初二数学上册一次函数与几何练习题及答案

合集下载

(完整版)八年级上册数学一次函数测试题及答案

(完整版)八年级上册数学一次函数测试题及答案

一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。

2、若函数y= -2x m+2 是正比例函数,则m 的值是。

3、已知一次函数y=kx+5 的图象经过点(-1,2),则k= 。

4、已知y 与x 成正比例,且当x=1 时,y=2,则当x=3 时,y= 。

5、点P(a,b)在第二象限,则直线y=ax+b 不经过第象限。

6、已知一次函数y=kx-k+4 的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是。

17、已知点A(- ,a), B(3,b)在函数y=-3x+4 的象上,则a 与b 的大小关系是2。

8、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t(℃)与高度h(m)的函数关系式是。

9、一次函数y=kx+b 与y=2x+1 平行,且经过点(-3,4),则表达式为:。

10、写出同时具备下列两个条件的一次函数表达式(写出一个即可)。

(1)y 随着x 的增大而减小,(2)图象经过点(1,-3)。

二、选择题111、下列函数(1)y=πx (2)y=2x-1 (3)y=x 函数的有()(4)y=2-1-3x(A)4 个(B)3 个(C)2 个(D)1 个12、下面哪个点不在函数y =-2x +3 的图像上()(A)(-5,13)(B)(0.5,2)(C)(3,0)(D)(1,1)13、直线y=kx+b 在坐标系中的位置如图,则( ) (第13 题图)(A)k =-1, b=-12(B)k =-1, b=12(C)k =1, b =-12(D)k =1, b = 1 214、下列一次函数中,随着增大而减小而的是()(A)y = 3x (B)y = 3x - 2 (C)y = 3 + 2x (D)y =-3x - 215、已知一次函数y=kx+b 的图象如图所示,则k,b 的符号是( )(A) k>0,b>0 (B) k>0,b<0(C) k<0,b>0 (D) k<0,b<0(第 15 题图)16、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是( )(A)m <34(B)-1 <m <34(C)m <-1 (D)m >-117、一支蜡烛长20 厘米,点燃后每小时燃烧5 厘米,燃烧时剩下的高度h (厘米) 与燃烧时间t (时)的函数关系的图象是( )(A)(B) (C)(D)18、下图中表示一次函数 y=mx+n 与正比例函数 y=m nx(m ,n 是常数,且mn<0)图像的是( ).三、计算题19、已知一个正比例函数和一个一次函数的图象相交于点 A(1,4),且一次函数的图象与 x 轴交于点 B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;20、已知y -2 与x 成正比,且当x=1 时,y= -6(1)求y 与x 之间的函数关系式(2)若点(a,2)在这个函数图象上,求a 的值21、已知一次函数y=kx+b 的图象经过点(-1, -5),且与正比例函数y= 图象相交于点(2,a),求(1)a 的值(2)k,b 的值(3)这两个函数图象与x 轴所围成的三角形的面积。

初二数学一次函数习题及答案详解(一).docx

初二数学一次函数习题及答案详解(一).docx

一次函数试卷 1一、相信你一定能填对!(每小题 3 分,共 30 分)1.下列函数中,自变量x 的取值范围是 x≥ 2 的是()A.y=2x B.y=1C.y=4x2D.y=x 2 ·x2 x 22.下面哪个点在函数y= 1x+1 的图象上() A.( 2,1)B.( -2 ,1)2C.( 2, 0) D.( -2 ,0)3.下列函数中, y 是 x 的正比例函数的是()A.y=2x-1 B .y=x C . y=2x2 D . y=-2x+134.一次函数 y=-5x+3 的图象经过的象限是() A 一、二、三 B.二、三、四C.一、二、四6.若一次函数 y=( 3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是()A.k>3B.0<k≤3C.0≤k<3D.0<k<37.已知一次函数的图象与直线y=-x+1 平行,且过点( 8, 2),那么此一次函数的解析式为()A.y=-x-2B. y=-x-6C.y=-x+10D.y=-x-18.汽车开始行驶时,油箱内有油40 升,如果每小时耗油 5 升,则油箱内余油量 y(升)与行驶时间t (时)的函数关系用图象表示应为下图中的()9.李老师骑自行车上班,最初以某一速度匀速行进,? 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y? (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()10.一次函数 y=kx+b 的图象经过点( 2,-1 )和( 0,3), ? 那么这个一次函数的解析式为()B .y=-3x+2C .y=3x-2D .y= 1x-3 2二、你能填得又快又对吗(每小题 3 分,共 30 分)11.已知函数 y=mx+2-m是正比例函数,则m=, ?该函数的解析式为_________.12.若点( 1,3)在正比例函数 y=kx 的图象上,则此函数的解析式为________.13.已知一次函数 y=kx+b 的图象经过点 A( 1,3)和 B(-1 , -1 ),则此函数的解析式为 _________.14.若解方程 x+2=3x-2 得 x=2,则当 x_________时直线 y=x+?2?上的点在直线 y=3x-2 上相应点的上方.15.已知一次函数 y=-x+a 与 y=x+b 的图象相交于点( m,8),则a+b=_________.16.若一次函数 y=kx+b 交于 y? 轴的负半轴, ? 且 y? 的值随 x? 的增大而减少, ? 则 k____0,b______0.(填“ >”、“ <”或“=”)x y 30 17.已知直线 y=x-3 与 y=2x+2 的交点为( -5 ,-8 ),则方程组2x y 20的解是 ________.18.已知一次函数 y=-3x+1 的图象经过点( a,1)和点( -2 ,b),则 a=________,yA 4b=______.32 19.如果直线 y=-2x+k 与两坐标轴所围成的三角1形面积是 9,则 k 的值为 _____.C-1O 1 2 34x -1-220.如图,一次函数y=kx+b 的图象经过 A、 B 两点,与 x 轴交于点 C,则此一次函数的解析式为__________,△ AOC的面积为_________.三、认真解答,一定要细心哟!(共60 分)21.( 14 分)根据下列条件,确定函数关系式:( 1) y 与 x 成正比,且当 x=9 时, y=16;( 2) y=kx+b 的图象经过点( 3,2)和点( -2 ,1).22.( 12 分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:( 1)农民自带的零钱是多少( 2)降价前他每千克土豆出售的价格是多少( 3)降价后他按每千克元将剩余土豆售完,这时他手中的钱(含备用零钱)是 26 元,问他一共带了多少千克土豆23.( 10 分)如图所示的折线 ABC?表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间 t (分钟)之间的函数关系的图象( 1)写出 y 与 t? 之间的函数关系式.( 2)通话 2 分钟应付通话费多少元通话 7 分钟呢24.( 12 分)已知雅美服装厂现有 A 种布料 70 米, B 种布料 52 米, ? 现计划用这两种布料生产 M、N两种型号的时装共 80 套.已知做一套 M型号的时装需用 A 种布料 1.?1 米, B 种布料米,可获利 50 元;做一套 N 型号的时装需用 A 种布料米,B 种布料 0.?9 米,可获利 45 元.设生产 M型号的时装套数为 x,用这批布料生产两种型号的时装所获得的总利润为y 元.①求 y(元)与 x(套)的函数关系式,并求出自变量的取值范围;②当 M型号的时装为多少套时,能使该厂所获利润最大最大利润是多一次函数试卷1答案3.B 4 .C 5 .D 6 .A 7 .C 8 .B 9 .C 10 .A11.2;y=2x 12 .y=3x 13 .y=2x+1 14 .<2 15 .1616.<;< 17 .x518 .0;7 19 .± 6 20 .y=x+2;4 y821.① y= 16x;② y=1x+722 . y=x-2 ;y=8;x=1495522.① 5 元;②元;③ 45 千克23.①当 0<t ≤3 时, y=;当 t>3 时, y=.②元;元24.① y=50x+45(80-x ) =5x+3600.∵两种型号的时装共用 A 种布料 [+0.?6(80-x)]米,共用 B 种布料 [+ (80-x ) ] 米,∴解之得 40≤x≤44,而 x 为整数,∴x=40, 41,42,43,44,∴y 与 x 的函数关系式是 y=5x+3600(x=40,41, 42,43, 44);②∵ y 随 x 的增大而增大,∴当 x=44 时, y 最大 =3820,即生产 M型号的时装 44 套时,该厂所获利润最大,最大利润是 3820 元.。

