椭圆知识点详细归纳

椭圆知识点详细归纳
椭圆知识点详细归纳

椭圆知识点归纳

一、椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹。

注意:||221F F a >表示椭圆;||221F F a =表示线段21F F ;||221F F a <没有轨迹; 练习1.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是 ( C )

A .椭 圆

B .直 线

C .线 段

D . 圆

2、10)4()4(2222=+-+++y x y x 表示的轨迹是___椭圆___________

二:椭圆的标准方程

1.当焦点在x 轴上时,椭圆的标准方程:12222=+b

y a x )0(>>b a ,其中2

22b a c -=

2.当焦点在y 轴上时,椭圆的标准方程:12222=+b

x a y )0(>>b a ,其中2

22b a c -=;

注意:1只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;

2.在椭圆的两种标准方程中,都有)0(>>b a 和2

22b a c -=; 3.椭圆的焦点总在长轴上.

当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 4.方程均不为零)C B A C By Ax ,,(2

2

=+表示椭圆的条件

方程C By Ax =+2

2

可化为

122=+C

By C Ax ,即12

2=+B

C By A C x ,所以只有A 、B 、C 同号,且A ≠B 时,方程表示椭圆。当

B C A C >时,椭圆的焦点在x 轴上;当B

C

A C <时,椭圆的焦点在y 轴上。 1、方程22

12516x y k k

+=-+表示焦点在y 轴上的椭圆,则k 的范围是-----------------------( C ) A.1625k -<< B. 9162k -<<

C. 9252k <<

D.92

k > 2.设圆(x +1)2

+y 2

=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( D ). A.4x 2

21-4y 2

25=1 B.4x 2

21+4y 2

25=1 C.4x 2

25-4y

2

21

=1 D.4x 225+4y

2

21

=1

3.(2013·浙江台州调研)已知点M (3,0),椭圆x 24+y 2

=1与直线y =k (x +3)交于点A 、B ,则△ABM 的

周长为( B )

A .4

B .8

C .12

D .16 三 椭圆的几何性质:

(1)椭圆(以122

22=+b

y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;

③对称性:两条对称轴0,0x y

==,一个对称中心(0,0)

,四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2

a x c

; ⑤离心率:c

e a

=

,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。⑥过焦点弦,通经最短,通径2

2b a

(7)椭圆上与焦点最短距离为a-c ,最大距离为a+c

1.椭圆x 2+4y 2=1的离心率为(A ).

A.32

B.34

C.22

D.23

2、已知椭圆22

1:318C x y +=,A 是椭圆上任一点,O 是坐标原点,则O A 、两点的最大距离是( B )

A .22

B .23

C .2

D .6

3.椭圆x 225+y 2

9

=1上的点P 到椭圆左焦点的最大距离和最小距离分别是( C )

A .8,2

B .5,4

C .9,1

D .5,1

(2).共焦点的椭圆标准方程形式上的差异

共焦点,则c 相同。与椭圆122

22=+b y a x )0(>>b a 共焦点的椭圆方程可设为

122

2

2=+++m

b y m a x )(2b m ->,此类问题常用待定系数法求解。 练习.椭圆2222

222222

222

11()x y x y a b k a b a k b k

+=+=>>--和的关系是( D) A .有相同的长、短轴

B . 有相同的离心率

C .有相同的准线

D .有相同的焦点

(3)点与椭圆的位置关系:

(1)点00(,)P x y 在椭圆外?22

00

221x y a b +>; (2)点00(,)P x y 在椭圆上?2

20220b y a x +=1;

(3)点00(,)P x y 在椭圆内?2200

221x y a b

+<

1.点A (a,1)在椭圆x 24+y 2

2=1的内部,则a 的取值范围是( A )

A .-2

B .a <-2或a > 2

C .-2

D .-1

4=1的位置关系为( B )

A .相切

B .相交

C .相离

D .不确定 四.直线与圆锥曲线的位置关系:

(1)相交:0?>?直线与椭圆相交;

(2)相切:0?=?直线与椭圆相切; (3)相离:0?

