高考数学专题三角函数与向量

高考数学专题三角函数与向量
高考数学专题三角函数与向量

三角函数与向量的交汇题型分析及解题策略

考点如下:

1.考查三角式化简、求值、证明及求角问题.

2.考查三角函数的性质与图像,特别是y=Asin(ωx+?)的性质和图像及其图像变换.

3.考查平面向量的基本概念,向量的加减运算及几何意义,此类题一般难度不大,主要用以解决有关长度、夹角、垂直、平行问题等.

4.考查向量的坐标表示,向量的线性运算,并能正确地进行运算.

5.考查平面向量的数量积及运算律(包括坐标形式及非坐标形式),两向量平行与垂直的充要条件等问题.

6.考查利用正弦定理、余弦定理解三角形问题.

【典例分析】

题型一 三角函数平移与向量平移的综合

三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.

【例1】 把函数y =sin2x 的图象按向量→a =(-π6,-3)平移后,得到函数y =Asin(ωx +

?)(A >0,ω>0,|?|=π2)的图象,则?和B 的值依次为

( ) A .π12,-3 B .π3,3 C .π3,-3

D .-π12,3 【分析】 根据向量的坐标确定平行公式为??? x =x '+π6y =y '+3

,再代入已知解析式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择.

【解析1】 由平移向量知向量平移公式??? x '=x -π6y '=y -3,即??? x =x '+π6y =y '+3

,代入y =sin2x 得y '+3=sin2(x '+π6),即到y =sin(2x +π3)-3,由此知?=π3,B =-3,故选C.

【解析2】 由向量→a =(-π6,-3),知图象平移的两个过程,即将原函数的图象整体向

左平移π6个单位,再向下平移3个单位,由此可得函数的图象为y =sin2(x +π6)-3,即y =sin(2x

+π3)-3,由此知?=π3,B =-3,故选C.

【点评】 此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小.

题型二 三角函数与平面向量平行(共线)的综合

此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利

用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.

【例2】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.

(Ⅰ)求角A ;

(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值.

【分析】 首先利用向量共线的充要条件建立三角函数等式,由于可求得A 角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A 、B 、C 三个角的关系,结合三角民恒等变换公式将函数转化为关于角B 的表达式,再根据B 的范围求最值.

【解】 (Ⅰ)∵→p 、→q 共线,∴(2-2sinA)(1+sinA)=(cosA +sinA)(cosA -sinA),则sin 2A =34,

又A 为锐角,所以sinA =32,则A =π3.

(Ⅱ)y =2sin 2B +cos C -3B 2=2sin 2B +cos (π-π3-B)-3B 2

=2sin 2B +cos(π3-2B)=1-cos2B +12cos2B +32sin2B =32sin2B -12cos2B +1=sin(2B -π6)+1.

∵B ∈(0,π2),∴2B -π6∈(-π6,5π6),∴2B -π6=π2,解得B =π3,y max =2.

【点评】 本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;

(2)根据条件确定B 角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.

题型三 三角函数与平面向量垂直的综合

此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.

【例3】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b .

(Ⅰ)求tanα的值;

(Ⅱ)求cos(α2+π3)的值.

【分析】 第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan α2的值,再利用两角和与差的三角公式求得最后的结果.

【解】 (Ⅰ)∵→a ⊥→b ,∴→a ·→b =0.而→a =(3sinα,cosα),→b =(2sinα, 5sinα-4cosα),

故→a ·→b =6sin 2α+5sinαcosα-4cos 2α=0.

由于cosα≠0,∴6tan 2α+5tanα-4=0.解之,得tanα=-43,或tanα=12.

∵α∈(3π2,2π),tanα<0,故tanα=12(舍去).∴tanα=-43.

(Ⅱ)∵α∈(3π2,2π),∴α2∈(3π4,π).

由tanα=-43,求得tan α2=-12,tan α2=2(舍去).∴sin α2=55,cos α2=-255,

∴cos(α2+π3)=cos α2cos π3-sin α2sin π3=-255×12-55×32=-25+1510

【点评】 本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方法,这是解决在一道试题中同时出现“切函数与弦函数”关系问题常用方法.