(压轴题)初中数学八年级数学上册第四单元《一次函数》测试题(有答案解析)(4)

(压轴题)初中数学八年级数学上册第四单元《一次函数》测试题(有答案解析)(4)

一、选择题1.一次函数()0y kx b k =+≠在平面直角坐标系内的图像如图所示,则k 和b 的取值范围是( )A .0k >,0b >B .0k <,0b <C .0k <,0b >D .0k >,0b < 2.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x ﹣k 的图象大致是( )A .B .C .D . 3.如图①,点P 为矩形ABCD 边上一个动点,运动路线是A →B →C →D →A ,设点P 运动的路径长为x ,S △ABP =y ,图②是y 随x 变化的函数图象,则矩形对角线AC 的长是( )A .25B .6C .12D .24 4.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( )A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+6 5.如图1,在矩形ABCD 中,AB <BC ,点E 为对角线AC 上的一个动点,连接BE ,DE ,过E 作EF ⊥BC 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )A .线段BEB .线段EFC .线段CED .线段DE 6.在平面直角坐标系中,解析式为31y x =+的直线a ,解析式为3y x =的直线b ,如图所示,直线a 交y 轴于点A ,以OA 为边作一个等边三角形OAB ∆,过点B 作y 轴的平行线交直线a 于点1A ,以1A B 为第二个等边三角形11A BB ∆,…顺次这样做下去,第2020个等边三角形的边长是( )A .20192B .20202C .4038D .40407.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是( ). A .函数值随自变量x 的增大而增大B .函数值随自变量x 的增大而减小C .函数图象关于原点对称D .函数图象过二、四象限8.已知正方形轨道ABCD 的边长为2,m 小明站在正方形轨道AD 边的中点M 处,操控一辆无人驾驶小汽车,小汽车沿着折线A B C D ---以每秒1m 的速度向点D (终点)移动,如果将小汽车到小明的距离设为,S 将小汽车运动的时间设为,t 那么()S m 与()t s 之间关系的图象大致是( )A .B .C .D . 9.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D .10.下列函数中y 随x 的增大而增大,且图象与x 轴交点在y 轴左侧的是( ) A .21y x =- B .21y x =+ C .21y x =-+ D .21y x =-- 11.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④ 12.已知点A (1,1y )和点B (a ,2y )在y =-2x +b 的图象上且1y >2y ,则a 的值可能是( )A .2B .0C .-1D .-2二、填空题13.已知平面直角坐标系中A .B 两点坐标如图,若PQ 是一条在x 轴上活动的线段,且PQ=1,求当BP+PQ+QA 最小时,点Q 的坐标___.14.若函数()224y m x m =-+-是关于x 的正比例函数,则常数m 的值是__________.15.函数y =2x x-中,自变量x 的取值范围是_____. 16.将直线y =2x 向下平移3个单位长度得到的直线解析式为_____.17.将直线y =x 沿y 轴正方向平移2个单位后过点(1,a ﹣2),则a =_____. 18.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s 与t 之间的函数关系如图所示.下列四种说法:①小明中途休息用了20分钟;②小明休息前爬山的平均速度为每分钟70米;③小明在上述过程中所走的路程为6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正确的是________(填序号).19.某网约车的收费标准为:起步价为15元,里程费为2.5元/千米,若该网约车行驶距离为x 千米,总费用y 与x 之间的函数关系式为_____________(总费用=起步价+里程费 ) 20.若长方形的周长为24cm ,一边为cm x ,面积为2cm y ,则y 与x 的关系式为y =__________.三、解答题21.如图,等腰Rt AOB △在平面直角坐标系xOy 上,90,4B OA ∠=︒=.点C 从原点O 出发,以每秒1个单位的速度沿x 轴的正方向运动,过点C 作直线l OA ⊥,直线l 与射线OB 相交于点N .(1)点B 的坐标为____________;(2)点C 的运动时间是t 秒.①当24t 时,AOB 在直线l 右侧部分的图形的面积为S ,求S (用含t 的式子表示);②当0t >时,点M 在直线l 上且ABM 是以AB 为底的等腰三角形,若32CN CM =,求t 的值.22.纺织厂生产某种产品,每件出厂价定为80元,每件的成本是60元,由于在生产过程中平均每生产一件此种产品,就会有0.5立方米的污水排出,为了保护环境,工厂需要对污水净化处理后才能排出.已知处理1立方米污水的费用为2元,另外每月排污设备物资损耗为8000元.设该厂每月生产此产品x 件(0x >且x 是整数),每月获得纯利润y 元.(纯利润=总收人-总支出)(1)求出y 与x 之间的函数表达式;(2)如果该厂本月获得的纯利润是106000元,请求出该厂在本月生产此产品的件数. 23.疫情过后,地摊经济迅速兴起.小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y (元)与销售量x (千克)之间的关系如图所示.(1)求降价后销售额y (元)与销售量x (千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?24.甲船从A 港出发顺流匀速驶向B 港,乙船从B 港出发逆流匀速驶向A 港,甲船后面拖拽着一艘无动力小艇,行驶一段时间后,甲船发现拖拽小艇缆绳松了,小艇不知去向,立刻原路返回寻找,找到小艇后,继续拖拽小艇顺流驶向B 港.已知小艇漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船与A 港的距离、与行驶时间之间的函数图象如图1所示.(1)求乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A 港的距离y 与行驶时间x 之间的函数关系式;(4)甲船拖拽的小艇与A 港的距离和经历的时间之间的函数图像如图2所示,求点C 的坐标.25.如图,在平面直角坐标系中,已知点A 的坐标为(12,0)-,点B 的坐标为(3,0),点C 在y 轴的正半轴上,连接,AC BC ,有90ACB ︒∠=.(1)求点C 的坐标;(2)求ACB ∠的平分线所在直线l 的表达式;(3)若P 为直线l 上的点,连接,PB PC ,若12PBC ACB S S ∆=,求点P 的坐标.26.如图,已知直线2y kx =+与直线3y x =交于点(1,)A m ,与y 轴交于点B .(1)求k 和m 的值;(2)求AOB 的周长;(3)设直线y n =与直线2y kx =+,3y x =及y 轴有三个不同的交点,且其中两点关于第三点对称,求出n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据一次函数的图象和性质判断即可.【详解】解:∵一次函数y=kx+b (k≠0)在平面直角坐标系内的图象过第一、二、三象限, ∴k >0,b >0,故选:A .【点睛】本题主要考查了一次函数的图象与系数之间的关系,关键是掌握数形结合思想. 2.B解析:B【分析】根据正比例函数的性质可得出k>0,进而可得出-k<0,由1>0,-k<0利用一次函数图象与系数的关系,可找出一次函数y=x-k的图象经过第一、三、四象限,此题得解.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴﹣k<0.又∵1>0,∴一次函数y=x﹣k的图象经过第一、三、四象限.故选:B.【点睛】本题考查了正比例函数的性质以及一次函数图象与系数的关系,牢记“k>0,b<0⇔y=kx+b 的图象在一、三、四象限”是解题的关键.3.A解析:A【分析】根据题意易得AB+BC=6,当点P运动到C点时三角形ABP的面积为4,故而可求出AB、BC 的长,进而求出AC.【详解】解:由图像及题意可得:AB+BC=6,当点P运动到C点时三角形ABP的面积为4,即1=42ABPS AB BC⋅=,∴AB=2,BC=4,在Rt ABC中,AC==;故选A.【点睛】本题主要考查函数与几何,关键是根据图像得到动点的运动路程,然后利用勾股定理求解线段的长即可.4.D解析:D【分析】设直线AB的解析式为y=kx+b,根据平移时k的值不变可得k=-2,把(1,4)代入即可求出b的值,即可得答案.【详解】设直线AB的解析式为y=kx+b,∵将直线y=-2x向上平移后得到直线AB,∴k=-2,∵直线AB经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB 的解析式为:y=-2x+6,故选:D .【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k 值不变. 5.D解析:D【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y 随x 的变化的趋势,从而可以判断哪个选项是正确的.【详解】A 、由图1可知,若线段BE 是y ,则y 随x 的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A 的距离是BA ,在点C 时的距离是BC ,BA <BC ,故选项A 错误;B 、由图1可知,若线段EF 是y ,则y 随x 的增大越来越小,故选项B 错误;C 、由图1可知,若线段CE 是y ,则y 随x 的增大越来越小,故选项C 错误;D 、由图1可知,若线段DE 是y ,则y 随x 的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A 的距离是DA ,在点C 时的距离是DC ,DA >DC ,故选项D 正确;故选D .【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.6.A解析:A【分析】延长A 1B 交x 轴于D ,A 2B 1交x 轴于E ,根据等边三角形的性质得OA=OD ,A 1B=BB 1,A 2B 1=B 2B 1,直线OB 的解析式为3y x =,得出∠BOD=30°,由直线a :1y =+得出第一个等边三角形边长为1,由30°角的性质得BD=12,由勾股定理得代入求得A 1的纵坐标,即可求得第二个等边三角形的边长,…,按照此规律得到第三个、第四个等边三角形的边长,从而求得第2020个等边三角形的边长.