22221x y a b

+=与直线0Ax By C ++=有公共点的充要条件是22222

A a

B b

C +>(相交) 22

221x y a b +=与直线0Ax By C ++=有公共点的充要条件是22222A a B b C +=(相切) 22221x y a b

+=与直线0Ax By C ++=有公共点的充要条件是22222

A a

B b

C +<(相切)

1直线y ―kx ―1=0与椭圆22

15x y m

+=恒有公共点,则m 的取值范围是______(答:[1,5)∪(5,+∞)); 2.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )

A .3 2

B .2 6

C .27

D .4 2

五、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:20tan

||2

S

b c y θ

==,当

0||y b =即P 为短轴端点时,m ax S 的最大值为bc ;

Eg .设M 是椭圆116

252

2=+y x 上一点,F 1、F 2为焦点,621π=∠MF F ,则?21F MF S

六 12||||PF PF ?与 12PF PF ?的范围 12||||PF PF ?范围为22

[,]b a ,1

2PF PF ?的范围为2222

[,]b c a c --

1、椭圆2

214

x y +=两个焦点分别是12,F F ,点P 是椭圆上任意一点,则12

PF PF ?的取值范围是

( C )

A .[]1,4

B .[]1,3

C .[]2,1-

D .[]1,1-

2.设P 是椭圆2

214

x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 4 ;最小值为 1 。

七、弦长公式

若直线

y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB

212

1k x x +-,若12,y y 分别为A 、B 的纵坐标,则AB

2121

1y y k

-+

,若弦AB 所在直线方程设为x ky b =+,则AB

212

1k y y +-。特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化

为两条焦半径之和后,利用第二定义求解。

公式记忆

弦长公式口决:

小方积、大方和;成对去减单身方,减完单方去下方。二倍根号紧跟随

1、过椭圆x 225+y 2

9

=1的右焦点且倾斜角为45°的弦AB 的长为( C ) A .5 B .6 C.90

17

D .7

八、中点弦问题(椭圆第三定义)

1、AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a

?=-=e 2

-1即

202y a x b K AB

-=。且AB 直线方程为0022x x y y a b +=22

0022x y a b +

2、过椭圆22

221x y a b

+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,

则直线BC 有定向且20

20

BC

b x k a y =(常数). 3在椭圆()22

22C 10x y a

b

a b

+=:中,A 、B 是关于原点对称的两点,P 是椭圆上异于A 、B 的一点,

若PA PB k k 、存在,则有:2

2

2

=1=PA PB b k k e a ?--

4

、过椭圆22

221x y a b += (a >0, b >0)上任一点00(,)A x y 作椭圆的切线,则OA 的斜率与切线斜率之积为

e 2

-1

5、如果焦点在y 轴上,以上结论都变为倒数

6、若000(,)P x y 在椭圆22

221x y a b +=(a >0,b >0)内,则被Po 所平分的中点弦的方程是

22

00002222x x y y x y a b a b

+=+. 7、若000(,)P x y 在椭圆22221x y a b +=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b

+=+.

九.如何计算椭圆的扁圆程度与离心率的关系及离心率范围

1长轴与短轴的长短关系决定椭圆形状的变化。离心率)10(<<=e a

c e ,因为2

22b a c -=,0>>c a ,

用b a 、表示为)10()(12

<<-=e a

b e 。

显然:当a b 越小时,)10(<

b

越大,)10(<

于圆。

2 椭圆上存在一点P,满足12||||PF PF λ=,则e 的范围为1

[

,1)1λλ-+ 3、椭圆上存在一点P,满足12F PF ∠=α,则e 的范围为[[sin

,1)2α

4、设椭圆的焦点三角形的底角分别为,αβ,则离心率为sin()

sin sin αβαβ++

十、椭圆的参数方程

(1)椭圆:焦点在x 轴上时12222=+b

y a x (222

a b c =+)?{

cos sin x a y b ??==(参数方程,其中?为参数) 1.已知点(m ,n )在椭圆8x 2+3y 2=24上,则2m +4的取值范围是

( )

A .[4-23,4+23]

B .[4-3,4+3]

C .[4-22,4+22]

D .[4-2,4+2]

十一、 椭圆的切线方程

1若000(,)P x y 在椭圆22

221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b

+=.