题型四 三角函数与平面向量的模的综合

此类题型主要是利用向量模的性质|→a |2=→a 2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.

【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=25 5.(Ⅰ)求cos(α-β)的

值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值.

【分析】 利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cos β即可.

【解】 (Ⅰ)∵|→a -→b |=255,∴→a 2-2→a ·→b +→b 2=45,

将向量→a =(cosα,sinα),→b =(cosβ,sinβ)代入上式得

12-2(cos αcos β+sin αsin β)+12=45,∴cos(α-β)=-35.

(Ⅱ)∵-π2<β<0<α<π2,∴0<α-β<π,

由cos(α-β)=-35,得sin(α-β)=45,

又sin β=-513,∴cos β=1213,

∴sin α=sin [(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=3365.

点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化|→a -→b |为向量运算|→a -→b |2=(→a -→b )2;(2)注意解α-β的

学习必备 欢迎下载

范围.整个解答过程体现方程的思想及转化的思想.

题型五 三角函数与平面向量数量积的综合

此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.

【例5】 设函数f(x)=→a ·→b.其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=

2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.

分析:利用向量内积公式的坐标形式,将题设条件中所涉及的向量内积转化为三角函数

中的“数量关系”,从而,建立函数f(x)关系式,第(Ⅰ)小题直接利用条件f(π2)=2可以求得,

而第(Ⅱ)小题利用三角函数函数的有界性就可以求解.

解:(Ⅰ)f(x)=→a ·→b =m(1+sinx)+cosx ,

由f(π2)=2,得m(1+sin π2)+cos π2=2,解得m =1.

(Ⅱ)由(Ⅰ)得f(x)=sinx +cosx +1=2sin(x +π4)+1,

当sin(x +π4)=-1时,f(x)的最小值为1- 2.

点评:平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,其解法都差不多,首先都是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.

六、解斜三角形与向量的综合

在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量有着密切的联系.解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标,要求根据向量的关系解答相关的问题.

【例6】 已知角A 、B 、C 为△ABC 的三个内角,其对边分别为a 、b 、c ,若→m =(-cos A 2,

sin A 2),→n =(cos A 2,sin A 2),a =23,且→m·→n =12.

(Ⅰ)若△ABC 的面积S =3,求b +c 的值.

(Ⅱ)求b +c 的取值范围.

【分析】 第(Ⅰ)小题利用数量积公式建立关于角A 的三角函数方程,再利用二倍角公式求得A 角,然后通过三角形的面积公式及余弦定理建立关于b 、c 的方程组求取b +c 的值;第(Ⅱ)小题正弦定理及三角形内角和定理建立关于B 的三角函数式,进而求得b +c 的范围.

【解】 (Ⅰ)∵→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),且→m·→n =12,

∴-cos 2A 2+sin 2A 2=12,即-cosA =12,

又A ∈(0,π),∴A =2π3.

又由S △ABC =12bcsinA =3,所以bc =4,

学习必备 欢迎下载

由余弦定理得:a 2=b 2+c 2-2bc·cos 2π3=b 2+c 2+bc ,∴16=(b +c)2,故b +c =4.

(Ⅱ)由正弦定理得:b sinB =c sinC =a sinA =23sin 2π3

=4,又B +C =π-A =π3, ∴b +c =4sinB +4sinC =4sinB +4sin(π3-B)=4sin(B +π3),

∵0<B <π3,则π3<B +π3<2π3,则32<sin(B +π3)≤1,即b +c 的取值范围是(23,4].

[点评] 本题解答主要考查平面向量的数量积、三角恒等变换及三角形中的正弦定理、余弦定理、面积公式、三角形内角和定理等.解答本题主要有两处要注意:第(Ⅰ)小题中求b +c 没有利用分别求出b 、c 的值为解,而是利用整体的思想,使问题得到简捷的解答;(2)第(Ⅱ)小题的求解中特别要注意确定角B 的范围.