【详解】解:延长A 1B 交x 轴于D ,A 2B 1交x 轴于E ,如图,∵△OAB、△BA1B1、△B1A2B2均为等边三角形,∴OA=OD,A1B=BB1,A2B1=B2B1,∵直线OB的解析式为3,∴∠BOD=30°,由直线a:3可知OA=1,∴OB=1,∴BD=12,∴22112⎛⎫- ⎪⎝⎭=32,把33得y=52,∴A1D=52,∴A1B=2,∴BB1=A1B=2,∴OB1=3,∴B1E=32,∴22332⎛⎫- ⎪⎝⎭33,把333得y=112,∴A2E=112,∴A2B1=4,同理得到A3B2=23,…,按照此规律得到第2020个等边三角形的边长为22019,故选A .【点睛】本题考查了图形类规律探究、一次函数图象上点的坐标特征、等边三角形的性质,含30°角的直角三角形的性质,以及勾股定理等知识,找出第n 个等边三角形的边长为2n-1是解题的关键.7.A解析:A【详解】解:设正比例函数解析式(0)y kx k =≠,∵正比例函数过(2,3)-,∴32k -=, ∴32k =-, ∴正比例函数解析式为32y x =-, ∵302k =-<, ∴图象过二、四象限,函数值随自变量x 增大而减小,图象关于原点对称,∴四个选项中,只有A 选项中的不正确,其余三个选项中的结论都是正确的.故选A .8.D解析:D【分析】求出小汽车在AB 、BC 上运动时,MQ 的表达式即可求解.【详解】解:设小汽车所在的点为点Q ,①当点Q 在AB 上运动时,AQ=t ,则MQ 2=MA 2+AQ 2=1+t 2,即MQ 2为开口向上的抛物线,则MQ 为曲线,②当点Q 在BC 上运动时,同理可得:MQ 2=22+(1-t+2)2=4+(3-t )2,MQ 为曲线;故选:D .【点睛】本题考查了动点图象问题,解题的关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.9.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.10.B解析:B【分析】根据一次函数的性质和各个选项中的函数解析式,可以判断哪个选项中的函数y随x的增大而增大,且图象与x轴交点在y轴左侧,本题得以解决.【详解】解:函数y=2x-1,y随x的增大而增大,与x轴的交点是(0.5,0),在y轴右侧,故选项A不符题意;函数y=2x+1,y随x的增大而增大,与x轴的交点是(-0.5,0),在y轴左侧,故选项B 符题意;函数y=-2x+1,y随x的增大而减小,与x轴的交点是(0.5,0),在y轴右侧,故选项C 不符题意;函数y=-2x-1,y随x的增大而减小,与x轴的交点是(-0.5,0),在y轴左侧,故选项D 不符题意;故选:B.【点睛】本题考查了一次函数的性质,解题的关键是明确题意,利用一次函数的性质解答.11.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m 的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160>150,②不正确;当乙在B 地停留1h 时,甲前进80km ,甲乙相距=160-80=80km ,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D ,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键, 12.A解析:A【分析】函数解析式y=-2x+b 知k <0,可得y 随x 的增大而减小,求出a 的取值范围即可求解.【详解】解:由y=-2x+b 知k <0,∴y 随x 的增大而减小,∵1y >2y ,∴a>1∴a 的值可能是2故选:A .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.二、填空题13.(0);【分析】如图把点向右平移1个单位得到作点关于轴的对称点连接与轴的交点即为点此时的值最小求出直线的解析式即可解决问题【详解】如图把点向右平移1个单位得到作点关于轴的对称点连接与轴的交点即为点此解析:(197,0); 【分析】 如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,求出直线AF 的解析式,即可解决问题.【详解】如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,设最小AF 的解析式为y kx b =+,则有354k b k b +=-⎧⎨+=⎩,解得74194k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AF 的解析式为71944y x =-, 令0y =,得到197x =, ∴19,07Q ⎛⎫ ⎪⎝⎭. 故答案为19,07⎛⎫⎪⎝⎭. 【点睛】本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型. 14.【分析】根据正比例函数的定义列出式子计算求出参数m 的值【详解】解:∵函数y=(m-2)x+4-m2是关于x 的正比例函数∴4-m2=0且m-2≠0解得m=-2或m=2(不符合题意舍去)故答案为:m=-解析:2m =-【分析】根据正比例函数的定义列出式子计算求出参数m 的值.【详解】解:∵函数y=(m-2)x+4-m 2是关于x 的正比例函数,∴4-m 2=0且m-2≠0,解得,m=-2或m=2(不符合题意,舍去).故答案为:m=-2.【点睛】本题考查的是正比例函数的定义,一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.15.x≥2【分析】根据被开方数大于等于0分母不等于0列式进行计算即可得解【详解】解:根据题意得x ﹣2≥0且x≠0解得x≥2且x≠0所以自变量x 的取值范围是x≥2故答案为x ≥2【点睛】本题考查的知识点为:解析:x ≥2.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x ﹣2≥0且x ≠0,解得x ≥2且x ≠0,所以,自变量x 的取值范围是x ≥2.故答案为x ≥2.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 16.【分析】根据直线的平移规律上加下减左加右减求解即可【详解】解:直线y 2x 向下平移3个单位长度得到的直线解析式为【点睛】本题考查了直线的平移变换直线平移变换的规律是:对直线y=kx+b 而言:上下移动解析:23y x =-.【分析】根据直线的平移规律“上加下减,左加右减”求解即可.【详解】解:直线y =2x 向下平移3个单位长度得到的直线解析式为23y x =-.【点睛】本题考查了直线的平移变换. 直线平移变换的规律是:对直线y=kx+b 而言:上下移动,上加下减;左右移动,左加右减.例如,直线y=kx+b 如上移3个单位,得y=kx+b +3;如下移3个单位,得y=kx+b -3;如左移3个单位,得y=k (x +3)+b ;如右移3个单位,得y=k (x -3)+b .掌握其中变与不变的规律是解决直线平移变换问题的基本方法.17.5【分析】根据平移规律可得直线y =x 沿y 轴正方向平移2个单位后得y =x+2然后把(1a ﹣2)代入即可求出a 的值【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x+2根据题意将(1a ﹣2)代入解析:5【分析】根据平移规律可得,直线y =x 沿y 轴正方向平移2个单位后得y =x +2,然后把(1,a ﹣2)代入即可求出a 的值.【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x +2,根据题意,将(1,a ﹣2)代入,得:1+2=a ﹣2,解得:a =5,故答案为:5.【点睛】此题主要考查了坐标与图形变化-平移,直线平移后的解析式有这样的规律“左加右减,上加下减”.18.①②④【分析】根据函数图象可知小明40分钟爬山2800米40~60分钟休息60~100分钟爬山(3800-2800)米爬山的总路程为3800米根据路程速度时间之间的关系进行解答即可【详解】解:①小明解析:①②④【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800-2800)米,爬山的总路程为3800米,根据路程、速度、时间之间的关系进行解答即可.【详解】解:①小明中途休息的时间是:60-40=20分钟,故本选项正确;②小明休息前爬山的速度为28007040=(米/分钟),故本选项正确;③小明在上述过程中所走路程为3800米,故本选项错误;’④因为小明休息后爬山的速度是380028002510060-=-(米/分钟),所以小明休息前爬山的平均速度大于小明休息前后爬山的平均速度,故本选项正确;故答案为①②④.【点睛】本题考查的知识点是函数图象,解题关键是从图象中获取必要的信息.19.【分析】根据乘车费用=起步价+里程费得出【详解】解:依题意有:故答案为:【点睛】根据题意找到所求量的等量关系是解决问题的关键本题乘车费用=起步价+里程费解析:15 2.5xy=+【分析】根据乘车费用=起步价+里程费得出.【详解】解:依题意有:15 2.5xy=+.故答案为:15 2.5xy=+.【点睛】根据题意,找到所求量的等量关系是解决问题的关键.本题乘车费用=起步价+里程费.20.【分析】首先利长方形周长公式表示出长方形的另一边长然后利用长方形的面积公式求解即可【详解】∵长方形的周长为24cm其中一边长为xcm∴另一边长为:(12-x)cm∵长方形面积为∴y与x的关系式为y=解析:212x x -+【分析】首先利长方形周长公式表示出长方形的另一边长,然后利用长方形的面积公式求解即可.【详解】∵长方形的周长为24cm ,其中一边长为xcm ,∴另一边长为:(12-x )cm ,∵长方形面积为2cm y ,∴y 与x 的关系式为y=x(12−x)=-x 2+12x .故答案为:y=-x 2+12x【点睛】本题考查函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.三、解答题21.(1)(2,2);(2)①21(4)2S t =-;②t =6或65t =. 【分析】(1)过B 点作BD ⊥OA 于点D ,根据等腰直角三角形的性质即可求得OD 与BD 的长度,从而可求得B 点的坐标;(2)①证明△ACM 为等腰直角三角形,再由三角形的面积公式求得结果;②过AB 的中点D ,作线段AB 的垂直平分线DE ,求出直线OB 与DE 的解析式,再用t 表示C 、M 、N 的坐标,进而用t 表示CN 与CM ,根据已知条件32CN CM =,列出t 的方程进行解答便可.【详解】解:(1)过B 点作BD ⊥OA 于点D ,如图1,∵∠OBA =90°,OB =AB ,OA =4.