常用液压基本回路

液压传动

主讲教师:吴海燕

whyfool@https://www.360docs.net/doc/d113673522.html,

第七章常用液压基本回路

所谓基本回路,就是由一些液压元件组成的,用来完成特定功能的油路结构。

按基本回路在系统中功能分为压力控制回路、速度控制回路、方向控制回路和多执行元件控制回路。

§7.1 压力控制回路

压力控制回路是利用压力控制阀控制整个液压系统或其分支油路的工作压力,以满足执行元件对力或力矩的要求。主要有调压回路、减压回路、增压回路、卸荷回路、保压回路、平衡回路和释压回路等。

?7.1.1 调压回路

调压回路的功用是调定或限制液压系统的最高工作压力。多用溢流阀来实现。

1、单级调压回路(书

溢流阀调定系统压力

?2、二级调压回路

图示位置压力由高压溢流阀3调节。4通电,压力由远程调压阀5调节。先导溢流阀实现远程调压的条件:5的调定压力低于3的调定压力。

动画演示图7-15 二级调压回路低压

图7-16 二级调压回路

远程调压阀

?3、多级调压回路

图示,由阀1调压,压力较高。YA+,由阀2或3调压,压力较低。为获得多级压力,阀2或3的调定压力必

须小于阀1的调定压力,否则,阀1将不起作用。动画演示3级调压

?4、无极调压回路

采用比例溢流阀

?7.1.2 减压回路

减压回路的功用是单独调节系统中某一分油路的压力,使其低于系统压力的调定值。

单级减压——用一个减压阀即可

分类< 多级减压——减压阀+远程调压阀即可无级减压——比例减压阀即可

动画演示二级减压回路

动画演示无极减压回路

?7.1.3 增压回路

增压回路用来使系统某一分油路获得比系统压力高但流量不大的油液。

1、单作用增压缸的增压回路

原理:p

2 = p

1

A

1

/ A

2

=p

1

D2/d2

特点:只能断续增压。

动画演示

?2、双作用增压缸的增压回路特点:能实现连续增压

动画演示

?7.1.4 卸荷回路

当系统中执行元件短时间工作时,常使液压泵在很小的功率下作空运转,而不是频繁启动驱动液压泵的原动机。因为泵的输出功率为其输出压力与输出流量之积,当其中的一项数值等于或接近于零时,即为液压泵卸荷。这样可以减少液压泵磨损,降低功率消耗,减小温升。卸荷的方式有两类,一类是液压缸卸荷,执行元件不需要保持压力,压力卸荷;另一类是液压泵卸荷,但执行元件仍需保持压力,流量卸荷。

?1、换向阀中位自动卸荷回路

用三位换向阀的中位机能卸荷。利用主阀处于中位时M. H.K型机能,使p→T,属零压式卸荷。

只适用于低压

小流量场合

动画演示

?2、二位二通换向阀和先导型溢流阀组合的卸荷回路实际中常把二位二通换向阀和先导型溢流阀做成一体,叫电磁溢流阀。

动画演示

?3. 限压式变量泵自动流量卸荷回路

当系统压力升高达到变量泵压力调节

螺钉调定压力时,压力补偿装置动作,

液压泵3输出流量随供油压力升高而

减小,直到维持系统压力所必需的流

量,回路实现保压卸荷,系统中的溢

流阀1作安全阀用,以防止泵的压力补

偿装置的失效而导致压力异常。

?4、蓄能器自动卸荷回路

当电磁铁1YA得电时,泵和蓄能器同时向液压缸左腔供油,推动活塞右移,接触工件后,系统压力升高。当系统压力升高到卸荷阀1的调定值时,卸荷阀打开,液压泵通过卸荷阀卸荷,而系统压力用蓄能器保持。

若蓄能器压力降低到允许的最小

值时,卸荷阀关闭,液压泵重新

向蓄能器和液压缸供油,以保证

液压缸左腔的压力是在允许的范

围内。图中的溢流阀2是当安全阀

用。

?7.1.5 保压回路

保压就是要在液压缸不动,仍维持规定的压力稳定不变。评价指标为保压时间和压力稳定性。

?利用蓄能器保压的回路动画演示

系统

液压泵油液<

蓄能器

压力继电器发讯使YA+

工作部件停止后,P↑ 液压泵卸荷,蓄能器

补充泄漏以保持压力

液压泵保压回路工作原理系统压力较低,

低压大流量泵供

油,系统压力升

高到卸荷阀的调

定压力时,低压

大流量泵卸荷,

高压小流量泵供

油保压,溢流阀

调节压力。

?7.1.6 平衡回路

为了防止立式液压缸与垂直运动的工作部件由于自重而自行下落造成事故或冲击,可以在立式液压缸下行时的回路上设置适当的阻力,产生一定的背压,以阻止其下降或使其平稳地下降,这种回路即为平衡回路。

?内控式单向顺序阀平衡回路

图示,缸停止因顺序阀关闭而平衡

左位,缸下行,因回路有单向顺

序阀作阻力,不会产生超速。

右位,缸上行,油经单向阀进入

缸下腔。

动画演示

?液控单向阀平衡回路

由于液控单向阀是锥面密封,泄漏小,故其闭锁性能好。回油路上的单向节流阀2是用于保证

活塞向下运动的平稳性。假如回油

路上没有节流阀,活塞下行时,液

控单向阀1将被控制油路打开,回

油腔无背压,活塞会加速下降,使

液压缸上腔供油不足,液控单向阀

会因控制油路失压而关闭。但关闭

后控制油路又建立起压力,又将阀

2打开,致使液控单向阀时开时闭,

活塞下行时很不平稳,产生振动或

冲击。

§7.2 速度控制回路

速度控制回路是改变执行元件的运动速度。

相应的回路有调速回路、快速运动回路和速度换接回路。

?7.2.1 调速回路

在液压系统中往往需要调节液压执行元件的运动速度,以适应主机的工作循环需要。液压系统中的执行元件主要是液压缸和液压马达,其运动速度或转速与输入的流量及自身的几何参数有关。

