势用标准氢电极和待测电极在标准状态下组成电池,测得该电池的电动势值,并通过直流电压表确定电池的正负极,即可根据E池= E(+)-E(-)计算各种电极的标准电极电势的相对数值。 例如在298k,用电位计测得标准氢电极和标准zn电极所组成的原电池的电动势(E池)为0.7628v,根据上式计算Zn2+/Zn电对的标准电极为-0.7628v。用同样的办法可测得Cu2+/Cu电对的电极电势为+0.34v。 电极的E?为正值表示组成电极的氧化型物质,得电子的倾向大于标准氢电极中

电极电势-答案

氧化还原与电极电势——答案 1.25℃时将铂丝插入Sn 4+和Sn 2+离子浓度分别为0.1mol/L 和0.01mol/L 的混合溶液中,电对的电极电势为( )。 A .)/(24++Sn Sn θ? B . 2/05916.0)/(24+++Sn Sn θ? C .05916.0)/(24+++Sn Sn θ? D .2/05916.0)/(24-++Sn Sn θ? 解答或答案:B 2.对于电池反应C u 2++Zn = C u +Zn 2+ 下列说法正确的是( )。 A .当[C u 2+] = [Zn 2+ ],反应达到平衡。 B .θ?(Cu 2+/Cu )= θ?(Zn 2+/Zn ), 反应达到平衡。 C .?(Cu 2+/Cu )= ?(Zn 2+/Zn ), 反应达到平衡。 D . 原电池的标准电动势等于零时,反应达到平衡。 解答或答案:C 3.今有原电池(-)Pt,H 2(ρ)H +(c)C u 2+ (c)C u(+) ,要增加原电池电动势,可以采取的措 施是( )。 A 增大H +离子浓度 B 增大 C u 2+ 离子浓度 C 降低H 2的分压 D 在正极中加入氨水 E 降低C u 2+ 离子浓度,增大H +离子浓度 解答或答案:B 4.已知下列反应; C uCl 2+SnCl 2 = C u +SnCl 4 FeCl 3+C u= FeCl 2+C uCl 2 在标准状态下按正反应方向进行。则有关氧化还原电对的标准电极电位的相对大小为( )。 A θ?(Fe 3+/Fe 2+)>θ?(Cu 2+/Cu )>θ?(Sn 4+/Sn 2+) B θ?(Cu 2+/Cu )>θ?(Fe 3+/Fe 2+)>θ?(Sn 4+/Sn 2+) C θ?(Sn 4+/Sn 2+)>θ?(Cu 2+/Cu )>θ?(Fe 3+/Fe 2+)

实验五--氧化还原反应与电极电势

实验五--氧化还原反应与电极电势

————————————————————————————————作者:————————————————————————————————日期:

实验五 氧化还原反应与电极电势 一、实验目的 1、掌握电极电势对氧化还原反应的影响。 2、定性观察浓度、酸度对电极电势的影响。 3、定性观察浓度、酸度、温度、催化剂对氧化还原反应的方向、产物、速度的影响。 4、通过实验了解原电池的装置。 二、实验原理 氧化剂和还原剂的氧化、还原能力强弱,可根据她们的电极电势的相对大小来衡量。电极电势的值越大,则氧化态的氧化能力越强,其氧化态物质是较强氧化剂。电极电势的值越小,则还原态的还原能力越强,其还原态物质是较强还原剂。只有较强的氧化剂才能和较强还原剂反应。即φ氧化剂-φ还原剂﹥0时,氧化还原反应可以正方向进行。故根据电极电势可以判断氧化还原反应的方向。 利用氧化还原反应而产生电流的装置,称原电池。原电池的电动势等于正、负两极的电极电势之差:E = φ正-φ负。根据能斯特方程: ] [][lg 0591.0还原型氧化型半?+=n θ?? 其中[氧化型]/[还原型]表示氧化态一边各物质浓度幂次方的乘积与还原态一边各物质浓度幂次方乘积之比。所以氧化型或还原型的浓度、酸度改变时,则电极电势φ值必定发生改变,从而引起电动势E 将发生改变。准确测定电动势是用对消法在电位计上进行的。本实验只是为了定性进行比较,所以采用伏特计。浓度及酸度对电极电势的影响,可能导致氧化还原反应方向的改变,也可以影响氧化还原反应的产物。 三、仪器和药品 仪器:试管,烧杯,伏特计,表面皿,U 形管 药品:2 mol·L -1 HCl ,浓HNO 3, 1mol·L -1 HNO 3,3mol·L -1HAc ,1mol·L -1 H 2SO 4,3mol·L -1 H 2SO 4,0.1mol·L -1 H 2C 2O 4,浓NH 3·H 2O (2mol·L -1),6mol·L -1NaOH ,40%NaOH 。 1mol·L -1 ZnSO 4,1mol·L -1 CuSO 4,0.1mol·L -1KI ,0.1mol·L -1AgNO 3,0.1mol·L -1KBr ,0.1mol·L -1FeCl 3,0.1mol·L -1Fe 2(SO 4)3,0.1mol·L -1FeSO 4,1mol·L -1FeSO 4, 0.4mol·L -1K 2Cr 2O 7, 0.001mol·L -1KMnO 4,0.1mol·L -1Na 2SO 3,0.1mol·L -1Na 3AsO 3, 0.1mol·L -1 MnSO 4, 0.1mol·L -1NH 4SCN , 0.01mol·L -1I 2水,Br 2水,CCl 4,固体NH 4F ,固