2020年高考数学三角函数专题解题技巧

三角函数专题复习 在三角函数复习过程中,认真研究考纲是必须做的重要工作。三角函数可以当成函数内容中的重要一支,要注意与其它知识的联系。 一、研究考题,探求规律 1. 从表中可以看出:三角函数题在试卷中所处的位置基本上是第一或第二题,本章高考重点考查基础知识,仍将以容易题及中档为主,题目的难度保持稳定,估计这种情况会继续保持下去 2. 特点:由于三角函数中,和差化积与积化和差公式的淡出,考查主体亦发生了变化。偏重化简求值,三角函数的图象和性质。考查运算和图形变换也成为了一个趋势。三角函数试题更加注重立足于课本,注重考查基本知识、基本公式及学生的运算能力和合理变形能力,对三角变换的要求有所降低。三角化简、求值、恒等式证明。图象。最值。 3、对三角函数的考查主要来自于:①课本是试题的基本来源,是高考命题的主要依据,大多数试题的产生是在课本题的基础上组合、加工和发展的结果。②历年高考题成为新高考题的借鉴,有先例可循。 二、典例剖析 例1:函数22()cos 2cos 2x f x x =-的一个单调增区间是 A .2(,)33ππ B .(,)62ππ C .(0,)3π D .(,)66 ππ- 【解析】函数22()cos 2cos 2 x f x x =-=2cos cos 1x x --,从复合函数的角度看,原函数看作2()1g t t t =--,cos t x =,对于2()1g t t t =--,当1[1,]2t ∈-时,()g t 为减函数,当1[,1]2 t ∈时,()g t 为增函数,当2(,)33x ππ∈时,cos t x =减函数,且11(,)22 t ∈-, ∴ 原函数此时是单调增,选A 【温馨提示】求复合函数的单调区间时,需掌握复合函数的性质,以及注意定义域、自变量系数的正负.求复合函数的单调区间一般思路是:①求定义域;②确定复合过程;③根据外层函数f(μ)的单调性,确定φ(x)的单调性;④写出满足φ(x)的单调性的含有x 的式子,并解出x 的范围;⑤得到原函数的单调区间(与定义域求交).求解时切勿盲目判断. 例2、已知tan 2θ=. (Ⅰ)求tan 4πθ??+ ??? 的值; (Ⅱ)求cos2θ的值. 【解析】 (Ⅰ)∵tan 2θ=, tan tan 4tan 41tan tan 4π θπθπθ+??∴+= ???-

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

高中三角函数公式大全必背知识点

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot( 2 A )=A A cos 1cos 1-+ tan( 2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 21 [sin(a+b)+sin(a-b)] cosasinb = 21 [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π -a) = cosa cos(2π -a) = sina sin(2π +a) = cosa cos(2 π +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式

三角函数和向量知识点

三角函数知识点 1. 三角函数符号规律记忆口诀:一全正,二正弦,三是切,四余弦。 2. 弧度制: ○ 1r l =||α; ○2弧长公式:r l ||α=,其中||α为圆心角的弧度数...; ○3扇形的面积公式:2||2 121R R l S α=?= 扇形; ○ 41弧度=815730.57'?=?,π弧度 180=。 3. 三角函数的公式: )2 (cos sin tan 1 cos sin 22Z k k ∈+≠==+,公式一 ππαααααα 公式组二:x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ 公式组三:x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- 公式组四:x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ 公式组五: x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ 公式组六: x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ 其中诱导公式记忆方法:奇变偶不变,符号看象限...........。 其中奇. 是指2π的系数为奇数,偶.是指2 π 的系数为偶数,变.是指:正弦与余弦互变,正切与余切互变。看符号时是指对原三角函数进行判断,并且要将..α视为锐角....。 如:ααπ cos )2 ( sin =+,ααπ sin )2 ( cos -=+。 4. 三角恒变换的主要公式: βαβαβαs i n s i n c o s c o s )c o s (-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin cos cos sin )sin(-=- β αβ αβαt a n t a n 1t a n t a n )t a n (-+= + β αβ αβαtan tan 1tan tan )tan(+-= - αααco s s i n 22s i n ?= ααααα2 2 2 2 s i n 211c o s 2s i n c o s 2c o s -=-=-= 22cos 1sin 2αα-= 22cos 1cos 2αα+= αα α2tan 1tan 22tan -= 化一公式:sin cos a b αα+=22sin()a b α?++(角?所在象限由点(,)a b 的象限决定,tan b a ?= ),常