液压缸:v = q/A

液压马达:n = q/V

m

由上两式知:改变q、V

、A,皆可改变v或n,

m

一般A是不可改变的。

液压缸:改变q,即可改变v

∴ <

液压马达:既可改变q,又可改变V

m

调速回路调速方法节流调速——改变q

容积调速——改变泵和马达的V

容积节流调速——既可改变q,又可改变V

液压系统回路设计

1、液压系统回路设计 1.1、 主干回路设计 对于任何液压传动系统来说,调速回路都是它的核心部分。这种回路可以通过事先的调整或在工作过程中通过自动调整来改变元件的运行速度,但它的主要功能却是在传递动力(功率)。 根据伯努力方程: d q C x = (1-1) 式中 q ——主滑阀流量 d C ——阀流量系数 v x ——阀芯流通面积 p ?——阀进出口压差 ρ——流体密度 其中d C 和ρ为常数,只有v x 和p ?为变量。 液压缸活塞杆的速度: q v A = (1-2) 式中A 为活塞杆无杆腔或有杆腔的有效面积 一般情况下,两调平液压缸是完全一样的,即可确定1121A A =和1222A A =所以要保证两缸同步,只需使12q q =,由式(1-2)可知,只要主滑阀流量一定,则活塞杆的速度就能稳定。又由式(1-1)分析可知,如果p ?为一定值,则主滑阀流量q 与阀芯流通面积成正比即:v q x ∞,所以要保证两缸同步,则只需满足以下条件: 11p c ?=,22p c ?=且12v v x x = 此处主滑阀选择三位四通的电液比例方向流量控制阀,如图1-1所示。 图1-1 三位四通的电液比例方向流量控制阀 它是一种按输入的电信号连续地、按比例地对油液的流量或方向进行远距离控制的阀。比例阀一般都具有压力补偿性能,所以它输出的流量可以不受负载变化的

影响。与手动调节的普通液压阀相比,它能提高系统的控制水平。它和电液伺服阀的区别见表1-1。 表1-1 比例阀和电液伺服阀的比较 所以它被广泛应用于要求对液压参数进行连续远距离控制或程序控制,但对控制精度和动态特性要求不太高的液压系统中。 又因为在整个举身或收回过程中,单缸负载变化范围变化比较大(0~50T),而且举身和收回时是匀速运动,所以调平缸的功率为P Fv =,为变功率调平,为达到节能效果,选择变量泵。 综上所可得,主干调速回路选用容积节流调速回路。容积节流调速回路没有溢流损失,效率高,速度稳定性也比单纯容积调速回路好。 为保证p?值一定,可采用负荷传感液压控制,其控制原理图如图1-2所示。它主要利用负荷传感和压力补偿技术,可用单泵(或一组泵)驱动多个执行元件,各执行元件运动速度仅依赖于各节流阀开启度,而与各执行元件的负载压力和其它执行元件的工作状态无关。即使当泵的输出流量达不到实际需要时,各执行元件运动速度的比例关系仍然可以得到保持。此系统的这一特有的独立调速功能大大减少了作业中操纵者协调各执行元件动作所花费的时间,不但显著提高了作业效率,而且有效减轻了操作者的劳动强度。另外,能够以最节省能量的方式实现调速,系统无溢流损失,并以推动执行元件动作所需的最低压力供油。在工作间隙(发动机不停机,各执行元件处于无载状态,不动作),系统自动调节泵的排量到最小值。可以有效降低功率损耗、减小液压系统的温升,所以它是一种性能较好的新型液压系统。

液压基本回路讲解

单元六基本回路 学习要求 1、掌握各种基本回路所具有的功能,功能的实现方法 2、掌握各种基本回路的元件组成 3、能画出各种简单的基本回路 重点与难点: 本章的难点是:三种节流调速回路的速度—负载特性;液压效率的概念;三种容积调速回路的调速过程与特性;系统卸荷的卸荷方式;容积——节流调速的调速过程;同步回路中提高同步精度的补偿措施等。 第一节速度控制回路 速度控制回路是调节和改变执行元件的速度的回路,又称为调速回路;能实现执行元件运动速度的无级调节是液压传动的优点之一。速度控制回路包括调整工作行程速度的调速回路、空行程的快速运动回路和实现快慢速度切换的速度换接回路。 一、调速回路 调速是为了满足液压执行元件对工作速度的要求,在不考虑液压油的压缩性和泄漏的情况下。由液压系统执行元件速度的表达式 可知: 液压缸的运动速度为: 液压马达的转速: 所以,改变输入液压执行元件的流量q或改变液压缸的有效面积A(或液压马达的排量)均可以达到改变速度的目的。但改变液压缸工作面积的方法在实际中是不现实的,因此,只能用改变进入液压执行元件的流量或用改变变量液压马达排量的方法来调速。为了改变进入液压执行元件的流量,可采用变量液压泵来供油,也

可采用定量泵和流量控制阀,以改变通过流量阀流量的方法。 根据以上分析,液压系统的调速方法可以有以下三种: (1)节流调速:采用定量泵供油,由流量阀调节进入执行元件的流量来实现调节执行元件运动速度的方法。 (2)容积调速:采用变量泵来改变流量或改变液压马达的排量来实现调节执行元件运动速度的方法。 (3)容积节流调速:采用变量泵和流量阀相配合的调速方法,又称联合调速。(一)节流调速回路 节流调速回路的工作原理是通过改变回路中流量控制元件(节流阀和调速阀)通流截面积的大小来控制流入执行元件或从执行元件中流出的流量,以调节其运动速度。节流调速回路的优点是结构简单可靠、成本低,但这种调速方法的效率较低;所以,节流调速回路一般适用于小功率系统。根根流量阀在回路中的位置不同,分为进油节流调速、回油节流调速和旁路节流调速三种回路。 1、进油路节流调速回路 将流量阀装在执行元件的进油路上称为进油节流调速,如图6-1所以。在进油路节流调速回路中,泵的压力由溢流阀调定后,基本保持不变,调节节流阀阀口的大小,便能控制进入液压缸的流量,从而达到调速的目的,定量泵输出的多余油液经溢流阀排回油箱。