2若000(,)P x y 在椭圆22

221x y a b

+=外,则过0P 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程

00221x x y y

a b

+=. 联想一:(1)过椭圆)0(122

22>>=+b a b y a x 上一点),(00y x M 切线方程为12020=+b y y a x x ;

(2)当),(00y x M 在椭圆122

22=+b

y a x 的外部时,过M 引切线有两条,过两切点的弦所在直线方程

为:12020=+b

y

y a x x

证明:(1)22221x y a b +=的两边对x 求导,得22220x yy a b '+=,得020

2

x x b x y a y ='

=-,由点斜式得切线方程为20

0020

()b x y y x x a y -=--,即22000022221x x y y x y a b a b +=+= 。

(2)设过椭圆)0(122

22>>=+b a b

y a x 外一点),(00y x M 引两条切线,切点分别为),(11y x A 、

),(22y x B 。由(1)可知过A 、B 两点的切线方程分别为:12121=+b y y a x x 、12222=+b

y

y a x x 。又因

),(00y x M 是两条切线的交点,所以有1201201=+b y y a x x 、1202202=+b y

y a x x 。观察以上两个等式,

发现),(11y x A 、),(22y x B 满足直线12020=+b

y

y a x x ,所以过两切点A 、B 两点的直线方程为

12020=+b

y

y a x x 。 评注:因),(00y x M 在椭圆)0(122

22>>=+b a b

y a x 上的位置(在椭圆上或椭圆外)的不同,

同一方程12020=+b

y

y a x x 表示直线的几何意义亦不同。

联想三:(1)过圆锥曲线22

0Ax Cy Dx Ey F ++++=(A ,C 不全为零)上的点),(00y x M 的

切线方程为00

00022

x x y y Ax x Cy y D

E F ++++++=;(2)当),(00y x M 在圆锥曲线220Ax Cy Dx Ey F ++++=(A ,C 不全为零)的外部时,过M 引切线有两条,过两切点的弦所在直

线方程为:0000022

x x y y Ax x Cy y D

E F ++++++= 根据前面的特点和圆上点的切线方程,得到规律:过曲线上的点),(00y x M 的切线方程为:把原方程中的2

x 用0x x 代换,2

y 用0y y 代换。若原方程中含有x 或y 的一次项,把x 用

2

x x +代换,y 用

2

y y +代换,得到的方程即为过该点的切线方程。当点),(00y x M 在曲线外部时,过M 引切线有两条,过两切点的弦所在直线方程为:00

00022

x x y y Ax x Cy y D E F ++++++=

十二、圆锥曲线的中点弦问题及存在对称点问题

遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆122

22=+b

y a x 中,以00(,)P x y 为中点的弦所在直线的斜

率k=-0

20

2y a x b ;

例1:已知椭圆C :3x 2+4y 2=12,试确定m 的取值范围,使得对于直线l :y=4x +m ,椭圆C 上有不同两点关于这条直线对称.

解:设存在两点A (x 1,y 1)、B(x 2,y 2)关于l 对称,中点为C (x 0,y 0),

则AB 所在直线为y=-14 x +b. 与椭圆联立得:13

4 x 2-2bx +4b 2-12=0,

∴ x 0=

x 1+x 22 = 4b

13

, y 0= y 1+y 22 = -14 x 1+b -1

4 x 2+b 2 = 12b

13

.

∵ C 在y=4x +m 上, ∴12b 13 = 4b 13 ×4+m, b=- 13m

4

.

又∵ △=4b 2-4× 13

4

(4b 2-12)=4b 2-52b 2+13×12>0, 故

b 2<

134 ,即 169m 216 <134 ,解得:-213 13

. 由此解题过程不难归纳出步骤如下:

1.假设这样的对称点A 、B 存在,利用对称中的垂直关系设出两点A 、B 所在的直线方程. 2.联立AB 所在直线方程与圆锥曲线方程,求出中点C 的坐标. 3.把C 的坐标代入对称直线,求出两个参数之间的等式. 4.利用联立后方程的△求出其中需求参数的范围. 第二种解法(点差法):

已知椭圆C :3x 2+4y 2=12,试确定m 的取值范围,使得对于直线l :y=4x +m ,椭圆C 上有不同两点关于这条直线对称.