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

向量、三角函数和解三角形、复数、函数测试试卷

阶段性考试试卷 姓名: 分数: 一、选择题(每题5分,共13题,65分) 1.若命题1)1(log ),,0(:2≥+ +∞∈?x x x p ,命题01,:0200≤+-∈?x x R x q ,则下列命题为真命题的是( ) A.p q ∨ B.p q ∧ C.()p q ?∨ D.()()p q ?∧? 2.已知函数 ,则不等式f (x )≤5的解集为( ) A .[﹣1,1] B .(﹣∞,﹣2]∪(0,4) C .[﹣2,4] D .(﹣∞,﹣2]∪[0,4] 3.设复数z 满足 11z i z +=-,则的z 虚部为( ) A .i - B .i C .1 D .1- 4.函数)(x f y =是定义在R 上的奇函数,且在区间]0,(-∞上是减函数,则不等式)1()(ln f x f -<的解集为( ) A.()+∞,e B.??? ??+∞,1 e C.??? ??e e ,1 D.?? ? ??e 1,0 5.已知函数2 ()(1)x f x e x =-+(e 为自然对数的底),则()f x 的大致图象是( ) 6. 对任意向量,a b ,下列关系式中不恒成立的是( ) A .||||||a b a b ?≤ B .a b a b -≤- C .() 2 2a b a b +=+ D .()() 22a b a b a b +-=- 7.若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ?∈+∞≠,有()() 2121 0f x f x x x -<-,则( ) A .()()()213f f f -<< B .()()()123f f f <-< C .()()()312f f f << D .()()()321f f f <-< 8.已知函数()sin()(0,||)2 f x x π ω?ω?=+>< 的最小正周期为π,且其图像向左平移 3 π 个单位后得到函数 ()cos g x x ω=的图象,则函数()f x 的图象( ) A .关于直线12 x π =对称 B .关于直线512 x π = 对称 C .关于点( ,0)12 π 对称 D .关于点5( ,0)12 π 对称

高考数学三角函数知识点总结及练习

三角函数总结及统练 一. 教学内容: 三角函数总结及统练 (一)基础知识 1. 与角α终边相同的角的集合},2{Z k k S ∈+==απβ 2. 三角函数的定义(六种)——三角函数是x 、y 、r 三个量的比值 3. 三角函数的符号——口诀:一正二弦,三切四余弦。 4. 三角函数线 正弦线MP=αsin 余弦线OM=αcos 正切线AT=αtan 5. 同角三角函数的关系 平方关系:商数关系: 倒数关系:1cot tan =?αα 1c s c s i n =?αα 1s e c c o s =?αα 口诀:凑一拆一;切割化弦;化异为同。 6. 诱导公式——口诀:奇变偶不变,符号看象限。 α απ+k 2 α- απ- απ+ απ-2 α π -2 α π +2

正弦 αsin αsin - αsin αsin - αsin - αcos αcos 余弦 αcos αcos αcos - αcos - αcos αsin αsin - 正切 αtan αtan - αtan - αtan αtan - αcot αcot - 余切 αcot αcot - αcot - αcot αcot - αtan αtan - 7. 两角和与差的三角函数 ?????? ? ?+-=-?-+=+?????????+?=-?-?=+?-?=-?+?=+βαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαt a n t a n 1t a n t a n )t a n (t a n t a n 1t a n t a n )t a n (s i n s i n c o s c o s )c o s (s i n s i n c o s c o s )c o s (s i n c o s c o s s i n )s i n (s i n c o s c o s s i n )s i n ( 8. 二倍角公式——代换:令αβ= ??????? -= -=-=-=?=ααααααααααα22222tan 1tan 22tan sin cos sin 211cos 22cos cos sin 22sin 降幂公式?????? ?+=-=22cos 1cos 22cos 1sin 22αααα 半角公式: 2cos 12 sin αα -± =;2cos 12cos αα+±=; αα αcos 1cos 12tan +-± = αα ααα cos 1sin sin cos 12 tan += -= 9. 三角函数的图象和性质 函数 x y sin = x y cos = x y tan =