第八章液压基本回路(二)讲解

第八章液压基本回路(二) §4 速度控制回路 在很多液压装置中,要求能够调节液动机的运动速度,这就需要控制液压系统的流量,或改变液动机的有效作用面积来实现调速。 一、节流调速回路 在采用定量泵的液压系统中,利用节流阀或调速阀改变进入或流出液动机的流量来实现速度调节的方法称为节流调速。采用节流调速,方法简单,工作可靠,成本低,但它的效率不高,容易产生温升。 1.进口节流调速回路(如下图) 节流阀设置在液压泵和换向阀之间的压力管路上,无论换向阀如何换向,压力油总是通过节流之后才进入液压缸的。它通过调整节流口的大小,控制压力油进入液压缸的流量,从而改变它的运动速度。 2.出口节流调速回路(如下图) 节流阀设置在换向阀与油箱之间,无论怎样换向,回油总是经过节流阀流回油箱。通过调整节流口的大小,控制液压缸回油的流量,从而改变它的运动速度。 3.傍路节流调速回路(如下图) 节流阀设置在液压泵和油箱之间,液压泵输出的压力油的一部分经换向阀进入液压缸,另一部分经节流阀流回油箱,通过调整傍路节流阀开口的大小来控制进入液压缸压力油的流量,从而改变它的运动速度。 4.进出口同时节流调速回路(如下图) 在换向阀前的压力管路和换向阀后的回油管路各设置一个节流阀同时进行节流调速。 5.双向节流调速回路(如下图) 在单活塞杆液压缸的液压系统中,有时要求往复运动的速度都能独立调节,以满足工作的需要,此时可采用两个单向节流阀,分别设在液压缸的进出油管路上。 图(a)为双向进口节流调速回路。当换向阀1处于图示位置时,压力油经换向阀1、节流阀2进入液压缸左腔,液压缸向右运动,右腔油液经单向阀5、换向阀1流回油箱。换向阀切换到右端位置时,压力油经换向阀1、节流阀4进入液压缸右腔液压缸向左运动,左腔油液经单向阀3、换向阀1流回油箱。 图(b)为双向出口节流调速回路。它的原理与双向进口节流调速回路基本相同,只是两个单向阀的方向恰好相反。 6.调速阀的桥式回路(如下图) 调速阀的进出油口不能颠倒使用,当回路中必须往复流经调速阀时,可采用如图所示的桥式联接回路。换向阀6处于左端工作位置时,压力油经换向阀进入液压缸的左腔,活塞向右运动,右腔回油经单向阀1、调速阀5、单向阀2、换向阀6流回油箱,形成出口节流调速。换向阀6切换到右端工作位置时,压力油经换向阀6、单向阀3、调速阀5、单向阀4进入液压缸右腔,推动活塞向左运动,左腔油液经换向阀6流回油箱,形成进口节流调速。 二、容积调速回路 通过改变液压泵的流量来调节液动机运动速度的方法称为容积调速。采用容积调速的方法,系统效率高,发热少,但它比较复杂,价格较贵。 1.开式容积调速回路(如下图) 改变变量泵的流量可以调节液压缸的运动速度,单向阀用以防止停机时系统油液流空,溢流阀1在此回路作安全阀使用,溢流阀2作背压阀使用。

液压回路分析

6、如图所示的液压系统,可以实现快进-工进-快退-停止的工作循环要求 (1)说出图中标有序号的液压元件的名称。 (2)写出电磁铁动作顺序表。 解:(1)1-三位四通电磁换向阀,2-调速阀,3-二位三通电磁换向阀(2) 7、图示回路中,溢流阀的调整压力为5.0MPa、减压阀的调整压力为2.5MPa。试分析下列三种情况下A、B、C点的压力值。 (1)当泵压力等于溢流阀的调定压力时,夹紧缸使工件夹紧后。 (2)当泵的压力由于工作缸快进、压力降到1.5MPa时。 (3)夹紧缸在夹紧工件前作空载运动时。 解:(1)2.5MPa、5MPa、2.5MPa (2)1.5MPa、1.5MPa、2.5MPa (3)0、0、0

8、图示回路,若阀PY的调定压力为4Mpa,阀PJ的调定压力为2Mpa,回答下列问题:(1)阀PY 是()阀,阀P J是()阀; (2)当液压缸运动时(无负载),A点的压力值为()、B点的压力值为(); (3)当液压缸运动至终点碰到档块时,A点的压力值为()、B点的压力值为()。 解:(1)溢流阀、减压阀; (2)活塞运动期时P A=0,P B=0; (3)工件夹紧后,负载趋近于无穷大:P A=4MPa,P B=2MPa。 9、如图所示系统可实现“快进→工进→快退→停止(卸荷)”的工作循环。 (1)指出液压元件1~4的名称。 (2)试列出电磁铁动作表(通电“+”,失电“-”)。 解: 10、如图所示的液压回路,要求先夹紧,后进给。进给缸需实现“快进——工进——快退——停止”这四个工作循环,而后夹紧缸松开。 (1)指出标出数字序号的液压元件名称。 (2)指出液压元件6的中位机能。 (3)列出电磁铁动作顺序表。(通电“+”,失电“-”)

典型液压系统

单元七典型液压系统 学习目标: 1.掌握读懂液压系统图的阅读和分析方法 2.掌握YT4543型液压动力滑台液压系统的组成、工作原理和特点 3.掌握YB32-200型压力机液压系统的组成、工作原理和特点 4.掌握Q2—8汽车起重机液压系统的组成、工作原理和特点 5.能绘制电磁铁动作循环表? 重点与难点: 典型液压系统是对以前所学的液压件及液压基本回路的结构、工作原理、性能特点、应用,对液压元件基本知识的检验与综合,也是将上述知识在实际设备上的具体应用。本章的重点与难点均是对典型液压系统工作原理图的阅读和各系统特点的分析。对于任何液压系统,能否读懂系统原理图是正确分析系统特点的基础,只有在对系统原理图读懂的前提下,才能对系统在调速、调压、换向等方面的特点给以恰当的分析和评价,才能对系统的控制和调节采取正确的方案。因此,掌握分析液压系统原理图的步骤和方法是重中之重的内容。 1.分析液压系统工作原理图的步骤和方法 对于典型液压系统的分析,首先要了解设备的组成与功能,了解设备各部件的作用与运动方式,如有条件,应当实地考察所要分析的设备,在此基础上明确设备对液压系统的要求,以此作为液压系统分析的依据;其次要浏览液压系统图,了解所要分析系统的动力装置、执行元件、各种阀件的类型与功能,此后以执行元件为中心,将整个系统划分为若干个子系统油路;然后以执行元件动作要求为依据,逐一分析油路走向,每一油路均应按照先控制油路、后主油路,先进油、后回油的顺序分析;再后就是针对执行元件的动作要求,分析系统的方向控制、速度控制、压力控制的方法,弄清各控制回路的组成及各重要元件的作用;更后就是通过对各执行元件之间的顺序、同步、互锁、防干扰等要求,分析各子系统之间的联系;最后归纳与总结整个液压系统的特点,加深对系统的理解。 2.在此选用YT4543型组合机床动力滑台的液压系统,作为金属切削专用机床进给部件的典型代表。此系统是对单缸执行元件,以速度与负载的变换为主要特点。要求运动部件实现“快进一一工进一二工进一死挡铁停留一快退—原位停止”的工作循环。具有快进运动时速度高负载小与工进运动时速度低负载大的特点。系统采用限压式变量泵供油,调速阀调速的容积节流调速方式,该调速方式具有速度刚性好调速范围大的特点;系统的快速回路是采用三位五通电液换向阀与单向阀、行程阀组成的液压缸差动连接的快速运动回路,具有系统效率较高、回路简单的特点;速度的换接采用行程阀和液控顺序阀联合动作的快进与工进的速度换接回路,具有换接平稳可靠的特点;两种工进采用调速阀串联与电磁滑阀组成的速度变换回路实现两次工进速度的换接,换接平稳;采用中位机能为M型的电液换向阀实现执行元件换向和液压泵的卸荷。该系统油路设计合理,元件使用恰当,调速方式正确,能量利用充分。