解:设存在两点A (x 1,y 1)、B(x 2,y 2)关于l 对称,中点为C (x,y ),则 3x 12+4y 12=12, 3x 22+4y 22=12, 得

y 1-y 2x 1-x 2 =- 3(x 1+x 2)4(y 1+y 2)

=- 3x 4y =- 1

4 ,∴ y=3x.

联立y=4x +m,解的x=-m,y=-3m,∵M 在椭圆内部,(关键,等效于常规法中的△)

∴(-m)24 +(-3m)23 <1,即-213 13

这种解法的步骤是:

1o 设出两点和中点坐标(x ,y );2o 用“点差法”根据垂直关系求出x ,y 满足的关系式; 3o 联立直线方程,求出交点,即中点; 4o 由中点位置及对应范围求出参数取值范围.

如(1)如果椭圆

22

1369

x y +=弦被点A (4,2)平分,那么这条弦所在的直线方程是 (2)已知直线y=-x+1与椭圆22

221(0)x y a b a b

+=>>相交于A 、B 两点,且线段AB 的中点在直线L :x -2y=0上,

则此椭圆的离心率为_______

(3)试确定m 的取值范围,使得椭圆13

42

2=+y x 上有不同的两点关于直线m x y +=4对称

十三、椭圆的第二定义

与一个定点的距离和它到一条定直线的距离的比是常数

时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数

是椭圆的离心率.

例 已知椭圆

内有一点 , 是椭圆的

右焦点,在椭圆上有一点

,使

的值最小,求

的坐标.(如图)

分析:若设 ,求出 ,再计算最小值是很繁的.由于 是椭圆上一点到焦点

的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关.故有如下解法.

解:设 在右准线 上的射影为 .由椭圆方程可知

, , .根据椭圆的第二定义,有

.∴

.显然,当

三点共线时,

有最小值. 过

准线的垂线 . 由方程组 解得 . 即 的坐标为

练习:.椭圆

221259x y +=上的点P 到左准线的距离为52

,那么P 到右焦点距离为 A .

8

B .256

C .92

D .158

十四 、椭圆的焦半径椭圆的焦半径公式:

(左焦半径)01ex a r += (右焦半径)02ex a r -= 其中e 是离心率

由椭圆第二定义可知:归)0()(

),0()(0002

200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=

总结起来为“左加右减”. 焦点在y 轴上的椭圆的焦半径公式:

?

?

?-=+=020

1ey a MF ey a MF ( 其中21,F F 分别是椭圆的下上焦点) 十五、椭圆焦长以及焦比问题 过椭圆

()012

22

2>>=+

b a b

y a

x 的左焦点F 1的弦AB 与右焦点F 2围成的三角形2ABF △的周长是4a ;

焦长公式:A 是椭圆()

012

22

2

>>=+b a b

y a

x 上一点,1F 、2F 是左、右焦点,21F AF ∠为α,AB 过1

F ,c

是椭圆半焦距,则(1)

αcos 21c a b AF -=;(2)α

cos 2

1c a b BF +=

定理 已知焦点在x 轴上的圆锥曲线C ,经过其焦点F 的直线交曲线于A 、B 两点,直线AB 的

倾斜角为θ,AF FB λ=,则曲线C 的离心率e 满足等式:

1cos 1e λθλ-=

+(1) 2111

e k λλ-=++(2).

已知焦点在y 轴上的圆锥曲线C ,经过其焦点F 的直线交曲线于A 、B 两点,若直线AB 的倾斜角为θ,斜率为k (0k ≠),AF FB λ=,则曲线C 的离心率e 满足等式1

sin 1

e λθλ-=

+,

211

11

e k λλ-=+

+.

1(高考全国卷Ⅱ理科第12题)已知椭圆

的离心率为。过右焦点且斜率为

的直线于相交于

两点,若,则

( )

2.(全国Ⅰ卷)已知双曲线()22

2210,0x y C a b a b

-=>>:的右焦点为F ,过F 且斜率为3的直线交C 于

A B 、两点,若4AF FB =,则C 的离心率为 ( )

A .