三角函数 空间向量

(1)求函数24 74sin cos 4cos 4cos y x x x x =-+-的最大值与最小值。 解:2 4 74sin cos 4cos 4cos y x x x x =-+- ()2272sin 24cos 1cos x x x =-+- 2272sin 24cos sin x x x =-+ 272sin 2sin 2x x =-+ ()2 1sin 26x =-+ 由于函数()2 16z u =-+在[]11-,中的最大值为 ()2 max 11610z =--+= 最小值为 ()2 min 1166z =-+= 故当sin 21x =-时y 取得最大值10,当sin 21x =时y 取得最小值6 (2)已知函数2π()sin sin 2f x x x x ωωω??=++ ?? ?(0ω>)的最小正周期为π.(Ⅰ) 求ω的值;(Ⅱ)求函数()f x 在区间2π03 ?????? ,上的取值范围. 解:(Ⅰ)1cos 2()22x f x x ωω-= +112cos 222 x x ωω=-+ π1sin 262x ω? ?=-+ ?? ?. 因为函数()f x 的最小正周期为π,且0ω>, 所以 2π π2ω =,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262 f x x ??=- + ?? ?. 因为2π03 x ≤≤ , 所以ππ7π2666 x --≤≤,

所以1πsin 2126x ??- - ?? ?≤≤, 因此π130sin 2622x ? ?- + ?? ?≤≤,即()f x 的取值范围为302?? ???? ,. (3))已知函数2 2s (in cos s 1)2co f x x x x ωωω++=(,0x R ω∈>)的最小值正周期 是 2 π . (Ⅰ)求ω的值; (Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合. (3)已知函数2 2s (in cos s 1)2co f x x x x ωωω++=(,0x R ω∈>)的最小值正周期是 2 π . (Ⅰ)求ω的值; (Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合. 解: ()2 42sin 22 4sin 2cos 4cos 2sin 22 2cos 2sin 12sin 2 2cos 12+??? ? ? +=+??? ? +=++=+++? =πωπωπωωωωωx x x x x x x x f 由题设,函数()x f 的最小正周期是2 π ,可得222πωπ=,所以2=ω. (Ⅱ)由(Ⅰ)知,()244sin 2+??? ? ? += πx x f . 当ππ π k x 22 4 4+= + ,即()Z k k x ∈+ = 216 π π 时,??? ? ?+44sin πx 取得最大值1,所以函数 ()x f 的最大值是22+,此时x 的集合为? ?? ???∈+=Z k k x x ,216|ππ (1)如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且13BM BD =,1 3 AN AE =.求证://MN 平面CDE . 解析:要证明//MN 平面CDE ,只要证明向量NM 可以用平面CDE 内的两个不共线的向量DE 和DC 线性表示.

高考数学三角函数公式

高考数学三角函数公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα

三角函数公式大全(很详细)

高中三角函数公式大全[图] 1 三角函数的定义1.1 三角形中的定义 图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数: ?正弦函数 ?余弦函数 ?正切函数 ?余切函数 ?正割函数 ?余割函数 1.2 直角坐标系中的定义

图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: ?正弦函数 ?余弦函数 r ?正切函数 ?余切函数 ?正割函数 ?余割函数 2 转化关系2.1 倒数关系 2.2 平方关系 2 和角公式 3.1 倍角公式

3.3 万能公式 4 积化和差、和差化积 4.1 积化和差公式 证明过程 首先,sin(α+β)=sinαcosβ+sinβcosα(已证。证明过程见《和角公式与差角公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和角公式) 则 sin(α-β) =sin[α+(-β)] =sinαcos(-β)+sin(-β)cosα =sinαcosβ-sinβcosα 于是 sin(α-β)=sinαcosβ-sinβcosα(正弦差角公式) 将正弦的和角、差角公式相加,得到 sin(α+β)+sin(α-β)=2sinαcosβ 则 sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之一) 同样地,运用诱导公式cosα=sin(π/2-α),有 cos(α+β)= sin[π/2-(α+β)] =sin(π/2-α-β) =sin[(π/2-α)+(-β)] =sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α) =cosαcosβ-sinαsinβ 于是