液压回路设计分析

根据液压英才网袁工分享液压回路设计的分析要点: 优先流量控制 不论泵的转速、工作压力或支路需要的流量大小,定值一次流量控制阀总可保证设备工作所需的流量。在这种回路中,泵的输出流量必须大于或等于一次油路所需流量,二次流量可作它用或回油箱。定值一次流量阀(比例阀)将一次控制与液压泵结合起来,省去管路并消除外泄漏,故降低了成本。此种齿轮泵回路的典型应用是汽车起重机上常可见到的转向机构,它省去了一个泵。 负载传感流量控制阀的功能与定值一次流量控制的功能十分相近:即无论泵的转速、工作压力或支路抽需流量大小,均提供一次流量。但仅通过一次油口向一次油路提供所需流量,直至其最大调整值。此回路可替代标准的一次流量控制回路而获得最大输出流量。因无载回路的压力低于定值一次流量控制方案,故回路温升低、无载功耗小。负载传感比列流量控制阀与一次流量控制阀一样,其典型应用是动力转向机构。 旁路流量控制 对于旁路流量控制,不论泵的转速或工作压力高低,泵总按预定最大值向系统供液,多余部分排回油箱或泵的入口。此方案限制进入系统的流量,使其具有最佳性能。其优点是,通过回路规模来控制最大调整流量,降低成本;将泵和阀组合成一体,并通过泵的旁通控制,使回路压力降至最低,从而减少管路及其泄漏。 旁路流量控制阀可与限定工作流量(工作速度)范围的中团式负载传感控制阀一起设计。此种型式的齿轮泵回路,常用于限制液压操纵以使发动机达最佳速度的垃圾运载卡车或动力转向泵回路中,也可用于固定式机械设备。 干式吸油阀 干式吸油阀是一种气控液压阀,它用于泵进油节流,当设备的液压空载时,仅使极小流量(〈18.9t/min)通过泵;而在有负载时,全流量吸入泵。这种回路可省去泵与原动机间的离合器,从而降低了成本,还减小了空载功耗,因通过回路的极小流量保持了设备的原动机功率。另外,还降低了泵在空载时的噪声。干式吸油阀回路可用于由内燃机驱动的任何车辆中开关式液压系统,例如垃圾装填卡车及工业设备。 液压泵方案的选择 目前,齿轮泵的工作压力已接近柱塞泵,组合负载传感方案为齿轮泵提供了变量的可能性,这就意味着齿轮泵与柱塞泵之间原本清楚的界限变理愈来愈模糊了。 合理选择液压泵方案的决定因素之一,是整个系统的成本,与价昂的柱塞泵相比,齿轮泵以其成本较低、回路简单、过滤要求低等特点,成为许多应用场合切实可行的选择方案

液压基本回路

第七章液压基本回路 7-4 多缸(马达)工作控制回路 一、顺序动作回路(sequencing circuit) 1、行程控制顺序动作回路 图a所示为用行程阀控制的顺序动作回路。在图示状态下,A、B两缸的活塞均在端。当推动手柄,使阀C左位工作,缸A左行,完成动作①;挡块压下行程阀D后,缸B左行,完成动作②;手动换向阀C复位后,缸A先复位,实现动作③;随着挡块后移,阀D 复位,缸B退回实现动作④。完成一个工作循环。 图b所示为用行程开关控制的顺序动作回路。当阀E得电换向时,缸A左行完成动作①;其后,缸A触动行程开关S1使阀得电换向,控制缸B左行完成动作②;当缸B左行至触动行程开关S2使阀E失电时,缸A返回,实现动作③;其后,缸A触动S3使9断电,缸B返回完成动作④;最后,缸月触动S4使泵卸荷或引起其它动作,完成一个工作循环。 2、压力控制顺序动作回路 图所示为使用顺序阀的压力控制顺序动作回路。

当换向阀左位接入回路且顺序阀D的调定压力大于缸A的最大前进工作压力时,压力油先进入缸A左腔,实现动作①;缸行至终点后压力上升,压力油打开顺序阀D进入缸B 的左腔,实现动作②;同样地,当换向阀右位接入回路且顺序阀C的调定压力大于缸B的最大返回工作压力时,两缸按③和④的顺序返回。 3、时间控制顺序动作回路 这种回路是利用延时元件(如延时阀、时间继电器等)使多个缸按时间完成先后动作的回路。图所示为用延时阀来实现缸3、4工作行程的顺序动作回路。 当阀1电磁铁通电,左位接通回路后,缸3实现动作①;同时,压力油进入延时阀2

中的节流阀B,推动换向阀A缓慢左移,延续一定时间后,接通油路a、b,油液才进入缸4,实现动作②。通过调节节流阀开度,来调节缸3和4先后动作的时间差。当阀1电磁铁断电时,压力油同时进入缸3和缸4右腔,使两缸返向,实现动作③。由于通过节流阀的流量受负载和温度的影响,所以延时不易准确,一般都与行程控制方式配合使用。 二、同步回路(synchronizing circuit) 同步回路的功用是:保证系统中的两个或多个缸(马达)在运动中以相同的位移或相同的速度(或固定的速比)运动。在多缸系统中,影响同步精度的因素很多,如:缸的外负载、泄漏、摩擦阻力、制造精度、结构弹性变形以及油液中含气量,都会使运动不同步。为此,同步回路应尽量克服或减少上述因素的影响。 1、容积式同步回路 (1)、同步泵的同步回路:用两个同轴等排量的泵分别向两缸供油,实现两缸同步运动。正常工作时,两换向阀应同时动作;在需要消除端点误差时,两阀也可以单独动作。 (2)、同步马达的同步回路:用两个同轴等排量马达作配流环节,输出相同流量的油液来实现两缸同步运动。由单向阀和溢流阀组成交叉溢流补油回路,可在行程端点消除误差。 (3)、同步缸的同步回路:同步缸3由两个尺寸相同的双杆缸连接而成,当同步缸的活塞左移时,油腔a与b中的油液使缸1与缸2同步上升。若缸1的活塞先到达终点,则油腔a的余油经单向阀4和安全阀5排回油箱,油腔b的油继续进入缸2下腔,使之到达终点。同理,若缸2的活塞先达终点,也可使缸1的活塞相继到达终点。

液压基本回路简答与计算题

简答题与计算题 1、 简述回油节流阀调速回路与进油节流阀调速回路的不同点。 2、 一夹紧油路如图所示,若溢流阀的调整压力p 1=5MPa ,减压阀的调整压力p 2=2.5MPa , 试分析夹紧缸活塞空载时A ,B 两点的压力各为多少?减压阀的阀芯处于什么状态?夹紧时活塞停止运动后,A,B 两点压力又各为多少?减压阀阀芯又处于什么状态? 3、如图7-2所示液压回路,两个液压缸的几何尺寸相同,无杆腔活塞面积皆为 24m 1020-?=A ,两缸支承的重物分别为N 70001=W ,N 40002=W ,溢流阀调定压力MPa 5=v p 。两缸的工作顺序为:液压缸1先运动,当液压缸1上升到顶端位置后液压缸2再向上运动;在液压缸2运动时,要求液压缸1保持在顶端位置。试确定顺序阀的调整压力。