修改版——浅谈电极电势的理解和应用

编号: 119060141011 内蒙古民族大学化学化工学院 本科生学年论文 题目:浅谈对电极电势的理解和应用 专业:化学 年级: 2011级 姓名:郭学良 指导教师:赵玉英导师 完成日期: 2013 年 6 月 1 日

浅谈对电极电势的理解和应用 郭学良 摘要 化学反应可以分为两大类:氧化还原反应和非氧化还原反应,因此可以说氧化还原反应是无机化学学习中最重要的一类反应;而标准电极电势是氧化还原反应很好的定量标度,因此我们就有必要对标准电极电势进行必要的解析和研究。而对于初入门的化学学习者来说,深入的了解电极电势可以从电极电势与电动势的关系、电极电势的能特斯方程、影响电极电势的因素、电极电势的图示法……这几方面入手,接下来我们就从这几方面展开讨论。 关键词:标准电极电势氧化还原反应拉提莫图能特斯方程

引言 标准电极电势是氧化还原反应很好的定量标度,氧化还原反应是无机化学学习中最重要的一类反应,对了解各种元素及其物质的性质及其联系有着重要的意义。因此我们就有必要对标准电极电势进行必要的解析和研究。而对于初入门的化学学习者来说,深入的了解电极电势可以从电极电势与电动势的关系、电极电势的能特斯方程、影响电极电势的因素、电极电势的图示法……这几方面入手,接下来我们就从这几方面展开讨论。

浅谈对电极电势的理解和应用 一、电极电势与电动势的关系 要想了解电极电势与电动势的关系,首先需要明白这两者的概念; 1)电动势:大小等于非静电力把单位正电荷从电源的负极,经过电源内部 移到电源正极所作的功。如设W为电源中非静电力(电源力)把正电荷量 q从负极经过电源内部移送到电源正极所作的功,则电动势大小为 E=W/q。 2)电极电势:当金属放入盐溶液中,溶液中的金属离子受到金属表面电子 的吸引而在金属表面面积形成双电层,双电层之间的电势差就是相应电 极的电极电势。 3)标准电极电势:单个电极的的电极电势是无法测定的,根据IUPAC建议 采用标准氢作为标准电极,给定电极电势与标准电极电势所组成的原电 池的电动势即为该电极的标准电极电势。 从定义可以看出电动势与电极电势是有联系的,即当指定的电极与标准氢电极构成原电池时,指定电极电势大小的绝对值与原电池的电动势的大小相等。但这两者是不同的概念: 1)电动势大小等于原电池两电极电势之差;而单个电极的电势是无法求得 的,标准电极电势大小等于指定电极的电势与标准氢电极E○一(H+/H2)电 势的差值。 2)电动势只有正值;而标准电极电势可以有负值。 3)电动势的对象是原电池;标准电极电势的对象时单个电极。 电动势是我们熟悉的定义,通过电极电势与电动势的对比,可以增进我们对电极电势概念的理解,对于初学者来说只有熟悉了电极电势的概念,下一步的讨论才有意义。 二、电极电势的能特斯方程 1. 首先我们看一下电动势的能特斯方程 对于电池反应 aA+bB=cC+dD,有化学等温式