(完整版)高中数学三角函数历年高考题汇编(附答案)

三角函数历年高考题汇编 一.选择题1、(2009)函数 22cos 14y x π? ?=-- ?? ?是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为 2π的奇函数 D .最小正周期为2 π 的偶函数 2、(2008)已知函数 2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π 的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2 π 的偶函数 3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能... 是( ) 4.(2009山东卷文)将函数 sin 2y x =的图象向左平移 4 π 个单位, 再向上平移1个单位,所得图象的函数解析式是 A. 22cos y x = B. 2 2sin y x = C.)4 2sin(1π++=x y D. cos 2y x = 5.(2009江西卷文)函数()(13)cos f x x x =的最小正周期为 A .2π B . 32π C .π D . 2 π 6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4( ,0)3 π 中心对称,那么φ的最小值为 A. 6π B.4π C. 3π D. 2π 7.(2008海南、宁夏文科卷)函数 ()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3, 3 2 D. -2, 32 8.(2007海南、宁夏)函数 πsin 23y x ??=- ???在区间ππ2?? -???? ,的简图是( )

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

平面向量与三角函数教案

平面向量与三角函数教案

1 第十讲 平面向量及其应用 例1:△ABC 中,点D 在边AB 上,CD 平分∠ACB.若CB →=a ,CA →=b ,|a |=1,|b |=2,则CD →= ( ) 例题 2.如图,在直角梯形ABCD 中, ,1,3 AB AD AD DC AB ⊥===,动点P 在BCD ?内 运动,(含边界), 设 () ,AP AB AD R αβαβ=+∈u u u r u u u r u u u r ,则αβ+的取值范围 是 . 例3.设P 是ABC ?内一点,满足()()() 21,AP x y AB y AC x y R =-+-∈u u u r u u u r u u u r . 则x 的取值范围是 . .已知△ABC 中,过重心G 的直线交边AB 于P ,交边AC 于Q ,设△APQ 的面积为1 S ,△ABC 的面积为2 S , AP pPB =u u u r u u u r , AQ qQC =u u u r u u u r , 则(ⅰ)pq p q =+ , (ⅱ)12 S S 的取值范围是 .

例1. 在 ABC V 中, 60,3, B A C ∠=o 则 2AB BC +的最大值为 _________. 例2. 在锐角△ABC 中,tan A = t + 1,tan B = t - 1,则t 的取值范围是_________. 例3. 在△ABC 中,设AD 为BC 边上的高,且AD = BC , b , c 分别表示角B ,C 所对的边长,则b c c b +的取值范围是____________. 例4. 在等边ABC V 中,点P 在线段AB 上,满足,AP AB λ=uu u r uu u r 若, CP AB PA PB ?=?uu r uu u r uu r uu r 则实数λ的值是_________. 例5. 在ABC V 中有如下结论:“若点M 为ABC V 的重心, 则0MA MB MC ++=uuu r uuu r uuu r r ”,设a ,b ,c 分别为ABC V 的内角A ,B ,C 的对边,点M 为ABC V 的重心.如果30aMA bMB ++=uuu r uuu r uuu r r , 则内角A 的大小为_________;若a =3,则ABC V 的面积为_________. 例6. 点O 为△ABC 的外心,已知AB =3,AC = 2,若 AO xAB y AC =+uuu r uu u r uuu r ,x + 2y = 1,则cos B = _________. 例7. 如图,平面内有三个向量,,,其中OA u u u r 与OB u u u r 的 夹角为120°,OA u u u r 与OC u u u r 的夹角为150°,且 1 OA OB ==u u u r u u u r , 23 OC =u u u r 若()OC OA OB λμλμ=+∈R u u u r u u u r u u u r ,,则 λμ +的值为_________. A O B x y 1 23 5.0- 3 -