4、如图7-4所示液压回路,已知溢流阀的调定压力MPa 5y =p ,顺序阀的调定压力MPa 3x =p ,液压缸1活塞的有效面积241m 1050-?=A ,负载kN 10L =F 。若管路压力损失忽略不计,当两换向阀处于图示位置时,试求: (1) 液压缸活塞运动时A,B 两点的压力A p 、B p ; 图7—4 (2) 液压缸活塞运动到终端后,A 、B 两点的压力; (3) 当负载kN 20L =F ,A 、B 两点的压力。 5、如图7-5所示液压系统,两液压缸有效面积2221m 101-?==A A ,液压缸1负载 N 35000L =F ,液压缸2运动时负载为零。溢流阀、顺序阀和减压阀的调整压力分别为4MPa 、3MPa 和2MPa 若不计摩擦阻力、惯性力和管路损失,确定下列三种工况下A 、B 、C 点的压力。 (1)液压泵启动后,两换向阀处于中位时; (2)换向阀电磁线圈1Y A 通电,液压缸l 活塞运动时及活塞运动到终端后; (3)换向阀电磁线圈1Y A 断电,2Y A 通电,液压缸2活塞运动时及碰到固定挡块时。

液压集成回路课程设计1

广西工学院鹿山学院 液压与气压传动课程设计说明书 设计题目液压站集成回路中间块设计 图7.18b采用液压锁的锁紧回路YJ二孔液压集成块设计尺 寸要求:130×120×85 系别机械工程系 专业班级模具081班 学生姓名胡福梅 学号20081008 指导教师丁黎光 日期2011.6.28.

目录 一.设计题目 (2) 二、前言 1、课程设计的目的和基本要求 (2) 2、液压系统及液压站简介 . (2) 三、课程设计的目的 (3) 四、课程设计的内容 (3) 五、集成块及中间块设计方法 (4) 5.1 通用集成块组的结构 (4) 5.2 集成块的特点 (4) 5.3 集成块装置的设计步骤 (5) 5.4集成块设计注意事项 (6) 六、液压集成回路设计 (9) 七、液压集成块及其设计 (9) 八、回路工作状况 (11) 九、参考资料 (12) 十、心得体会 (12) 十一、致谢辞

一.设计题目 图7.27采用液压锁的锁紧回路YJ二孔液压集成块设计 尺寸要求:130×120×85 液压传动与控制课程设计指导书 二、前言: 1. 课程设计的基本要求: ①每个设计题目由个人完成,学生学生之间可以自由讨论,课题要求每个人都有明确的工作任务,设计思路; ②每个课题必须提交一份液压集成块的中间块设计装配图一张及说明书; 2.液压系统及液压站简介 液压传动与控制简称为液压技术,它是以液体为工作介质,利用液体的静压能实现信息、运动和动力的传递及工程控制的技术,其工作原理基于流体力学的帕斯卡原理(液体静压力传递原理),所以又称为容积式液体传动或静液传动。 液压传动与控制的机械设备或装置中,其液压系统大部分使用具有连续流动性的液压油作为工作介质,通过液压泵将驱动泵的原动机的机械能转换成液体的压力能,然后经过封闭管路及控制阀(压力阀、流量阀、和方向阀),送至执行器(液压缸、液压马达或摆动液压马达)中,转换为机械能去驱动负载和实现工作机构的直线运动或回转运动。 液压站是现代液压技术中应用最为广泛的结构形态,既是各类液压系统设计过程的归宿,又是保证主机完成其工艺目的和长期可靠工作的重要装置。正确合

项目四 液压基本回路和典型液压回路分析(3.3).

项目四 液压基本回路和典型液压回路分析 任务4-1液压基本回路分析 液压基本回路就是由有关的液压元件组成用来完成某种特定功能的典型回 路。一些液压设备的液压系统虽然很复杂,但它通常都由一些基本回路组成,所 以掌握一些基本回路的组成、原理和特点将有助于认识分析一个完成的液压系 统。 单元1:方向控制回路功能分析 方向控制回路是液压系统中控制液流方向的基本回路,方向控制回路也称换 向回路,主要由方向控制阀组成。其功能是通过控制进入执行元件液流的通、断 或变换方向来实现执行元件的启动、停止、换向和锁紧等。 知识点4-1-1换向回路 换向回路主要由各种换向阀来实现,三位换向阀不同的中位机能,可以满足 液压系统的不同要求,如图4-1(g )所示的换向回路由三位四通M 型换向阀实 现,在此中位泵的输出压力近似为零,泵卸荷,减少功率损失 。 图片资源链接 动画资源链接视频资源链接 网页链接文 本资源链接 知识点4-1-2锁紧回路 图4-1(g ) 采用M 型中位换向阀的换向回路 图4-2(g )采用两个液控单向阀的锁紧回路

锁紧回路是执行元件在任意停留或停止工作时,为防止因外界因素而发生位移或窜动,把液压缸活塞锁定在任意位置的回路。 锁紧回路可以由单向阀、液控单向阀、O型及M型中位机能换向阀、液压锁来实现。 如图4-2(g)所示为两个液控单向阀(也称液压锁)的锁紧回路,其锁紧精度高,此回路的锁紧精度只受液压缸泄漏和油液压缩性的影响。使用液控单向阀的锁紧回路,换向阀的中位机能应使液控单向阀的控制口油液泄压(采用H 或Y型中位机能,不宜采用O型和M型),此时单向阀立即关闭,活塞停止运动。该回路锁紧可靠,经得起负载变化的干扰。 采用如图3-18(g)所示的O型中位换向阀的锁紧回路或4-1(g)所示的M 型中位换向阀的锁紧回路,利用中位封闭液压缸的两腔,可以将液压缸锁紧。这种锁紧回路由于受到滑阀泄漏的影响,锁紧效果差,只适用于短时间的锁紧或锁紧程度要求不高的场合。 图片资源链接动画资源链接视频资源链接网页链接文本资源链接 单元3:压力控制回路功能分析 压力控制回路是利用压力控制阀来控制系统整体或某一部分的压力,以满足液压执行元件对力或转矩要求的回路,这类回路包括调压、减压、增压、保压、卸荷和平衡等多种回路。 知识点4-1-3调压回路 调压回路的功用是使液压系统整体或部分的压力保持恒定或不超过某个数值。在定量泵系统中,液压泵的供油压力可以通过溢流阀来调节。在变量泵系统中,用安全阀来限定系统的最高压力,防止系统过载。若系统中需要二种以上的压力,则可采用多级调压回路。 1.单级调压回路如图3-21(g)a所示,在液压泵出口处设置并联溢流阀2即可组成单级调压回路,从而控制了液压系统的工作压力。 2.二级调压回路如图4-3(g)a所示为二级调压回路,可实现两种不同的系统压力控制。由溢流阀2和溢流阀4各调一级,当二位二通电磁阀3处于图示