电极电势

电极电势 一,电极电势的产生—双电层理论 德国化学家能斯特(H.W.Nernst)提出了双电层理论(electron double layer theory)解释电极电势的产生的原因。当金属放入溶液中时,一方面金属晶体中处于热运动的金属离子在极性水分子的作用下,离开金属表面进入溶液。金属性质愈活泼,这种趋势就愈大;另一方面溶液中的金属离子,由于受到金属表面电子的吸引,而在金属表面沉积,溶液中金属离子的浓度愈大,这种趋势也愈大。在一定浓度的溶液中达到平衡后,在金属和溶液两相界面上形成了一个带相反电荷的双电层(electro n double layer),双电层的厚度虽然很小(约为10-8厘米数量级), 但却在金属和溶液之间产生了电势差。通常人们就把产生在金属和盐溶液之间的双电层间的电势差称为金属的电极电势(electrode potential),并以此描述电极得失电子能力的相对强弱。电极电势以符号E Mn+/ M表示, 单位为V(伏)。如锌的电极电势以EZn2+/ Zn 表示, 铜的电极电势以ECu2+/Cu 表示。 电极电势的大小主要取决于电极的本性,并受温度、介质和离子浓度等因素的影响。 2.标准电极电势 为了获得各种电极的电极电势数值,通常以某种电极的电极电势作标准与其它各待测电极组成电池,通过测定电池的电动势,而确定各种不同电极的相对电极电势E值。1953年国际纯粹化学与应用化学联合会(IUPAC)的建议,采用标准氢电极作为标准电极,并人为地规定标准氢电极的电极电势为零。 (1)标准氢电极电极符号: Pt|H2(101.3kPa)|H+(1mol.L-1) 电极反应: 2H+ + 2e = H2(g) EφH+/ H2 =0 V 右上角的符号“φ”代表标准态。 标准态要求电极处于标准压力(101.325kPa)下,组成电极的固体或液体物质都是纯净物质;气体物质其分压为101.325 kPa;组成电对的有关离子(包括参与反应的介质)的浓度为1mol.L-1(严格的概念是活度)。通常测定的温度为298K。 (2) 标准电极电势用标准氢电极和待测电极在标准状态下组成电池,测得该电池的电动势值,并通过直流电压表确定电池的正负极,即可根据E池= E(+)-E(-)计算各种电极的标准电极电势的相对数值。 例如在298k,用电位计测得标准氢电极和标准zn电极所组成的原电池的电动势(E池)为0.7628v,根据上式计算Zn2+/ Zn电对的标准电极为-0.7628v。用同样的办法可测得Cu2+/Cu电对的电极电势为+0.34v。 电极的E?为正值表示组成电极的氧化型物质,得电子的倾向大于标准氢电极中的H+,如铜电极中的Cu2+;如电极的为负值,则组成电极的氧化型物质得电子的倾向小于标准氢电极中的H+,如锌电极中的Zn2+。 实际应用中,常选用一些电极电势较稳定电极如饱和甘汞电极和银-氯化银电极作为参比电极和其它待测电极构成电池,求得其它电极的电势。饱和甘汞电极的电极电势为0.2412V。银-氯化银电极的电极电势为0.2223V。 3. 标准电极电势表 将不同氧化还原电对的标准电极电势数值按照由小到大的顺序排列,得到电极反应的标准电极电势表。其特点有: (l)一般采用电极反应的还原电势,每一电极的电极反应均写成还原反应形式,即:氧化型+ne =还原型; (2)标准电极电势是平衡电势,每个电对E?值的正负号,不随电极反应进行的方向而改变。 (3)Eφ值的大小可用以判断在标准状态下电对中氧化型物质的氧化能力和还原型物质的还原能力的相对强弱,而与参与电极反应物质的数量无关。例如: I2+2e =2I- Eφ= +0.5355V 1/2I2+e = I- Eφ= +0.5355V (4)Eφ值仅适合于标准态时的水溶液时的电极反应。对于非水、高温、固相反应,则不适合。 二,电极电势的应用 (一)、判断氧化剂和还原剂的相对强弱 在标准状态下氧化剂和还原剂的相对强弱,可直接比较Eφ值的大小。 Eφ值较小的电极其还原型物质愈易失去电子,是愈强的还原剂,对应的氧化型物质则愈难得到电子,是愈弱的氧化剂。E φ值愈大的电极其氧化型物质愈易得到电子,是较强的氧化剂,对应的还原型物质则愈难失去电子,是愈弱的还原剂。 在标准电极电势表中, 还原型的还原能力自上而下依次减弱,氧化型的氧化能力自上而下依次增强。