65 B .7

5

C .58

D .95 3(高考全国卷Ⅰ理科第16题)已知是椭圆

的一个焦点,是短轴的一个端点,线段

的延长线交

于点

,且

,则

的离心率为___

十六、直线与圆锥曲线交点问题(联立用韦达定理)

1.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35

.

(1)求C 的方程;

(2)求过点(3,0)且斜率为4

5的直线被C 所截线段的中点坐标.

十七、 蒙日圆(选学)

椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,该圆的半径等于椭圆长半轴和短半轴平方和的算术平方根。

如图,设椭圆的方程是22

221x y a b

+=。两切线PM 和PN 互相垂直,交于点P 。

求证:点P 在圆2

2

2

2

x y a b +=+上。

(完整版)椭圆知识点复习总结

椭圆知识点总结复习 1. 椭圆的定义: (1)椭圆:焦点在x 轴上时122 22=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参 数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程 22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 例一:已知线段AB 的两个端点A ,B 分别在x 轴,y 轴上,AB=5,M 是AB 上的一个点,且AM=2,点M 随AB 的运动而运动,求点M 的运动轨迹方程 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线: 两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 例二:设椭圆22 221(0)x y a b a b +=>>上一点P 作x 轴的垂线,恰好过椭圆的一个焦 点1F ,此时椭圆与x 轴交于点A ,与y 轴交于点B ,且A,B 两点所确定的直线AB 与OP 平行,求离心率e

2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系:(往往设而不求) (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离:0?>与过点(2,0),(0,1)A B 的直线有且只有一个公共 点T ,且椭圆的离心率2 e = (1)求椭圆的方程 (2)设12,F F 分别为椭圆的左,右焦点,M 为线段2AF 的中点,求证:1ATM AFT ∠=∠ (3)求证:2 121 2 AT AF F =. ?4、焦半径(圆锥曲线上的点P 到焦点F 的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径0r ed a ex ==±,其中d 表示P 到与F 所对应的准线的距离。 例五:已知椭圆22 221x y a b +=上一点P 到椭圆左焦点的距离为3,则点P 到右 准线的距离为____(答:10/3); 例六:椭圆1342 2=+y x 内有一点)1,1(-P ,F 为右焦点,在椭圆上有一点M , 使MF MP 2+ 之值最小,则点M 的坐标为_______(答:)1,3 6 2( -) ; 5、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形) 问题:0||S c y =,当0||y b =即P 为短轴端点时,m ax S 的最大值为bc ;

高中数学知识点总结(精华版)

高中数学知识点总结 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

最新椭圆基本知识点总结

椭圆知识点 知识点一:椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质 椭圆:12222=+b y a x )0(>>b a 与 122 22=+b x a y )0(>>b a 的简单几何性质

1.椭圆标准方程中的三个量c b a ,,的几何意义 222c b a += 2.通径:过焦点且垂直于长轴的弦,其长a b 2 2 3.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠ 为最大角。 4.焦点三角形的面积2 tan 2 21θ b S F PF =?,其中21PF F ∠=θ 5. 用待定系数法求椭圆标准方程的步骤. (1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程: ①依据上述判断设方程为2222b y a x +=1)0(>>b a 或22 22a y b x +=1)0(>>b a ②在不能确定焦点位置的情况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求. 6.点与椭圆的位置关系: 2222b y a x +<1,点在椭圆内,2222b y a x +=1,点在椭圆上,2 2 22b y a x +>1, 点在椭圆外。 7.直线与椭圆的位置关系 设直线方程y =kx +m ,若直线与椭圆方程联立,消去y 得关于x 的一元二次方程:ax 2+bx +c =0(a ≠0). (1)Δ>0,直线与椭圆有两个公共点;(2)Δ=0,直线与椭圆有一个公共点; (3)Δ<0,直线与椭圆无公共点. 8.弦长公式: 若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则弦长