液压集成回路课程设计说明书

液压课程设计 说明书 设计题目液压集成回路及集成块设计 系别 专业班级 学生姓名 学号 指导教师 日期

目录 一、液压站 二、集成块连接装置 1、通用集成块组结构 2、集成块的特点 3、集成块装置设计步骤 4、集成块设计注意事项 5、过渡板 三、液压集成块设计 1、底板及供油块设计 2、底盖及测压块设计 3、中间块设计 4、集成块零件图的绘制 四、设计任务 五、心的体会 六、参考资料

一液压站 液压站是有液压油箱、液压泵装置及液压控制装置三大部分组成。液压油箱装有空气滤清器、滤油器、液面指示器和清洗孔等。液压泵装置包括不同类型的液压泵、驱动电机及其它们之间的联轴器等。液压控制装置是指组成液压系统的各阀元件及其联接体。 机床液压站的结构型式有分散式和集中式两种类型。 二集成块连接装置 1 通用集成块组结构 集成块组,是按通用的液压典型回路设计成的通用组件。它由集成块、底块和顶盖用四只长螺栓垂直固紧而成。 液压元件一般安装在集成块的前面、后面和右侧面、左侧面不安放元件,留着连接油管,以便向执行元件供油。为了操纵调整方便,通常把需要经常调节的元件,入调速阀、溢流阀、减压阀等,布置在右侧面和前面。 元件之间的联系借助于块体内部的油道孔。根据单元回路块在系统中的作用可分为调压、换向、调速、减压、顺序等若干种回路。每

块的上下两面为叠积结合面,布有公用的压力油孔P、回油孔O、泄漏油孔L和连接螺栓孔。 2 集成块的特点 从集成块的组成原理图可以看出,集成块由板式元件与通道体组成,元件可以根据设计要求任意选择,因此,集成块连接装置广泛地应用在机床及组合机床自动线中,其工作压力为0.3×106~3.5×107Pa,流量一般在30~60l/min,集成块与其它的连接方式相比有以下特点: (1)可以采用现有的板式标准元件,很方便地组成各种功能的单元集成回路,且回路的更换很方便,只须更换或增、减单元回路 就能实现,因而有极大的灵活性。 (2)由于是在小块体上加工各种孔道,故制造简单,工艺孔大为减少,便于检查和及时发现毛病。如果加工中出了问题,仅报废 其中一小块通道体,而不是整个系统报废。 (3)系统中的管道和管接头可以减少到最少程度,使系统的泄漏大为减少,提高了系统的稳定性,并且结构紧凑,占地面积小,装配与维修方便。 (4)由于装在通道体侧面的各液压元件间距离很近,油道孔短,而且通油孔径还可选择大一些,因而系统中管路压力损失小,系 统发热量也小。 (5)有利于实现液压装置的标准化、通用化、系列化,能组织成批生产。由于组成装置的灵活性大,故设计和制造周期大为缩短,

典型液压系统

单元七典型液压系统 学习目标: 1.掌握读懂液压系统图的阅读和分析方法 2.掌握YT4543型液压动力滑台液压系统的组成、工作原理和特点 3.掌握YB32-200型压力机液压系统的组成、工作原理和特点 4.掌握Q2- 8汽车起重机液压系统的组成、工作原理和特点 5.能绘制电磁铁动作循环表 重点与难点: 典型液压系统是对以前所学的液压件及液压基本回路的结构、工作原理、性能特点、应用,对液压元件基本知识的检验与综合,也是将上述知识在实际设备上的具体应用。本章的重点与难点均是对典型液压系统工作原理图的阅读和各系统特点的分析。对于任何液压系统,能否读懂系统原理图是正确分析系统特点的基础,只有在对系统原理图读懂的前提下,才能对系统在调速、调压、换向等方面的特点给以恰当的分析和评价,才能对系统的控制和调节采取正确的方案。因此,掌握分析液压系统原理图的步骤和方法是重中之重的内容。 1 ?分析液压系统工作原理图的步骤和方法 对于典型液压系统的分析,首先要了解设备的组成与功能,了解设备各部件的作用与运动方式,如有条件,应当实地考察所要分析的设备,在此基础上明确设备对液压系统的要求,以此作为液压系统分析的依据;其次要浏览液压系统图,了解所要分析系统的动力装置、执行元件、各种阀件的类型与功能,此后以执行元件为中心,将整个系统划分为若干个子系统油路;然后以执行元件动作要求为依据,逐一分析油路走向,每一油路均应按照先控制油路、后主油路,先进油、后回油的顺序分析;再后就是针对执行元件的动作要求,分析系统的方向控制、速度控制、压力控制的方法,弄清各控制回路的组成及各重要元件的作用;更后就是通过对各执行元件之间的顺序、同步、互锁、防干扰等要求,分析各子系统之间的联系;最后归纳与总结整个液压系统的特点,加深对系统的理解。 2.在此选用YT4543型组合机床动力滑台的液压系统,作为金属切削专用机床进给部件的典型代 表。此系统是对单缸执行元件,以速度与负载的变换为主要特点。要求运动部件实现“快进一一工进一二工进一死挡铁停留一快退一原位停止”的工作循环。具有快进运动时速度高负载小与工进运动时速度低负载大的特点。系统采用限压式变量泵供油,调速阀调速的容积节流调速方式,该调速方式具有速度刚性好调速范围大的特点;系统的快速回路是采用三位五通电液换向阀与单向阀、行程阀组成的液压缸差动连接的快速运动回路,具有系统效率较高、回路简单的特点;速度的换接采用行程阀和液控顺序阀联合动作的快进与工进的速度换接回路,具有换接平稳可靠的特点;两种工进采用调速阀串联与电磁滑阀组成的速度变换回路实现两次工进速度的换接,换接平稳;采用中位机能为M型的电 液换向阀实现执行元件换向和液压泵的卸荷。该系统油路设计合理,元件使用恰当,调速方式正确, 能量利用充分。 3.YB32-200型压力机的液压系统属于锻压机械液压系统的代表,此系统以压力变换为主、功率比大、压力高,属于高压或超高压系统。压力机工作时要求带动上滑块的液压缸活塞能够自动实现“快速下行一慢速加压一保压延时一泄压一快速回程一原位停止”的动作循环,空程时速度大,加压时推力大;下滑块液压缸要求实现“顶出一退回”的动作循环,有时还需要实现“浮动”功能。该系统采用高压大流量恒功率变量泵供油,利用活塞自重充液的快