∴122BD OD AD OA ====, ∴B (2,2),故答案为(2,2);(2)①当2≤t ≤4时,如图2,则AC =OA -OC =4-t ,∵∠OBA =90°,OB =AB ,∴∠OAB =45°,∵直线l ⊥OA ,∴∠ACM =90°,∴∠AMC =45°=∠CAM ,∴AC =CM =4-t , ∴21(4)2ACM S S t ∆==-; ②过AB 的中点D ,作线段AB 的垂直平分线DE ,如图3,∵△ABM 是以AB 为底的等腰三角形,∴MA =MB ,∴点M 在直线DE 上,∵点M 在直线l 上,∴点M 为直线l 与直线DE 的交点,设直线OB 的解析式为y =kx (k ≠0),由(1)知,B (2,2),∴2=2k ,∴k =1,∴直线OB 的解析式为:y =x ,∵∠ABO =∠ADM =90°,∴DE ∥OB ,∴设直线DE 的解析式为y =x +n ,∵A (4,0),B (2,2),D 为AB 的中点,∴D (3,1),把D (3,1)代入y =x +n 中,得1=3+n ,∴n =-2,∴直线DE 的解析式为:y =x -2,∵OC =t ,∴C (t ,0),N (t ,t ),M (t ,t -2), ∵32CN CM =,t >0 ∴3|2|2t t =-, ∴3(2)2t t =-,或3(2)2t t =-, 解得,t =6,或65t =. 【点睛】 本题主要考查了点的坐标,待定系数法,求函数的解析式,等腰直角三角形的性质,三角形的面积公式,难度不大,第(3)题关键是求出AB 的垂直平分线的解析式和正确列出t 的方程.22.(1)y =19x−8000(x >0且x 是整数);(2)这个月该厂生产产品6000件.【分析】(1)本题的等量关系是:纯利润=产品的出厂单价×产品的数量−产品的成本价×产品的数量−生产过程中的污水处理费−排污设备的损耗.可根据此等量关系来列出总利润与产品数量之间的函数关系式.(2)根据(1)中得出的式子,将y 的值代入其中,求出x 即可.【详解】解:(1)依题意得:y =80x−60x−2×0.5x−8000,化简得:y =19x−8000.∴函数关系式为y =19x−8000(x >0且x 是整数);(2)当y =106000时,代入得:106000=19x−8000,解得:x =6000.答:这个月该厂生产产品6000件.【点睛】本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解.23.(1) 2.560(40)y x x =+>;(2)180千克【分析】(1)根据函数图象中的数据,可以得到降价后销售额y (元)与销售量x (千克)之间的函数表达式;(2)根据(1)中的函数关系式和题意,可以列出相应的方程,从而可以得到当销售量为多少千克时,小李销售此种水果的利润为150元.【详解】解:(1)设降价后销售额y (元)与销售量x (千克)之间的函数表达式是y kx b =+, AB 段过点(40,160),(80,260),∴4016080260k b k b +=⎧⎨+=⎩, 解得, 2.560k b =⎧⎨=⎩, 即降价后销售额y (元)与销售量x (千克)之间的函数表达式是 2.560(40)y x x =+>; (2)设当销售量为a 千克时,小李销售此种水果的利润为150元,2.5602150a a +-=,解得,180a =,答:当销售量为180千克时,小李销售此种水果的利润为150元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.24.(1)6/km h ;(2)3km ;(3)19(02)5630(2)215579()222x x y x x x x ⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩;(4)3(2,27)2 【分析】(1)由速度=路程÷时间列式求解;(2)因为甲船、乙船在逆流中行驶的速度相同,只需由图示得出甲船在逆流中行驶的时间.(3)观察图形,要分成3段讨论,每一段中已知两点,可用待定系数法确定一次函数的解析式.(4)根据等量关系:小艇脱离船中后,船顺流行驶的路程=船逆流行驶的路程+小艇漂流的路程,据此即可解答.【详解】解:(1)乙船在逆流中行驶的速度为6/km h .(2)甲船在逆流中行驶的路程为6(2.52)3()km ⨯-=.(3)设甲船顺流的速度为/akm h , 由图象得23(3.5 2.5)24a a -+-=,解得9a =.当02x 时,19y x =,当2 2.5x 时,设116y x b =-+,把2x =,118y =代入,得130b =,1630y x ∴=-+,当2.5 3.5x 时,设129y x b =+,把 3.5x =,124y =代入,得27.5b =-,197.5y x ∴=-. 综上所述,19(02)5630(2)215579()222x x y x x x x ⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩; (4)水流速度为(96)2 1.5(/)km h -÷=,设甲船从A 港航行x 小时小艇缆绳松了. 根据题意,得9(2) 1.5(2.5)3x x -=-+,解得 1.5x =,1.5913.5⨯=,即小艇缆绳松了时甲船到A 港的距离为13.5km .∴点C 坐标3(2,27)2. 【点睛】 此题为一次函数的应用,渗透了函数与方程的思想,要求学生要提高阅读理解水平,从中挖掘有用信息,记住船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度-水流速度.25.(1)C (0,6);(2)36y x =+;(3)(3,3)P --或(3,15)P【分析】(1)设点C 的坐标为(0,)(0)c c >,根据勾股定理分别用c 表示出,,AC BC AB ,列出关于c 的方程即可求解;(2)设l 与x 轴交于点D ,过点D 作DE BC ⊥于点E ,设BD m =,在等腰直角三角形CDE 中,CE DE =,通过1122BCD S BD CO BC DE =⋅=⋅△将,CE DE 用m 的代数式表示出来,在Rt DBE 中,根据勾股定理将BE 表示出来,最后根据CE BE BC +=列方程求解;(3)分两种情况:点P 在CD 的延长线上或DC 的延长线上,①取AB 的中点F ,连接CF ,过点F 作1//FP BC 交CD 于点1P ,点1P 就是所要求作的点,利用待定系数法求出点1P 的坐标;②在线段DC 的延长线上取点2P ,使得点21P C PC =,2P 即是所求作的点,写出2P 的坐标,据此答案为1P ,2P 的坐标即为所求.【详解】解:(1)设点C 的坐标为(0,)(0)c c >(12,0),(3,0)A B -12,3,15OA OB AB ∴===在Rt AOC 中,222AC AO CO =+在Rt BOC 中,222BC BO CO =+在Rt ABC △中,222AB AC BC =+22222AO CO BO CO AB ∴+++=,即2222212315,6c c c +++=∴=∴点C 的坐标是(0,6)(2)如图,设直线l 交x 轴于点D ,过点D 作DE BC ⊥于点E ,设DB 的长为m 12,3,6,OA OB OC ===15,65,35AB AC BC ∴===1122BCD S BD CO BC DE =⋅=⋅ 25635,5m DE DE ∴=∴= 又在Rt DBE 中,222BD DE BE =+,即222255,55m m BE BE m ⎛⎫=+∴= ⎪ ⎪⎝⎭由题意,在Rt DEC △中,45DCE ︒∠=,于是25CE DE ==由CE BE BC +=,即2553555m m +=5m = 又由||||OA OB >,知点D 在线段OA 上,||3OB =||2OD ∴=,故点(2,0)D -设直线l 的解析式为y kx b =+,把(0,6)C 和(2,0)D -代入得620b k b =⎧⎨-+=⎩ 解得:36k b =⎧⎨=⎩故直线l 的表达式为36y x =+(3)①取AB 的中点( 4.5,0)F -,过点F 作BC 的平行线交直线l 于点1P ,连接CF易知112P BC FBC ACB S S S ==∴点1P 为符合题意的点()()3,0,0,6B C∴ 直线BC 的表达式为26y x =-+直线1P F 可由直线BC 向左平移152个单位得到 ∴直线1P F 的表达式为15262y x ⎛⎫=-++ ⎪⎝⎭,即29y x =-+ 由2936y x y x =-+⎧⎨=+⎩解得33x y =-⎧⎨=-⎩ ∴点1(3,3)P --②在直线l 上取点2P ,使21P C PC =此时有1212P BC P BC ACB S S S ==∴点2P 符合题意由21P C PC =,可得点2P 的坐标为(3,15) ∴点(3,3)P --或(3,15)P 可使12PBC ACB S S =【点睛】本题考查了坐标系内点的坐标问题,用待定系数法求一次函数的解析式,一次函数的平移,勾股定理及三角形面积问题等知识,用待定系数法,勾股定理是解此题的关键. 26.(1)1k =,3m =;(2)AOB 的周长是2210++3)n 的值是125或6或32. 【分析】(1)把A(1,m)代入3y x =求得m 的值,再把m 的值代入2y kx =+求得k 的值即可; (2)先求得点B 的坐标,过点A 作AC y ⊥轴于点C ,利用勾股定理分别求得OB 、OA 、AB 的长,即可求解;(3)设直线y n =与直线2y x =+,3y x =及y 轴分别交于点1P ,2P ,3P ,分三种情况讨论即可求解.【详解】(1)∵直线2y kx =+与直线3y x =交于点A(1,m),∴3m =,2m kx =+,∴1k =;(2)∵直线2y x =+与y 轴交于点B ,∴B (0,2),∴OB=2,过点A 作AC y ⊥轴于点C .(1,3)A ,1AC ∴=,3OC =,321BC ∴=-=,在Rt ABC △中,222AB AC BC ∴=+= 在Rt AOC 中,22221310OA AC OC =+=+=.AOB ∴的周长是2210++(3)设直线y n =与直线2y x =+,3y x =及y 轴分别交于点1P ,2P ,3P ,则有1(2,)n P n -,2,3nP n ⎫⎛ ⎪⎝⎭,3(0,)P n . ①当1P 在2P ,3P 中间时,则有2131P P P P =,(2)23n n n ∴--=-.解得125n =. ②当2P 在1P ,3P 中间时,则有1232PP P P =,(2)33n n n ∴--=.解得6n =.③当3P 在1P ,2P 中间时,则有1323PP P P =,0(2)3n n ∴--=.解得32n =. n ∴的值是125或6或32. 【点睛】 本题考查了两条直线相交的问题,解题的关键是利用图象求解,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系,学会用分类讨论的思想思考并解决问题.。