试验六氧化还原反应与电极电势

实验六氧化还原反应与电极电势 一、实验目的 1.熟悉电极电势与氧化还原反应的关系。 2.了解浓度、酸度、温度对氧化还原反应的影响。 3.了解原电池的装置和原理。 二、实验原理 氧化还原反应的实质是物质间电子的转移或电子对的偏移。氧化剂、还原剂得失电子能力的大小,即氧化还原能力的强弱,可根据它们相应电对的电极电势的相对大小来衡量。电极电势的数值越大,则氧化态的氧化能力越强,其氧化态物质是较强的氧化剂。电极电势的数值越小,则还原态的还原能力越强,其还原态物质是较强的还原剂。只有较强的氧化剂和较强的还原剂之间才能够发生反应,生成较弱的氧化剂和较弱的还原剂,故根据电极电势可以判断反应的方向。 利用氧化还原反应产生电流的装置称原电池。原电池的电动势E池= φ+-φ-,根据能斯特方程,当氧化型或还原型物质的浓度、酸度改变时,电极电势的数值会随之发生改变。本实验利用伏特计测定原电池的电动势来定性比较浓度、酸度等因素对电极电势及氧化还原反应的影响。 三、仪器和试药 仪器:试管、烧杯、表面皿、培养皿、U形管、伏特计、水浴锅、导线、砂纸、鳄鱼夹。 试药:HCl (2mol·L-1)、HNO3 (1mol·L-1, 浓)、H2SO4 (1, 3mol·L-1)、HAc (3mol·L-1)、H2C2O4 (0.1mol·L-1)、NH3·H2O (浓)、NaOH (6 mol·L-1, 40%)、ZnSO4 (1mol·L-1)、CuSO4 (1mol·L-1)、KI (0.1mol·L-1)、KBr (0.1mol·L-1)、AgNO3 (0.1, 0.5mol·L-1)、FeCl3 (0.1mol·L-1)、Fe2(SO4)3 (0.1mol·L-1)、FeSO4(0.4,1mol·L-1)、K2Cr2O7(0.4mol·L-1)、KMnO4(0.001mol·L-1)、Na2SO3 (0.1mol·L-1)、Na3AsO3 (0.1mol·L-1)、MnSO4 (0.1mol·L-1)、KSCN (0.1mol·L-1)、溴水(Br2)、碘水(I2)、CCl4、NH4F (1mol·L-1、固体)、KCl(饱和溶液)、SnCl2 (0.5mol·L-1)、CuCl2 (0.5mol·L-1)、(NH4)2C2O4(饱和溶液)、锌粒、小锌片、小铜片、琼脂、电极(锌片、铜片、铁片、碳棒)、红色石蕊试纸。 四、实验内容 1.电极电势和氧化还原反应 (1)向试管中加入10滴0.1mol·L-1的KI溶液和2滴0.1mol·L-1的FeCl3溶液后,摇匀,再加入10滴CCl4溶液充分振荡,观察CCl4层颜色的变化,解释原因并写出相应的反应方程式。 (2)用0.1mol·L-1KBr代替KI溶液进行同样实验,观察CCl4层颜色的变化。 (3)用溴水(Br2) 代替FeCl3溶液与0.1mol·L-1的KI溶液作用,又有何现象? 根据实验结果比较Br2/ Br-、I2/ I-、Fe3+/Fe2+三个电对的电极电势相对大小,指出最强的氧化剂和还原剂,并说明电极电势和氧化还原反应的关系。 2.浓度对电极电势的影响 (1)在两只50mL烧杯中,分别加入25mL 1mol·L-1的ZnSO4溶液和25mL 1mol·L-1的CuSO4溶液,在ZnSO4溶液中插入仔细打磨过的Zn片,在CuSO4溶液中插入仔细打磨过的Cu片,用导线将Cu片、Zn片分别与伏特计的正负极相连,两个烧杯溶液间用KCl盐桥连接好,测量电池电动势。