完整word版液压系统回路设计

1、液压系统回路设计 1.1、主干回路设计 对于任何液压传动系统来说,调速回路都是它的核心部分。这种回路可以通过事先的调整或在工作过程中通过自动调整来改变元件的运行速度,但它的主要功能却是在传递动力(功率)。 根据伯努力方程: 2?pxq?C(1-1)vd?式中——主滑阀流量q C——阀流量系数d x——阀芯流通面积v——阀进出口压差p??——流体密度 ?xC和为变量。为常数,只有其中和p?vd液压缸活塞杆的速度: q (1-2)?v A式中为活塞杆无杆腔或有杆腔的有效面积A A?AA?A所一般情况下,两调平液压缸是完全一样的,即可确定和21112212q?q,由式(1-2)可知,只要主滑阀流量一定,以要保证两缸同步,只需使21则活塞杆的速度就能稳定。又由式(1-1)分析可知,如果为一定值,则主滑p?q?x,所以要保证两缸同步,则只需满足以阀流量与阀芯流通面积成正比即:q v下条件: ?p?c?p?cx?x,且112v2v21此处主滑阀选择三位四通的电液比例方向流量控制阀,如图1-1所示。 三位四通的电液比例方向流量控制阀图1-1 它是一种按输入的电信号连续地、按比例地对油液的流量或方向进行远距离控制所以它输出的流量可以不受负载变化的比例阀一般都具有压力补偿性能,的阀。.影响。与手动调节的普通液压阀相比,它能提高系统的控制水平。它和电液伺服阀的区别见表1-1。 表1-1 比例阀和电液伺服阀的比较

与电液伺服阀相比,它虽在某些性能方面稍逊色些,但它的结构简单,成本低,但对控制所以它被广泛应用于要求对液压参数进行连续远距离控制或程序控制,精度和动态特性要求不太高的液压系统中。,)又因为在整个举身或收回过程中,单缸负载变化范围变化比较大(0~50T为为变功率调平,而且举身和收回时是匀速运动,所以调平缸的功率为,Fv?P 达到节能效果,选择变量泵。综上所可得,主干调速回路选用容积节流调速回路。容积节流调速回路没有溢流损失,效率 高,速度稳定性也比单纯容积调速回路好。p?所示。值一定,可采用负荷传感液 压控制,其控制原理图如图为保证1-2驱动多个执行元件,可用单泵(或一组泵)它主要利用负荷传感和压力补偿技术,而与各执行元件的负载压力和其各执行元件运动速度仅依赖于各节流阀开启度,各执行元即使当泵的输出流量达不到实际需要时,它执行元件的工作状态无关。此系统的这一特有的独立调速功能大件运动速度的比例关系仍然可以得到保持。不但显著提高了作业大减少了作业中操纵者协调各执行元件动作所花费的时间,能够以最节省能量的方式实现效率,而且有效减轻了操作者的劳动强度。另外,在工作间系统无溢流损失,并以推动执行元件动作所需的最低压力供油。调速,系统自动调节泵的排量不动作),各执行元件处于无载状态,(隙发动机不停机,所以它是一种性能较可以有效降低功率损耗、到最小值。减小液压系统的温升,好的新型液压系统。.一般的同步回路还有:机械连接同步回路;用分流阀或分流集流阀的同步回路;用调速阀的同步回路;串联缸的同步回路等,但这些同步回路同步精度一般比较低,而且大多数只是保证速度同步而不能保证位置同步,受负载变化的影响较大。

液压系统基本回路总结材料

目录 1液压基本回路的原理及分类 2换向回路 3调压回路 4减压回路 5保压回路、 6调速回路 7卸荷回路 8缓冲回路 9平衡回路 液压基本回路及原理 由一些液压元件组成的,用来完成特定功能的典型回路称为液压基本回路。 常见液压回路有三大类: 1方向控制回路:它在液压系统中的作用是控制执行元件的启动,停止或运动方向! 2压力控制回路:他的作用是利用压力控制阀来实现系统的压力控制,用来实现稳压、减压、增压和多级调压等控制,以满足执行元件在力或转矩及各种动作对系统压力的要求 3速度控制回路:它是液压系统的重要组成部分,用来控制

执行元件的运动速度。 换向回路 11用用电电磁磁换换向向阀阀的的换换向向回回路路:用二位三通、二位四通、三位四通换向阀均可使液压缸或液压马达换向! A1_1 D 如A1-1是采用三位四通换向阀的换向回路,在这里的换向回路换向阀换向的时候会产生较大的冲击,因此这种回路适合于运动部件的运动速度低、质量较小、换向精度要求不高的场所。 A1-2

电电液液换换向向阀阀的的换换向向回回路路:图A1-2为用电液换向阀的换向回路。电液换向阀是利用电磁阀来控制容量较大的液动换向阀的,因此适用于大流量系统。这种换向回路换向时冲击小,因此适用于部件质量大、运动速度较高的场所。 调压回路 负载决定压力,由于负载使液流受到阻碍而产生一定的压力,并且负载越大,油压越高!但最高工作压力必须有定的限制。为了使系统保持一定的工作压力,或在一定的压力围工作因此要调整和控制整个系统的压力.

1.单级调压回路 o在图示的定量泵系统中,节流阀可以调节进入液压缸的流量,定量泵输出的流量大于进入液压缸的流量,而多余油液便从溢流阀流回油箱。调节溢流阀便可调节泵的供油压力,溢流阀的调定压力必须大于液压缸最大工作压力和油路上各种压力损失的总和。为了便于调压和观察,溢流阀旁一般要就近安装压力表。 3.多级调压回路 在不同的工作阶段,液压系统需要不同的工作压力,多级调压回路便可实现这种要求。 o图(a)所示为二级调压回路。图示状态下,泵出口压力由溢流阀3调定为较高压力,阀2换位后,泵出口压力由远程调压阀1调为较低压力。 图(b)为三级调压回路。溢流阀1的远程控制口通过三位四通换向阀4分别接远程调压阀2和3,使系统有三种压力调定值;换向阀在左位时,系统压力由

液压基本回路电子教案

【课题编号】 26—11.5 【课题名称】 液压基本回路 【教学目标与要求】 一、知识目标 了解组成液压传动系统的四大基本回路的结构、运动特点和应用场合。 二、能力目标 能够将液压传动系统分成几个基本回路,以便分析运动分析。 三、素质目标能分析液压系统的传动过程。 四、教学要求 1. 能够认识四个基本回路的组成,即各回路中不同类型的特点。 2. 能够把液压传动系统图分成相应的基本回路,分析各个回路在传动中的作用。 【教学重点】 各典型回路的运动特点分析。 【难点分析】 1.换向阀不同中位机能的作用。 2.进油节流调速与回油节流调速比较。 3.二次进给回路的应用。