精选-初二数学一次函数练习题(附答案)-word文档

精选-初二数学一次函数练习题(附答案)-word文档

初二数学一次函数练习题(附答案)查字典数学网小编为大家整理了初二数学一次函数练习题(附答案),希望能对大家的学习带来帮助!一次函数的图象和性质选择题1.已知一次函数 ,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。

那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) (B) (C) = (D)以上均有可能4.若函数 ( 为常数)的图象如图所示,那么当时,的取值范围是A、 B、 C、 D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若ADE=C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,DEF=90,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为 .下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m0)和反比例函数y= (n0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y轴交于正半轴,则|a―1|+ =。

(完整版)一次函数与几何图形综合题10及答案

(完整版)一次函数与几何图形综合题10及答案

专题训练:一次函数与几何图形综合1、直线y=-x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB(1) 求AC 的解析式;(2) 在OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并证明你的结论。

(3) 在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的值不变;②(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。

2.(本题满分12分)如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。

(1)当OA=OB 时,试确定直线L 的解析式;xyo BA CPQxyo BA CPQM第2题图①(2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。

(3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。

问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。

3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+,(1)求直线2l 的解析式;(3分)第2题图②第2题图③CB Al 2l 1xy(2)过A 点在△ABC 的外部作一条直线3l ,过点B 作作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。

初二数学一次函数经典试题含答案

初二数学一次函数经典试题含答案

初二数学一次函数超经典试题含答案一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=2x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途因为自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为准确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相对应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:第一份3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

(典型题)初中数学八年级数学上册第四单元《一次函数》检测(答案解析)(1)

一、选择题1.当2x =-时,函数23y x =+的值等于( )A .1-B .0C .1D .72.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .无法比较3.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为(1,1)A ,(3,1)B ,(2,2)C ,当直线3y kx =+与ABC ∆有交点时,k 的取值范围是( )A .2132k -≤≤- B .223k -≤≤- C .223k -<<-D .122k -≤≤-4.对于函数31y x =-+,下列结论正确的是( )A .它的图象必经过点(1,3)B .它的图象经过第一、三、四象限C .当x >0时,y <0D .y 的值随x 值的增大而减小5.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 6.弹簧大家了解吗?弹簧挂上物体后会伸长。