电极电势变化对电极反应速率的影响教学教材

电极电势变化对电极反应速率的影响

电极电势变化对电极反应速率的影响 电极上电势变化是怎样影响反应速率的?布特勒尔(Butler)和伏尔默(Volmer)假设得电子或失电子的步骤均为基元步骤,并应用化学动力学中的过渡态理论导出了电极过程动力学的基本方程-"布特勒尔-伏尔默方程"-以说明这一问题。布特勒尔-伏尔默提出的模型简单,能说明一些实验规律,为一重要关系式。但分析问题时仅从能量观点出发,没有虑及可能存在的过程细节,故有一定的局限性。 在化学动力学中,反应速率r与反应速度常数k以及反应级数n之间有如下关系: 对于以下电极基元反应,在不考虑电子的作用时,反应为一级的: 由活化络合物理论可知,反应速率常数取决于反应物通过势垒的频率以 及反应的活化焓(),即 而电极反应速率r与电流密度i之间满足下式: 将上式联系起来: 在一定温度下为一常数。式(11-72)表述了电极反应在无外加电场影响(即电极表面不带电荷)时的反应速率(以电流密度表示)。在这种条件下进行的反应为纯化学反应,而非电极反应,其速率常数以k区别之。

事实上,电极上同时进行着还原反应和氧化反应: 若以分别表示还原电流密度和氧化电流密度,而c1和c2分别表示氧化态物质和还原物质浓度,其对应的常数分别为k0,1和k0,2,则: 在加上外加电压条件下,例如,在阴极加上一电势φi(φi为负值),则额外能量为,这一能量中,将有一部分用于加速还原反应而另一部分用于减慢氧化反应的进行。设作用于还原部分为a,而作用于氧化反应为(1-a),a称为对称因子(Symmetry factor)。由动力学观点,这相当于使还原反应的活化焓由 变为,因为φi为负电势,实质上相当于使其势垒降低,反应加速。而氧化反应的活化焓则由变为,相当于使其势垒提高,反应减慢(参考图)。而还原电流密度和氧化电流密度分别可表示为:

电极电位与溶液浓度的关系

电极电位与溶液浓度的关系(能斯特方程式) 电极的电位与其相应离子活度的关系可以用能斯特(Nernst)方程表示。例如,对于氧化还原体系O x+ne?Red 式中是标准电极电位,V;R是摩尔气体常数〔8.314J·(mol·K)-1〕;F是法拉第常数(96500C·mol-1);T是热力学温度,K;n为电极反应时转移电子数;αox为电极反应平衡时氧化态Ox的活度,a Red为电极反应平衡时还原态Red的活度。在具体应用能斯特方程时常用浓度代替活度(当离子浓度很小时,活度系数接近1,浓度与活度相近,可将活度近似看作为浓度);用常用对数代替自然对数,25℃时,能斯特方程可近似地简化成下式: 式中,[Ox]、[Red]表示电极反应达到平衡时氧化态和还原态的物质的量浓度。如果参与电极反应的组分为气体,则表示以1.01325×105Pa为基准的气体分压;如果参与电极反应的组分不溶于水,而以纯固体或纯液体的形态出现,其活度为常数,定为1。例如金属电极的电极反应为: M n+ + ne M 由于还原态为纯金属,因此在25℃时: 可见,电极电位Ф与离子浓度的对数成线性关系,因此,测出电极电位,就可以确定出离子浓度(严格说是活度)。这就是电位分析法定量的理论依据 电极电位的影响因素 由能斯特方程可以看出影响电极电位的主要因素有下面几点: (1)参加电极反应的离子浓度这是影响电极电位的主要因素。 (2)温度能斯特方程中项称为能斯特斜率,它是温度的函数。因此,测量电极电位时,温度影响不容忽视。 (3)转移电子数能斯特斜率也受转移电子数n的影响,n越大,斜率越小。在25℃时,若n=1,斜率为0.059V;若n=2,斜率只有0.030V,因此电位滴定法对测定n=1电极反应离子灵敏度较高,而对高价离子,测定灵敏度则较低。