三角函数和向量

1.已知锐角α,且5α的终边上有一点P(sin(-50°),cos 130°),则α的值为() A.8°B.44° C.26°D.40° 答案B 解析∵sin (-50°)<0,cos 130°=-cos 50°<0, ∴点P(sin(-50°),cos 130°)在第三象限. 又∵0°<α<90°,∴0°<5α<450°。 又∵点P的坐标可化为(cos 220°,sin 220°), ∴5α=220°,∴α=44°,故选B. 2.已知向量错误!=(2,0),向量错误!=(2,2),向量错误!=(错误!cos α,错误!sin α),则向量错误!与向量错误!的夹角的取值范围是() A.错误! B.错误! C。错误!D。错误! 答案D 解析由题意,得:错误!=错误!+错误!=(2+错误!cos α,2+错误!sin α),所以点A的轨迹是圆(x-2)2+(y-2)2=2,如图,当A位于使向量 错误!与圆相切时,向量错误!与向量错误!的夹角分别达到最大、最小值, 故选D。 3.已知a,b是单位向量,a·b=0.若向量c满足|c-a-b|=1,则| c|的最大值为( ) A。2-1 B.2 C.错误!+1 D。错误!+2 答案C 解析建立平面直角坐标系,令向量a,b的坐标a=(1,0),b=(0,1),令向量c=(x,y),则有错误!=1,|c|的最大值为圆(x-1)2+(y-1)2=1上的动点到原点的距离的最大值,

即圆心(1,1)到原点的距离加圆的半径,即错误!+1。 4.已知函数f (x )=sin 错误!-错误!在[0,π]上有两个零点,则实数m 的取值范围为( ) A .[-错误!,2] B .[错误!,2) C .(错误!,2] D .[错误!,2] 答案 B 解析 如图,画出y =sin (???x +π3在[0,π]上的图像,当直线y =错误!与其有两个交点时,错误!∈错误!,所以m ∈[错误!,2). 5.已知函数y =2sin (ωx +φ)(ω>0,0<φ<π)为偶函数,其图像与直线y =2某两个交点的横坐标分别为x 1,x 2,若|x 2-x 1|的最小值为π,则该函数的一个递增区间可以是( ) A.错误! B 。错误! C 。错误! D 。错误! 答案 A 解析 由函数为偶函数知φ=错误!+k π(k ∈Z ).又因为0<φ<π,所以φ=错误!,所以y =2cos ωx 。由题意知函数的最小正周期为π,故ω=2,所以y =2cos 2x ,经验证知选项A 满足条件.故选A 。 题型一 三角函数的图像与性质 例1 已知函数f (x )=cos x ·sin 错误!-错误!cos 2 x +错误!,x ∈R 。 (1)求f (x )的最小正周期; (2)求f (x )在闭区间错误!上的最大值和最小值. 解 (1)由已知,得 f (x )=cos x 错误!-错误!cos 2x +错误! =错误!sin x cos x -错误!cos 2 x +错误! =错误!sin 2x -错误!(1+cos 2x )+错误! =错误!sin 2x -错误!cos 2x =错误!sin 错误!。 所以f (x )的最小正周期T =错误!=π. (2)因为f (x )在区间错误!上是减函数,在区间错误!上是增函数,

高三数学三角函数经典练习题及答案精析

1.将函数()2sin 2x f x =的图象向右移动象如右图所示,则?的值为( ) A 2.为了得到()sin 2g x x =的图象,则只需将()f x 的图象( ) A C 3 ,则sin cos αα=( ) A 1 D -1 4 ) A 5.记cos(80),tan 80k -?=?那么= ( ). A . C .21k k -- 6 .若sin a = -a ( ) (A )(B (C (D 7,则α2tan 的值为( )

A 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是( ) A .)(x f 的周期为π B .)(x f 在 C .)(x f 的最大值为.)(x f 的图象关于直线π=x 对称 9.如图是函数y=2sin (ωx+φ),φ A.ωφ B.ωφ C.ω =2,φ D.ω=2,10的图象,只需要将函数sin 4y x =的图象( ) A B C D 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象( ) A 个单位,再向上平移1个单位 B 个单位,再向下平移1个单位 C 个单位,再向上平移1个单位 D 个单位,再向下平移1个单位 12.将函数()cos f x x =向右平移个单位,得到函数()y g x =