分析学生】 由于传动系统的图形符号不复杂,比较直观,难度不大,只要各种阀的动作机理清楚,各个典型回路应当比较容易理解。方向控制阀的各中位机能的作用对执行元件运动的影响,估计学生缺少感性认识,可能理解不深。 【教学思路设计】重点是分析各种典型回路的特点,比较各回路对执行件的影响,所以要注意采用比较法来记住各种回路的特点。 【教学安排】 2 学时(90 分钟) 【教学过程】 对于任何一种液压传动系统,无论其结构有多么的复杂,总归是由一些基本回路组成的,只要熟悉这些基本回路,就能比较容易地分析传动的过程,正如分析机器时,先将它拆成各个机构一样。 一、方向控制回路 1.换向如图11—35 的换向回路由手动三位四通阀来控制工作台的左右运动,图示位置换向阀处于左位,油液进入油缸左腔,执行元件右移;当换向改换成为右位时,油液进入油缸右腔,执行元件左移,实现左右移动。而换向阀处于中位时,由于进油口与回油口相通,油液全部流回油箱,油缸左右两腔油液被封闭,执行元件固定不动。图中溢流阀、压力表、液压泵和配件为基本配置元件。 2 . 锁紧将执行元件锁紧在某个位置上不得左右窜动。常用的 回路有换向阀锁紧和单向阀锁紧两种 1)换向阀锁紧回路如图11—36 所示,换向阀的中位机能为O

液压基本回路复习题1

五、回路分析 1、下图所示液压系统是采用蓄能器实现快速运动的回路,试回答下列问题: (1)液控顺序阀3何时开启,何时关闭? (2)单向阀2的作用是什么? (3)分析活塞向右运动时的进油路线和回油路线。 答:(1)当蓄能器内的油压达到液控顺序阀3的调定压力时,阀3被打开,使液压泵卸荷。当蓄能器内的油压低于液控顺序阀3的调定压力时,阀3关闭。 (2)单向阀2的作用是防止液压泵卸荷时蓄能器内的油液向液压泵倒流。 (3)活塞向右运动时: 进油路线为:液压泵1 →单向阀2 →换向阀5左位→油缸无杆腔。 蓄能器→换向阀5左位→油缸无杆腔。 回油路线为:油缸有杆腔→换向阀5左位→油箱。 4、图示回路,若阀PY的调定压力为4Mpa,阀PJ的调定压力为2Mpa,回答下列问题:(1)阀PY 是()阀,阀P J是()阀; (2)当液压缸运动时(无负载),A点的压力值为()、B点的压力值为(); (3)当液压缸运动至终点碰到档块时,A点的压力值为()、B点的压力值为()。 解:(1)溢流阀、减压阀; (2)活塞运动期时P A=0,P B=0; (3)工件夹紧后,负载趋近于无穷大:P A=4MPa,P B=2MPa。 5、如图所示系统可实现“快进→工进→快退→停止(卸荷)”的工作循环。 (1)指出液压元件1~4的名称。 (2)试列出电磁铁动作表(通电“+”,失电“-”)。

解: 7、如图所示液压系统,完成如下动作循环:快进—工进—快退—停止、卸荷。试写出动作循环表,并评述系统的特点。 解:电磁铁动作循环表 1Y A 2Y A 3YA 4YA 快进+——— 工进+—+— 快退—+—— 停止、卸荷———+ 特点:先导型溢流阀卸荷回路卸荷压力小冲击小,回油节流调速回路速度平稳性好,发热、泄漏节流调速影响小,用电磁换向阀易实现自动控制。 8、如图所示系统能实现”快进→ 1工进→ 2工进→快退→停止”的工作循环。试画出电磁铁动作顺序表,7?

液压系统设计方案书方法

液压系统设计方法 液压系统是液压机械的一个组成部分,液压系统的设计要同主机的总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 液压系统的设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 ⑴确定液压执行元件的形式; ⑵进行工况分析,确定系统的主要参数; ⑶制定基本方案,拟定液压系统原理图; ⑷选择液压元件; ⑸液压系统的性能验算: ⑹绘制工作图,编制技术文件。 1.明确设计要求 设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。 ⑴主机的概况:用途、性能、工艺流程、作业环境、总体布局等; ⑵液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; ⑶液压驱动机构的运动形式,运动速度; ⑷各动作机构的载荷大小及其性质; ⑸对调速范围、运动平稳性、转换精度等性能方面的要求; ⑹自动化程度、操作控制方式的要求; ⑺对防尘、防爆、防寒、噪声、安全可靠性的要求; ⑻对效率、成本等方面的要求。 2.进行工况分析、确定液压系统的主要参数 通过工况分析,可以看出液压执行元件在工作过程中速度和载荷变化情况,为确定系统及各执行元件的参数提供依据。 液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。压力决定于外载荷。流量取决于液压执行元件的运动速度和结构尺寸。 2.1载荷的组成和计算 2.1.1液压缸的载荷组成与计算 图1表示一个以液压缸为执行元件的液压系统计算简图。各有关参数已标注在图上,其中F W是作用在活塞杆上的外部载荷。F m是活塞与缸壁以及活塞杆与导向

4 实验三典型液压回路实验

实验三典型液压回路 一、实验台简介 实验台一:力士乐公司制造,实验台主要参数如下:电动机功率P=1.5kW,液压泵流量Q=8L/min,压力p=50bar。 实验台二:主要由透明液压元件、快换接头与透明软管组成。参照实验指导书,可以方便地进行常用的液压基本回路的实验。在实验过程中,可以直观了解液压元件的内部结构、工作过程、控制原理及流动状态。实验台外形尺寸:1200×600×1800。 二、调速回路实验 1实验目的 1) 了解差动回路的特点,测量差动回路液压缸伸出和返回的速度。 2) 比较差动回路同普通回路速度的大小; 2实验准备 1液压泵2调速阀DF3 3二位四通换向阀DW3E 4液压缸5压力表DZ1.1

1) 理解实验原理图1; 2) 准备所需的液压元件及附件:①调速阀DF3 ②二位四通换向阀DW3E ③液压缸④压力表DZ1.1 ⑤软管;⑥秒表; 3) 根据原理图1将各元件安装到实验板上,用软管将各元件连接好; 4) 仔细检查确保油路连接正确,快换接头处连接牢固; 5) 根据电路图2,连接电路。 6) 启动液压泵。 3实验步骤 1) 将调速阀的调节手柄转到开口位置1上; 2) 测量并记录下液压缸伸出运动过程和伸出到头时的压力Pe1和Pe2;以及伸出时所用的时间; 3) 测量并记录下液压缸返回运动过程和返回到头时的压力Pe1和Pe2;以及返回时所用的时间; 4) 在调速阀分别为1.6和2的开口位置上,重复步骤2) 到3); 5) 将液压缸有杆腔连接到换向阀的B口,将调速阀的调节手柄转到开口位置1上; 6) 测量并记录下液压缸伸出运动过程和伸出到头时的压力Pe1和Pe2;以及伸出时所用的时间; 7) 测量并记录下液压缸返回运动过程和返回到头时的压力Pe1和Pe2;以及返回时所用的时间; 8) 在调速阀分别为1.6和2的开口位置上,重复步骤6) 到7); 9) 画出在快速伸出、正常伸出情况下,与调速阀DF3开口位置相关的液压缸伸出和返回运动的速度 特性曲线。

相关文档
最新文档