理解电极电势与氧化还原反应的关系和介质

氧化还原反应 一、教学目的 1、理解电极电势与氧化还原反应的关系和介质、浓度对氧化还原反应的影响。 2、加深理解氧化态或还原态物质浓度变化对电极电势的影响。 3、学会装配原电池。 二、实验题要 氧化还原过程也就是电子的转移过程。氧化剂在反应中得到了电子,还原剂失去了电子。这种得、失电子能力的大小或者说氧化、还原能力的强弱,可用它们的氧化态—还原态(例如Fe3+-Fe2+,I2-I-,Cu2+-Cu)所组成的电对的电极电势的相对高低来衡量。一个电对的电极电势(以还原电势为准)代数值愈大,其氧化态的氧化能力愈强,其还原态的还原能力愈弱。反之亦然。所以根据其电极电势(φ)的大小(可从附录中查得),便可判断一个氧化还原反应的进行方向。 根据热力学原理△r G m?<0,反应自发进行,对于氧化还原反应: △r G m?=-n FE? 可见,若φ? + >φ? -,反应正向进行;φ? +=φ? -反应处于平衡状态;φ? +<φ?-反应逆向进行。 如果两电对的标准电极电位相差不太大,则应考虑浓度对电极电位的影响。非标准状态下的电极电势可以用能斯特方程求出。 φ=φ? + ·lg{[氧化态]/[还原态]} 改变物质的浓度会引起电极电势的变化,有时甚至可以改变反应的方向。 影响氧化还原反应的主要因素有:电极电势、介质酸度、反应物浓度等。三、实验用品 仪器:低压电源、盐桥、伏特计 药品:0.5 mol·L-1 Pb(NO3)2、(0.5、1 mol·L-1 )CuSO4、0.5 mol·L-1 ZnSO4、 0.1 mol·L-1 KI、0.1 mol·L-1 FeCl3、0.1 mol.L-1 KBr、0.1 mol·L-1 FeSO4、 (1、3 mol·L-1)H2SO4、6 mol·L-1 HAc、(2 mol·L-1、浓)HNO3、(0.01、0.1 mol·L-1 )KMnO4、6 mol·L-1 NaOH、0.1 mol·L-1 K2Cr2O7、饱和KCl、浓NH3·H2O、饱和氯水、I2水、Br2水、CCl4、酚酞溶液、Na2S2O3、红石蕊试纸材料:导线、砂纸、电极(铁钉、铜片、锌片、碳棒) 四、实验内容 ㈠电极电势与氧化还原反应 1、取1支试管,加入0.5cm3 0.1mol·dm-3KI和2滴0.1mol·dm-3FeCl3摇匀后

条件电极电势

离子强度对电势有一定的影响,能斯特方程中的浓度应采用相应的活度表示,特别是当溶液的离子强度较大、氧化型和还原型物种的价态较高时,活度系数受离子强度的影响较大,因而用浓度代替活度会有较大的偏差。此外,对电极电势影响更大的是当溶液的组成改变时,氧化型和还原型物种可能发生各种副反应,如酸度的变化、沉淀和配合物形成等,均会影响电极电势值。因此,在不少情况下,除了要考虑活度系数因素之外,还要考虑因有其他反应而引起的浓度的变化。例如,在计算HCl溶液中电对Fe(III)/Fe(II)的电势时,由能斯特方程得到: 若以浓度代替活度,则必须引入活度系数 : 另一方面,由于Fe3+、Fe2+在溶液中存在形成一系列羟基配合物和氯配合物等副反应,还必须引入副反应系数: 代入上式,则有 在一定条件下,上式中 和 有固定值,因而上式中前两项之和应为一常数,令其为E ′,则