于() A 13.同时具有性质①最小正周期是π; 增函数的一个函数为() A C 14则tanθ=() A.-2 D.2 15) A 16.已知tan(α﹣)=,则的值为() A. B.2 C.2 D.﹣2 17) A.1 D.2 18.已知角α的终边上一点的坐标为(,则角α值为 19) A 20) A..

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

向量和三角函数综合试题(卷)

向量与三角函数综合试题 1.已知向量a 、b 满足b ·(a-b)=0,且|a|=2|b|,则向量a +2b 与a 的夹角为 ( D ) A.3π B.3π2 C. 2π D.6π 2.已知向量),(n m =,)sin ,(cos θθ=,其中R n m ∈θ,,.若||4||=,则当2 λλ或2-<λ B .2>λ或2-<λ C .22< <-λ D .22<<-λ 3.已知O 为原点,点P (x ,y )在单位圆x 2 +y 2 =1上,点Q (2cos θ,2sin θ),且PQ =(3 4, -3 2),则·的值是 ( A ) A .18 25 B .9 25 C .2 D .9 16 4.R t t ∈+===,),20cos ,20(sin ,)25sin ,25(cos 0 0,则||的最小值是B A. 2 B. 22 C. 1 D. 2 1 5.如图,△ABC 中,AB=4,AC=4,∠BAC=60°,延长CB 到D ,使||||BA BD =u u u r u u u r ,当E 点在线段AD 上移动时,若,AE AB AC λμλμ=+-u u u r u u u r u u u r 则的最大值是( C ) A .1 B 3 C .3 D .236.已知向量(2,0)OB =u u u v ,向量(2,2)OC =u u u v ,向量22)CA αα=u u u v ,则向量OA u u u v 与向量OB uuu v 的夹角的取值围是( D ) A .[0, ]4π B .5[,]412ππ C .5[,]122ππ D .5[,]1212 ππ 7.已知向量(1,1),(1,1),(22)a b c θθ==-=r r r ,实数,m n 满足ma nb c +=r r r ,则 22(1)(1)m n -+-的最小值为( D ) A 21 B .1 C 2 D .322- 8.如图,BC 是单位圆A 的一条直径, F 是线段AB 上的点,且2BF FA =u u u r u u u r , 若DE 是圆A 中绕圆心A 运动的一条直径,则FD FE u u u r u u u r g 的值是( B ) B .)

高考数学-三角函数大题综合训练

三角函数大题综合训练 1.(2016?白山一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知= (1)求角C的大小, (2)若c=2,求使△ABC面积最大时a,b的值. 2.(2016?广州模拟)在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(I)求角A的大小; (Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值. 3.(2016?成都模拟)已知函数f(x)=cos2x﹣sinxcosx﹣sin2x. (Ⅰ)求函数f(x)取得最大值时x的集合; (Ⅱ)设A、B、C为锐角三角形ABC的三个内角,若cosB=,f(C)=﹣,求sinA的值. 4.(2016?台州模拟)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且c2=a2+b2﹣ab. (1)求角C的值; (2)若b=2,△ABC的面积,求a的值. 5.(2016?惠州模拟)如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cosB=. (Ⅰ)求△ACD的面积; (Ⅱ)若BC=2,求AB的长. 6.(2015?山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin (A+B)=,ac=2,求sinA和c的值. 7.(2015?新课标I)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC. (Ⅰ)若a=b,求cosB; (Ⅱ)设B=90°,且a=,求△ABC的面积. 8.(2015?湖南)设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA. (Ⅰ)证明:sinB=cosA; (Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C. 10.(2015?湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角. (Ⅰ)证明:B﹣A=; (Ⅱ)求sinA+sinC的取值范围. 11.(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小 (Ⅱ)若AB=3,AC=,求p的值.

相关文档
最新文档