高中数学:椭圆知识点归纳总结及经典例题

椭 圆 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c). 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx 2 +ny 2 =1(m>0,n>0)不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M(x, y),点P(x 0 , y 0 ), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得x 2 +(2y)2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.范围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b)、B 2(0, b)是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a,0)、A 2(a,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a, 0)、A 2(a, 0)、B 1(0, -b)、B 2(0, b).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2 . a A 1y O F 1F 2 x B 2 B 1 A 2c b y O F 1F 2x M c c x F 2 F 1 O y M c c y x P O P ' M

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222 x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

椭圆知识点总结附例题

圆锥曲线与方程 椭 圆 知识点 一.椭圆及其标准方程 1.椭圆的定义:平面内与两定点F 1,F 2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c}; 这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。 (212F F a =时为线段21F F ,212F F a <无轨迹)。 2.标准方程: 222c a b =- ①焦点在x 轴上:122 22=+b y a x (a >b >0); 焦点F (±c ,0) ②焦点在y 轴上:122 22=+b x a y (a >b >0); 焦点F (0, ±c ) 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:22 1x y m n += 或者 mx 2+ny 2=1 二.椭圆的简单几何性质: 1.范围 (1)椭圆12222=+b y a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b (2)椭圆12222=+b x a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a 2.对称性 椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称 中心,椭圆的对称中心叫做椭圆的中心

3.顶点 (1)椭圆的顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ) (2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭 圆的长半轴长和短半轴长。 4.离心率 (1)我们把椭圆的焦距与长轴长的比 22c a ,即a c 称为椭圆的离心率, 记作e (10<

高二数学椭圆的知识点整理

第1讲 课题:椭圆 课 型:复习巩固 上课时间:2013年10月3日 教学目标: (1)了解圆锥曲线的来历; (2)理解椭圆的定义; (3)理解椭圆的两种标准方程; (4)掌握椭圆离心率的计算方法; (5)掌握有关椭圆的参数取值范围的问题; 教学重点:椭圆方程、离心率; 教学难点:与椭圆有关的参数取值问题; 知识清单 一、椭圆的定义: (1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 说明:两个定点叫做椭圆的焦点; 两焦点间的距离叫做椭圆的焦距()c 2. (2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之 比为常数e ,当10<>=+F F a a PF PF ; (){} .02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程: 焦点在x 轴: ()0122 22>>=+b a b y a x ; 焦点在y 轴: ()0122 22>>=+b a b x a y . 说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,且满足 .222c b a += 四、二元二次方程表示椭圆的充要条件 方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件:

上式化为12 2=+C By C Ax ,122=+B C y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当 B C A C >时,椭圆的焦点在x 轴上;当B C A C <时,椭圆的焦点在y 轴上. 五、椭圆的几何性质(以()0122 22>>=+b a b y a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式 1,122 22≤≤b y a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3.顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5.离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=, 即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆. 6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为a b 2 2.

高中数学解析几何专题之椭圆汇总解析版

圆锥曲线第1讲 椭圆 【知识要点】 一、椭圆的定义 1. 椭圆的第一定义: 平面内到两个定点1F 、2F 的距离之和等于定长a 2( 2 12F F a >)的点的轨迹叫椭圆,这两 个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。 注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作a 2)大于这两个定点之间的距离 2 1F F (记作c 2),否则点的轨迹就不是一个椭圆。具体情形如下: (ⅰ)当c a 22>时,点的轨迹是椭圆; (ⅱ)当c a 22=时,点的轨迹是线段21F F ; (ⅲ)当c a 22<时,点的轨迹不存在。 注2:若用M 表示动点,则椭圆轨迹的几何描述法为 a MF MF 221=+(c a 22>, c F F 221=),即 2 121F F MF MF >+. 注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件: a MF MF 221=+千万不可忘记。 2. 椭圆的第二定义: 平面内到某一定点的距离与它到定直线的距离之比等于常数e (10<>b a ); (2)焦点在y 轴、中心在坐标原点的椭圆的标准方程是122 22=+b x a y (0>>b a ).