式中表示的E ′是在特定条件下氧化型物种和还原型物种的总浓度均等于 1 mol·L-1时的实际电极电势,是一个随实验条件而变的常数,故称为条件电极电势(condition electrode potential),简称条件电势(过去又称为克式量电势或式量电势(formal potential)。因SI单位采用物质的量作为基本量,并采用摩尔的新定义后,式量的概念不复存在,故不宜再称克式量电势或式量电势。)。它反映了离子强度和各种副反应对电极电势影响的总结果。条件电势E ′,和标准电极电势E 的关系犹如配合物的条件稳定常数K′与稳定常数K以及条件溶度积K sp′和溶度积K sp的关系一样,用它来处理氧化还原平衡问题,既简单又符合实际情况。 理论上,只要知道实验条件下的各 、 值,便能计算出E ′值,事实上并非如此。当离子强度较高时, 值不易求得,副反应多且常数不全,有的可靠性又差。实际上条件电势都是由实验测定的。但是,实验条件千变万化,条件电势不可能一一测定,现有的条件电势数据又少。若查不到所需条件下的条件电势,可采用相近条件下的条件电势,甚至只能用标准电极电势进行讨论。 尽管在离子强度较大时对电极电势的影响较大,但远不及各种副反应的影响,加之离子强度的影响又难以校正,因此讨论副反应的影响时,一般均忽略离子强度的影响,因而是一种近似的计算。

实验五 氧化还原反应与电极电势

实验五 氧化还原反应与电极电势 一、实验目的 1、掌握电极电势对氧化还原反应的影响。 2、定性观察浓度、酸度对电极电势的影响。 3、定性观察浓度、酸度、温度、催化剂对氧化还原反应的方向、产物、速度的影响。 4、通过实验了解原电池的装置。 二、实验原理 氧化剂和还原剂的氧化、还原能力强弱,可根据她们的电极电势的相对大小来衡量。电极电势的值越大,则氧化态的氧化能力越强,其氧化态物质是较强氧化剂。电极电势的值越小,则还原态的还原能力越强,其还原态物质是较强还原剂。只有较强的氧化剂才能和较强还原剂反应。即φ氧化剂-φ还原剂﹥0时,氧化还原反应可以正方向进行。故根据电极电势可以判断氧化还原反应的方向。 利用氧化还原反应而产生电流的装置,称原电池。原电池的电动势等于正、负两极的电极电势之差:E = φ正-φ负。根据能斯特方程: ] [][lg 0591.0还原型氧化型半?+=n θ?? 其中[氧化型]/[还原型]表示氧化态一边各物质浓度幂次方的乘积与还原态一边各物质浓度幂次方乘积之比。所以氧化型或还原型的浓度、酸度改变时,则电极电势φ值必定发生改变,从而引起电动势E 将发生改变。准确测定电动势是用对消法在电位计上进行的。本实验只是为了定性进行比较,所以采用伏特计。浓度及酸度对电极电势的影响,可能导致氧化还原反应方向的改变,也可以影响氧化还原反应的产物。 三、仪器和药品 仪器:试管,烧杯,伏特计,表面皿,U 形管 药品:2 mol·L -1 HCl ,浓HNO 3, 1mol·L -1 HNO 3,3mol·L -1HAc ,1mol·L -1 H 2SO 4,3mol·L -1 H 2SO 4,0.1mol·L -1 H 2C 2O 4,浓NH 3·H 2O (2mol·L -1),6mol·L -1NaOH ,40%NaOH 。 1mol·L -1 ZnSO 4,1mol·L -1 CuSO 4,0.1mol·L -1KI ,0.1mol·L -1AgNO 3,0.1mol·L -1KBr ,0.1mol·L -1FeCl 3,0.1mol·L -1Fe 2(SO 4)3,0.1mol·L -1FeSO 4,1mol·L -1FeSO 4, 0.4mol·L -1K 2Cr 2O 7, 0.001mol·L -1KMnO 4,0.1mol·L -1Na 2SO 3,0.1mol·L -1Na 3AsO 3, 0.1mol·L -1 MnSO 4, 0.1mol·L -1NH 4SCN , 0.01mol·L -1I 2水,Br 2水,CCl 4,固体NH 4F ,固

相关文档
最新文档