测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下面的关系: x 0 1 2 3 4 5 y1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B.物体质量每增加1kg,弹簧长度y增加0.5cmC.y与x的关系表达式是y=0.5xD.所挂物体质量为7kg时,弹簧长度为13.5cm7.如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF⊥BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段BE B.线段EF C.线段CE D.线段DEx的函数的是()8.下列各图象中,y不是..A.B.C.D.9.如图,△ABC的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( )A .4B .8C .82D .1610.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .11.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④12.一蓄水池中有水350m ,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分 1 2 3 4 … 水池中水量/3m48464442…A .蓄水池每分钟放水32mB .放水18分钟后,水池中水量为314mC .蓄水池一共可以放水25分钟D .放水12分钟后,水池中水量为324m二、填空题13.为了提高居民的节水意识,今年调整水价,不仅提高了每立方的水价,还施行阶梯水价.图中的1l 和2l 分别表示去年和今年的水费y (元)和用水量x (3m )之间的函数关系图像.如果小明家今年和去年都是用水1503m ,要比去年多交水费________元.14.把一根长为20cm 的蜡烛,每分钟燃烧2cm ,蜡烛剩余长度y(cm)与燃烧时间t(分)之间的关系为_______(不需要写出自变量的取值范围).15.一列火车以100km /h 的速度匀速前进.则它的行驶路程s (单位:km )关于行驶时间t (单位:h )的函数解析式为_____. 16.已知()111,P y ,()222,P y 在正比例函数14y x =-的图象上,则1y ___________2y .(填“>”或“<”或“=”).17.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示y 与x 之间的函数关系,下列结论: ①甲、乙两地相距1800千米;②点B 的实际意义是两车出发后4小时相遇; ③动车的速度是280千米/小时; ④6,900.m n ==其中正确的是_______________________.(写出所有正确结论的序号)18.某书定价40元,如果一次购买20本以上,超过20本的部分打八折.试写出付款金额y (单位:元)与购书数量x (单位:本)之间的函数关系____.19.若长方形的周长为24cm ,一边为cm x ,面积为2cm y ,则y 与x 的关系式为y =__________.20.某通讯公司的4G 上网套餐每月上网费用y (单位:元)与上网流量x (单位:兆)的函数关系的图像如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a 的值为__________.三、解答题21.如图,在平面直角坐标系中,()1,4A -,()3,3B -,()2,1C -.(1)已知111A B C △与ABC 关于x 轴对称,画出111A B C △(请用2B 铅笔将111A B C △描深);(2)在y 轴上找一点P ,使得PBC 的周长最小,试求点P 的坐标.22.甲船从A 港出发顺流匀速驶向B 港,乙船从B 港出发逆流匀速驶向A 港,甲船后面拖拽着一艘无动力小艇,行驶一段时间后,甲船发现拖拽小艇缆绳松了,小艇不知去向,立刻原路返回寻找,找到小艇后,继续拖拽小艇顺流驶向B港.已知小艇漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船与A港的距离、与行驶时间之间的函数图象如图1所示.(1)求乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y与行驶时间x之间的函数关系式;(4)甲船拖拽的小艇与A港的距离和经历的时间之间的函数图像如图2所示,求点C的坐标.23.甲、乙两家商场平时以同样价格出售相同的商品,元旦假期,甲、乙两家商场打折促销,甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数关系式;(2)小明需要购买原价为300元的商品,在元旦期间他去哪家商场购买更省钱?24.如图,直线l与x轴交于点A,与y轴交于点B(0,2).已知点C(﹣1,3)在直线l上,连接OC.(1)求直线l的解析式;(2)点P为x轴上一动点,若△ACP的面积与△AOB的面积相等,求点P的坐标.25.甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象,已知甲气球的函数解析式为y=x+5(x≥0)(1)求乙气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.26.已知y 与2x -1成正比例,当x =3时,y =10. (1)求y 与x 之间的函数关系式; (2)当y =-2时,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】把2x =-代入解析式即可. 【详解】解:把2x =-代入23y x =+得, 2(2)31y =⨯-+=-,故选:A . 【点睛】本题考查了求一次函数的函数值,解题关键是把自变量的值代入后能准确熟练计算.2.A解析:A 【分析】根据一次函数的增减性直接判断即可;或求出1y 、2y 的值,进行比较. 【详解】解:方法一:因为一次函数21y x =-+中的比例系数20-<, 所以y 随着x 的增大而减小, ∵-2<1, ∴12y y >;方法二:把x=-2或1分别代入21y x =-+得,15y =、21y =-,∴12y y >; 故选:A . 【点睛】本题考查了一次函数的增减性,解题关键是知道一次函数的增减性由比例系数k 决定,根据k 值可直接判断.3.B解析:B 【分析】把A 点和B 点坐标分别代入y=kx+3中求出对应的的值,即可求得直线y=kx+3与△ABC 有交点时k 的临界值,然后再确定k 的取值范围. 【详解】解:把A (1,1)代入y=kx+3得1=k+3,解得k=-2 把B (3,1)代入y=kx+3得1=3k+3,解得:k=23-所以当直线y=kx+3与△ABC 有交点时,k 的取值范围是223k -≤≤-. 故答案为B . 【点睛】本题考查了一次函数与系数的关系,将A 、B 点坐标代入解析式确定k 的边界点是解答本题的关键.4.D解析:D 【分析】根据一次函数图象上点的坐标特征对A 进行判断;根据一次函数的性质对B 、D 进行判断;利用x >0时,函数图象在y 轴的左侧,y <1,则可对C 进行判断. 【详解】A 、当1x =时,312y x =-+=-,则点(1,3)不在函数31y x =-+的图象上,所以A 选项错误;B 、30k =-<,10b =>,函数图象经过第一、二、四象限,所以B 选项错误;C 、当x >0时,y <1,所以C 选项错误;D 、y 随x 的增大而减小,所以D 选项正确. 故选:D . 【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.由于y=kx+b 与y 轴交于(0,b ),当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.5.B解析:B【分析】根据横坐标分别求出A,B,C的坐标,利用坐标的几何性质求面积即可.【详解】解:当x=-1时y=-2×(-1)+m=2+m,故A点坐标(-1,2+m);当x=0时,y=-2×0+m=m,故一次函数与y轴交点为(0,m);当x=1时,y=-2×1+m=-2+m,故B点坐标(1,-2+m);当x=2时,y=-2×2+m=-4+m,故C点坐标(2,-4+m),则阴影部分面积之和为1112m m22⨯⨯+-+×1×[m-(-2+m)]+12×1×[(-2+m)-(-4+m)]=1+1+1=3,故选B.【点睛】本题考查了一次函数的图像和性质,中等难度,利用坐标表示底和高是解题关键.6.C解析:C【分析】由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.【详解】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项不符合题意;B、物体质量每增加1kg,弹簧长度y增加0.5cm,故B选项不符合题意;C、y与x的关系表达式是y=0.5x+10,故C选项符合题意;D、由C知,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D 选项不符合题意;故选:C.【点睛】本题考查了函数的概念,能够根据所给的表进行分析变量的值的变化情况,得出答案.7.D解析:D【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】A、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故选项A错误;B、由图1可知,若线段EF是y,则y随x的增大越来越小,故选项B错误;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故选项C错误;D、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故选项D正确;故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.8.B解析:B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键. 9.D解析:D【解析】试题如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC 扫过的面积S=S 平行四边形BCFE =CF•FD=16.故选D .10.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0,故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0,故y=nx+m 过一,二,四象限,故B 正确,D 错误;故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明11.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160>150,②不正确;当乙在B 地停留1h 时,甲前进80km ,甲乙相距=160-80=80km ,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D ,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键, 12.D解析:D【分析】根据题意可得蓄水量为502y t =-,从而进行判断即可;【详解】设蓄水量为y 立方米,时间为t 分,则可得502y t =-, 蓄水池每分钟放水32m ,故A 不符合题意;放水18分钟后,水池中水量为35021814y m =-⨯=,故B 不符合题意; 蓄水池一共可以放水25分钟,故C 不符合题意;放水12分钟后,水池中水量为35021226y m =-⨯=,故D 符合题意;故答案选D .【点睛】本题主要考查了函数的表示方法,准确分析判断是解题的关键.