注1:若题目已给出椭圆的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看长半轴跟谁走。长半轴跟x 走,椭圆的焦点在x 轴;长半轴跟y 走,椭圆的焦点在y 轴。 (1)注2:求椭圆的方程通常采用待定系数法。若题目已指明椭圆的焦点的位置,则可设 其方程为12222=+b y a x (0>>b a )或122 22=+b x a y (0>>b a );若题目未指明椭圆的焦 点究竟是在x 轴上还是y 轴上,则中心在坐标原点的椭圆的方程可设为 12 2=+ny mx (0>m ,0>n ,且n m ≠). 三、椭圆的性质 以标准方程122 22=+b y a x (0>>b a )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:a x a ≤≤-,b y b ≤≤-; (2)对称性:关于x 轴、y 轴轴对称,关于坐标原点中心对称; (3)顶点:左右顶点分别为)0,(1a A -,)0,(2a A ;上下顶点分别为),0(1b B ,),0(2b B -; (4)长轴长为a 2,短轴长为b 2,焦距为c 2; (5)长半轴a 、短半轴b 、半焦距c 之间的关系为2 2 2 c b a +=; (6)准线方程:c a x 2 ± =; (7)焦准距:c b 2 ; (8)离心率: a c e = 且10<

椭圆知识点复习资料总结

【椭圆】 一、椭圆的定义 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121 F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆。这两 个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形。 二、椭圆的方程 1、椭圆的标准方程(端点为a 、b ,焦点为c ) (1)当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其 中222b a c -=; (2)当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其 中222b a c -=; 2、两种标准方程可用一般形式表示:22 1x y m n += 或者 mx 2+ny 2=1 三、椭圆的性质(以122 22=+b y a x )0(>>b a 为例) 1、对称性: 对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴为对称轴的轴

对称图形;并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 2、范围: 椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 3、顶点: ①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶 点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=, b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。 4、离心率: ① 椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作 a c a c e == 22。 ② 因为)0(>>c a ,所以e 的取值范围是)10(<

初高中各学科知识点总结及口诀汇总 珍藏版

高中各学科知识点总结及口诀汇 总 语文 中国古代文化常识汇总 高考:语文基础知识口诀 中学语文:古典诗词鉴赏口诀 高考语文:语言运用解题歌诀 高考语文:语文基础知识考点歌诀 数学 高中数学公式定理记忆口诀 高中立体几何学习记忆口诀 高中数学知识点总结 高中数学常用公式及常用结论 英语 常用英语谚语100条 高中英语语法口诀 高中英语:语法学习记忆口诀初中各学科知识点总结及口诀大 全 语文 中考语文知识点梳理 初中语文名人名句大集合 初中古诗文中考必背知识点初中学科之语文知识点记忆口诀大全 数学 初中数学知识点总结 初中学科之数学知识点记忆口诀大全 英语 初中英语常见谚语 初中英语词组总结

高中英语:介词运用记忆口诀高考英语阅读题解题口诀 高考英语短文改错口诀 物理 高一物理:知识点理解记忆口诀高二物理:知识点理解记忆口诀高中物理:电学知识记忆口诀高中物理:基础知识理解记忆口诀 化学 高中化学口诀完全版 有机化学基础 高中化学方程式大全 高中化学记忆口诀 高中化学基本概念和基本理论 高中化学:基础知识记忆口诀 高中化学:实验操作知识点记忆口诀 生物 高中生物口诀大全初中学科之英语知识点巧记口诀大全 物理 初中物理知识点总结 初中物理公式 初中物理知识“顺口溜”总结 初中学科之物理知识点记忆口诀 化学 常见化学物质俗称大全 初中化学方程式大全1 初中化学方程式大全2 初中化学知识点总结完全版1 初中化学知识点总结完全版2 九年级化学中考化学考点总结

高中生物:知识要点理解记忆口诀 政治 高中政治知识点总结 高中政治:哲学常识速记口诀高中政治:哲学要点学习记忆口诀 历史 高考历史:历史朝代歌诀 高考历史:古代文化记忆口诀高考备考:中国古代史记忆口诀中国历史:科技文化主要成就歌诀 地理 高考地理雕虫小技:口诀记忆法高考地理:基础知识记忆歌诀高考地理:系列知识要点记忆口诀文综资料稳过270分 高中各科学法记忆口诀 美术初中学科之化学知识点记忆口诀大全 政治 初中政治知识点总结 初中学科之政治知识点记忆口诀大全 历史 历史中考知识点汇编 初中学科之历史知识点记忆口诀大全 地里 初中学科之地理知识点记忆口诀大全 生物 初中学科之生物知识记忆口诀

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来

椭圆知识点总结

椭圆知识点总结 Revised as of 23 November 2020

椭圆知识点 知识点一:椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质 椭圆:12222=+b y a x )0(>>b a 与 122 22=+b x a y )0(>>b a 的简单几何性质 标准方程 122 22=+b y a x )0(>>b a 122 22=+b x a y )0(>>b a 图形 性质 焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴长 长轴长=a 2,短轴长=b 2 长半轴长=a ,短半轴长=b (注意看清题目) 离心率 )10(<<= e a c e c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1; (p 是椭圆上一点)(不等式告诉我们椭圆上一点到焦点距离的范围)

注意:①与坐标系无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等;②与坐标系有关的性质,如:顶点坐标、焦点坐标等 知识点三:椭圆相关计算 1.椭圆标准方程中的三个量c b a ,,的几何意义 222c b a += 弦,其长a b 2 2 2.通径:过焦点且垂直于长轴的 焦点弦:椭圆过焦点的弦。 3.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠为最大角。 4.椭圆上一点和两个焦点构成的三角形称为焦点三角形。 焦点三角形的面积2tan 2 21θ b S F PF =?,其中21PF F ∠=θ(注意公式的推导) 5.求椭圆标准方程的步骤(待定系数法). (1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

椭圆知识点总结

椭圆的知识点总结(一) 一、椭圆的定义 1、椭圆的第一定义:平面内与两定点F 1、F 2的距离和等于常数(2a ,且2a>|F 1F 2|)点的轨迹叫做椭圆。 说明:两个定点F 1(c ,0)、F 2(-c ,0)叫做椭圆的焦点; 两焦点间的距离叫做椭圆的焦距(2c ); 建立合适的坐标系,椭圆截与两焦点连线重合的直线所得的弦为长轴,长为2a ,椭圆截垂直平分两焦点连线的直线所得弦为短轴,长为2b 。 2、椭圆的第二定义:平面上到定点的距离与到定直线的距离之比为常数e ,当0

二、椭圆的方程 1、椭圆的标准方程 ● 焦点在x 轴,22 22x 1y a b +=(a>b>0) ● 焦点在y 轴,22 22x 1y b a +=(a>b>0) 椭圆上任意一点到F 1,F 2距离的和为2a ,F 1,F 2之间的距离为2c 。而公式中的b2=a2-c2,b 是为了书写方便设定的参数,同时在椭圆的图像中,b 代表短轴的一半。 ● 当焦点位置不明确时,方程可设为2 2 m 1x ny +=(m>0,n>0,且m≠n ),即标准方程 的统一形式。 ● 根据椭圆的第一定义推导标准方程: 考虑焦点在x 轴的情况(焦点在y 轴的情况类似),根据椭圆的第一定义,建立坐标系,以F 1,F 2的连线为x 轴,F 1,F 2的中垂线为y 轴。 1222222222222 222222242222,)F -,0F ,022()44()444()() 22p x y c c a a x c y a x c y a xc a x c y a xc a x a xc a c a y a a xc x c a ==-++=--+=-??-+=-??-++=-+设点坐标为(,坐标为(),坐标为()222224222222222222422222422224222222222222222222 22)() 1x a c a y a x c b a c a x a a b a y a x a b a x a a b a y a x a x b a b a y x b x b a y a b x y a b ++=+=-+-+=+-+-+=+--+=-+=+=令,代入,有 ( ● 根据椭圆的第二定义推导标准方程:

椭圆知识点归纳总结和经典例题

椭圆的基本知识 1.椭圆的定义:把平面与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 12 2=+b a (a > b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx2+ny2=1(m>0,n>0) 不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线 向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解: (相 关点法)设点M (x , y ),点P (x 0, y 0), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得 x 2 +(2y )2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2 , 即c 2=a 2-b 2 . 7.椭圆的几何性质:

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结 椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在x 轴上时12222=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? (ABC ≠0,且A ,B ,C 同号,A ≠B )。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个 焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离: 0?

相关文档
最新文档