二、填空题13.210【分析】根据函数图象中的数据可以求得x>120时l2对应的函数解析式从而可以求得x=150时对应的函数值由l1的图象可以求得x=150时对应的函数值从而可以计算出题目中所求问题的答案【详解】解解析:210【分析】根据函数图象中的数据可以求得x>120时,l 2对应的函数解析式,从而可以求得x=150时对应的函数值,由l 1的图象可以求得x=150时对应的函数值,从而可以计算出题目中所求问题的答案.【详解】解:设当x>120时,l 2对应的函数解析式为y=kx+b ,120480160720k b k b +=⎧⎨+=⎩ 解:6240k b =⎧⎨=-⎩故x>120时,l 2的函数解析式y=6k-240,当x=150时,y=6×150-240=660,由图象可知,去年的水价是480÷160=3(元/m 3),小明去年用水量150m 3,需要缴费:150×3=450(元),660-450=210(元),所以要比去年多交水费210元,故答案为:210【点睛】本题考查的是一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.14.y=20-2t 【分析】根据题意可得燃烧的长度为2tcm 根据题意可得等量关系:蜡烛剩余长度y=原长度-燃烧的长度根据等量关系再列出函数关系式即可【详解】由题意得:y=20−2t 故答案为y=20−2t 【解析:y=20-2t【分析】根据题意可得燃烧的长度为2tcm ,根据题意可得等量关系:蜡烛剩余长度y=原长度-燃烧的长度,根据等量关系再列出函数关系式即可.【详解】由题意得:y=20−2t ,故答案为y=20−2t.【点睛】本题考查函数关系式,解题的关键是准确获取题文信息.15.s =100t 【分析】利用路程=速度×时间用t 表示出路程s 即可【详解】解:根据题意得s =100t 故答案为s =100t 【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式也称为函数关系式注解析:s =100t【分析】利用路程=速度×时间,用t 表示出路程s 即可.【详解】解:根据题意得s =100t .故答案为s =100t .【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.16.【分析】根据正比例函数的增减性解答【详解】∵<0∴y 随着x 的增大而减小∵1<2∴>故答案为:>【点睛】此题考查了正比例函数的增减性:当k>0时y 随x 的增大而增大;当k<0时y 随x 的增大而减小熟练掌握解析:>【分析】根据正比例函数的增减性解答.【详解】 ∵14k =-<0, ∴y 随着x 的增大而减小,∵1<2,∴1y >2y ,故答案为:>.【点睛】此题考查了正比例函数的增减性:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟练掌握正比例函数的增减性是解此题的关键.17.①②④【分析】根据题意和函数图像中的数据可以判断B点表示两车相遇的点C点表示动车先行到达终点D点表示列车达到终点进而求出动车和列车的速度再结合题中各数据逐个分析即可解答本题【详解】解:对于①:由图像解析:①②④【分析】根据题意和函数图像中的数据可以判断B点表示两车相遇的点,C点表示动车先行到达终点,D点表示列车达到终点,进而求出动车和列车的速度,再结合题中各数据逐个分析即可解答本题.【详解】解:对于①:由图像可知,甲、乙两地相距1800千米,故①说法正确;对于②:点B的实际意义是两车出发后4小时相遇,故②说法正确;对于③:C点表示动车先行到达终点,D点表示列车达到终点,普通列车的速度为:1800÷12=150(km/h),动车的速度为:(1800-150×4)÷4=300(km/h),故③说法错误;对于④:动车到达终点所需要的时间为1800÷300=6小时,故m=6,动车到达终点的6小时内,列车运行的路程为6×150=900km,此时n=1800-900=900,故④说法正确;故答案为:①②④【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,确定好B、C、D点各代表的含义,利用数形结合的思想解答.18.【分析】分类:当0≤x≤20用数量乘以单价得到付款金额y;当x>20用20的金额加上超过20本的金额得到付款金额【详解】解:当0≤x≤20y=40x;当x >20y=40×20+40×08(x-20)解析:40(020)32+160(20)x xyx x≤≤⎧=⎨>⎩【分析】分类:当0≤x≤20,用数量乘以单价得到付款金额y;当x>20,用20的金额加上超过20本的金额得到付款金额.【详解】解:当0≤x≤20,y=40x;当x>20,y=40×20+40×0.8(x-20)=32x+160;即y=() 40020 32160(20) x xx x⎧≤≤⎨+⎩>故答案为y=() 40020 32160(20)x xx x⎧≤≤⎨+⎩>.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.19.【分析】首先利长方形周长公式表示出长方形的另一边长然后利用长方形的面积公式求解即可【详解】∵长方形的周长为24cm 其中一边长为xcm ∴另一边长为:(12-x )cm ∵长方形面积为∴y 与x 的关系式为y=解析:212x x -+【分析】首先利长方形周长公式表示出长方形的另一边长,然后利用长方形的面积公式求解即可.【详解】∵长方形的周长为24cm ,其中一边长为xcm ,∴另一边长为:(12-x )cm ,∵长方形面积为2cm y ,∴y 与x 的关系式为y=x(12−x)=-x 2+12x .故答案为:y=-x 2+12x【点睛】本题考查函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.20.59【解析】由题意得解得a=59故答案为59解析:59【解析】 由题意得,300.29600500a -=-,解得a=59. 故答案为59. 三、解答题21.(1)答案见解析;(2)(0,95). 【分析】(1)分别作出ABC 三个顶点关于x 轴的对称点,再首尾顺次连接即可;(2)作点C 关于y 轴的对称点C ',再利用待定系数法求出BC '所在直线解析式,再令x =0,求出y ,即可求出P 点坐标.【详解】(1)如图所示111A B C △即为所求.(2)如图所示P 点即为所求,由对称可知,点C 关于y 轴的对称点C '的坐标为(2,1),设BC '所在直线解析式为y kx b =+,则3312k bk b=-+⎧⎨=+⎩,解得2595kb⎧=-⎪⎪⎨⎪=⎪⎩,即BC'所在直线解析式为2955y x=-+.当0x=时,95y=,即P点坐标为(0,95).【点睛】本题考查作图-轴对称变换以及利用待定系数法求一次函数解析式,解题的关键是掌握轴对称的定义和性质.22.(1)6/km h;(2)3km;(3)19(02)5630(2)215579()222x xy x xx x⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩;(4)3(2,27)2【分析】(1)由速度=路程÷时间列式求解;(2)因为甲船、乙船在逆流中行驶的速度相同,只需由图示得出甲船在逆流中行驶的时间.(3)观察图形,要分成3段讨论,每一段中已知两点,可用待定系数法确定一次函数的解析式.(4)根据等量关系:小艇脱离船中后,船顺流行驶的路程=船逆流行驶的路程+小艇漂流的路程,据此即可解答.【详解】解:(1)乙船在逆流中行驶的速度为6/km h.(2)甲船在逆流中行驶的路程为6(2.52)3()km⨯-=.(3)设甲船顺流的速度为/akm h ,由图象得23(3.5 2.5)24a a -+-=,解得9a =.当02x 时,19y x =,当2 2.5x 时,设116y x b =-+,把2x =,118y =代入,得130b =,1630y x ∴=-+,当2.5 3.5x 时,设129y x b =+,把 3.5x =,124y =代入,得27.5b =-,197.5y x ∴=-. 综上所述,19(02)5630(2)215579()222x x y x x x x ⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩; (4)水流速度为(96)2 1.5(/)km h -÷=,设甲船从A 港航行x 小时小艇缆绳松了. 根据题意,得9(2) 1.5(2.5)3x x -=-+,解得 1.5x =,1.5913.5⨯=,即小艇缆绳松了时甲船到A 港的距离为13.5km . ∴点C 坐标3(2,27)2. 【点睛】 此题为一次函数的应用,渗透了函数与方程的思想,要求学生要提高阅读理解水平,从中挖掘有用信息,记住船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度-水流速度.23.(1)0.9y x 甲;(0100)0.820(100)x x y x x ⎧=⎨+>⎩乙;(2)乙商场. 【分析】(1)甲是单价的0.9倍,乙的需要分大于100和小于等于100两种情形计算;(2)分别代入两种表达式中计算,比较大小后,作出判断.【详解】解:(1)由题意得,0.9y x 甲, 当0100x 时,y x =乙,当100x >时,100(100)0.80.820y x x =+-⨯=+乙,由上可得,(0100)0.820(100)x x y x x ⎧=⎨+>⎩乙, (2)当300x =时,0.9300270,0.830020260y y =⨯==⨯+=甲乙此时,y y >甲乙所以,小明购买原价为300元的商品,在元旦期间,他去乙家商场购买更省钱.【点睛】本题考查了函数的表示方式,理解打折的意义,学会用分类思想表示是解题的关键. 24.(1)y =﹣x+2;(2)P (103,0)或(23,0). 【分析】(1)利用待定系数法求函数解析式;(2)先求出直线BC 与x 轴的交点坐标,然后设P (t ,0),根据三角形面积公式列方程求解.【详解】解:(1)设直线l 的解析式y =kx+b ,把点C (﹣1,3),B (0,2)代入解析式得, 23b k b =⎧⎨-+=⎩,解得12k b =-⎧⎨=⎩, ∴直线l 的解析式:y =﹣x+2;(2)把 y =0代入y =﹣x+2得﹣x+2=0,解得:x =2,则点A 的坐标为(2,0),∵S △AOB =12×2×2=2, ∴S △ACP =S △AOB =2,设P (t ,0),则AP =|t ﹣2|,∵12•|t ﹣2|×3=2,解得t =103或t =23, ∴P (103,0)或(23,0).【点睛】本题考查一次函数与几何图形,掌握一次函数的性质利用数形结合思想解题是关键.25.(1)y =12x+15(x≥0);(2)50min . 【分析】 (1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,从而列方程求解【详解】解:(1)设乙气球的函数解析式为:y =k x+b ,分别将(0,15),(20,25)代入,152520b k b=⎧⎨=+⎩, 解得:1215k b ⎧=⎪⎨⎪=⎩,∴乙气球的函数解析式为:y =12x+15(x≥0); (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m ,且此时甲气球海拔更高,甲气球的函数解析式为:y =x+5∴x+5﹣(12x+15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【点睛】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象. 26.(1)y =4x -2;(2)x =0.【分析】(1)根据正比例函数定义设设y=k(2x -1),将数值代入计算即可;(2)将y=-2代入(1)的函数解析式求解.【详解】解:(1)设y=k(2x -1),当x =3时,y =10,∴5k=10,解得k=2,∴y 与x 之间的函数关系式是y =4x -2;(2)当y=-2时4x -2=-2,解得x =0.【点睛】此题考查正比例函数的定义,求函数解析式,已知函数值求自变量,正确理解正比例函数的定义是解题的关键.。

初二数学一次函数经典试题含答案48574

初二数学一次函数超经典试题含答案一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=2x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:第一份3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

(完整版)初二数学一次函数经典试题含答案,推荐文档

初二数学一次函数超经典试题含答案一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=2x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:第一份3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

中考数学《一次函数-动态几何问题》专项练习题及答案

中考数学《一次函数-动态几何问题》专项练习题及答案一、单选题1.如图,在四边形ABCD中,AB∥CD,∥B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设∥APQ的面积为S,运动时间为t秒,则S与t函数关系的大致图象为()A.B.C.D.2.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形ABCD的边上沿A→B→C的方向运动到点C停止设点P的运动路程为x(cm),在下列图象中,能表示∥ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.3.如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与A,B重合).过Q作QM∥PA 于M,QN∥PB于N.设AQ的长度为x,QM与QN的长度和为y.则能表示y与x之间的函数关系的图象大致是( )A.B.C.D.4.如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是()A.线段PQ始终经过点(2,3)B.线段PQ始终经过点(3,2)C.线段PQ始终经过点(2,2)D.线段PQ不可能始终经过某一定点5.如图1,在四边形ABCD中,DC//AB,∠DAB=90°,点E沿着B→C→D的路径以2cm/s速度匀速运动,到达点D停止运动,EF始终与直线BC保持垂直,与AB或AD交于点F,设线段EF的长度为d(cm),运动时间为t(s),若d与t之间的关系如图2所示,则图中a的值为()A.3.8B.3.9C.4.5D.4.86.如图,在平面直角坐标系中,A(1,1),B(2,2),直线y=kx+x+3与线段AB有公共点,则k的取值范围是()A.k≥−3B.k<−32C.−3<k<−32D.−3≤k≤−3 27.如图所示,A、M、N点坐标分别为A(0,1),M(3,2),N(4,4),动点P从点A出发,沿y 轴以每秒一个单位长度的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t 秒,若点m,n分别位于l的异侧,则t的取值范围是()A.5<t<8B.4<t<7C.4≤t≤7D.4<t<88.一次函数y=−2x+4的图象与y轴交于点P,将一次函数图象绕着点P转动,转动后得到的一次函数图象与两坐标轴所围成的面积比原来增加2,则转动后得到的一次函数图象与x轴交点横坐标为()A.−3B.3C.3或−3D.6或−69.如图,在平面直角坐标系中有-个3×3的正方形网格,其左下角格点A的坐标为(1,1),右上角格点B的坐标为(4,4),若分布在直线y=k(x-1)两侧的格点数相同,则k的取值可以是()A.52B.2C.74D.3210.如图,直线AB:y=-3x+9交y轴于A,交x轴于B,x轴上一点C(-1,0),D为y轴上一动点,把线段BD绕B点逆时针旋转90°得到线段BE,连接CE,CD,则当CE长度最小时,线段CD的长为()A.√10B.√17C.5D.2√711.小颖从家出发,走了20分钟,到一个离家1000米的图书室,看了40分钟的书后,用15分钟返回到家,图(3)中表示小颖离家时间x与距离y之间的关系正确的是()A.B.C.D.12.如图,在平面直角坐标系中,线段AB的端点A(−1,−2),B(3,−1),若直线y=kx+2与线段AB有交点,则k的值可能是()A.2B.3C.−12D.-4二、填空题13.如图,在平面直角坐标系中,点A的坐标是(0,2),点B是x轴上的一个动点,始终保持∥ABC 是等边三角形(点A,B,C按逆时针排列),当点B运动到原点O处时,则点C的坐标是.随着点B在x轴上移动,点C也随之移动,则点C移动所得图象的表达式是.14.在平面直角坐标系中,点A,B的坐标分别是(m,2),(2m−1,2),若直线y=4x+1与线段AB有公共点,则m的取值范围是≤m≤.15.在平面坐标系中,已知点A(2,3),B(5,8),直线y=kx-k(k≠0)与线段AB有交点,则k的取值范围为.16.如图,在直角坐标系中,∥A的圆心的坐标为(﹣2,0),半径为2,点P为直线y=﹣34x+6上的动点,过点P作∥A的切线,切点为Q,则切线长PQ的最小值是17.如图,在∥ABC中,∥C=90°,AC=8,BC=6,D点在AC上运动,设AD长为x,∥BCD 的面积y,则y与x之间的函数表达式为.18.如图,点M的坐标为(3,2),点P从原点O出发,以每秒1个单位的速度沿y轴向上移动,同时过点P的直线关于直线l也随之上下平移,且直线l与直线y=−x平行,如果点M关于直线l的对称点落在坐标轴上,如果点P的移动时间为t秒,那么t的值为.三、综合题19.如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F 和点E,直线l1与直线l2 、y= 34x相交于点P.(1)求直线l1的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD以每秒√5个单位的速度匀速移动(点A移动到点E时止移动),设移动时间为t秒(t>0).①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当∥PMN的面积等于18时,请直接写出此时t的值.20.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4h时与甲地的距离.21.如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交A、B两点,与直线y=−12x+b相交于点C(2,m)(1)求点A、B的坐标;(2)求m和b的值;(3)若直线y=−12x+b与x轴相交于点D.动点P从点D开始,以每秒1个单位的速度向x轴负方向运动,设点P的运动时间为t秒①若点P在线段DA上,且ΔACP的面积为10,求t的值;②是否存在t的值,使ΔACP为等腰三角形?若存在,求出t的值;若不存在,请说明理由.22.当我们将一条倾斜的直线进行上下平移时,直线的左右位置也发生着变化.下面是关于“一次函数图象平移的性质”的探究过程,请补充完整.(1)如图1,将一次函数y=x+2的图像向下平移1个单位长度,相当于将它向右平移了个单位长度;(2)将一次函数y=−2x+4的图像向下平移1个单位长度,相当于将它向(填“左”或“右”)平移了个单位长度;(3)综上,对于一次函数y=kx+b(k≠0)的图像而言,将它向下平移m(m>0)个单位长度,相当于将它向(填“左”或“右”)(k>0时)或将它向(填“左”或“右”)(k<0时)平移了n(n>0)个单位长度,且m,n,k满足等式.23.如图,在平面直角坐标系中,点A(2,a),B(a+2,a),其中a>0,直线y=kx﹣2与y轴相交于C点.(1)已知a=2①求S∥ABC;②若点A和点B在直线y=kx﹣2的两侧,求k的取值范围;(2)当k=2时,若直线y=kx﹣2与线段AB的交点为D点(不与A点、B点重合),且AD<3,求a的取值范围.24.如图所示,平面直角坐标系中,直线AB交x轴于点B(﹣3,0),交y轴于点A(0,1),直线x=﹣1交AB于点D,P是直线x=﹣1上一动点,且在点D上方,设P(﹣1,n).(1)求直线AB的解析式;(2)求∥ABP的面积(用含n的代数式表示);(3)点C是y轴上一点,当S∥ABP=2时,∥BPC是等腰三角形①满足条件的点C的个数是▲ 个(直接写出结果);②当BP为等腰三角形的底边时,求点C的坐标.参考答案1.【答案】D 2.【答案】A 3.【答案】D 4.【答案】B 5.【答案】B 6.【答案】D 7.【答案】B 8.【答案】C 9.【答案】C 10.【答案】B 11.【答案】A 12.【答案】D13.【答案】( √3 ,1);y = √3 x -2 14.【答案】14;5815.【答案】2≤k ≤3 16.【答案】4√2 17.【答案】y =-3x +24 18.【答案】2或319.【答案】(1)解:设直线l 1的表达式为y=kx+b ∵直线l 1过点F (0,10),E (20,0)∴{b =1020k +b =0解得 {k =−12b =10直线l 1的表达式为y=﹣ 12 x+10求直线l 1与直线l 2 交点,得34 x=﹣ 12 x+10解得x=8y= 34×8=6 ∴点P 坐标为(8,6)(2)解:①如图,当点D 在直线上l 2时∵AD=9∴点D 与点A 的横坐标之差为9∴将直线l1与直线l2交解析式变为x=20﹣2y,x= 43y∴43y﹣(20﹣2y)=9解得y= 8710则点A的坐标为:(135,8710)则AF= √(135)2+(10−8710)2=13√510∵点A速度为每秒√5个单位∴t= 1310如图,当点B在l2直线上时∵AB=6∴点A的纵坐标比点B的纵坐标高6个单位∴直线l1的解析式减去直线l2 的解析式得﹣12x+10﹣34x=6解得x= 165则点A坐标为(165,425)则AF= √(165)2+(10−425)2=8√55∵点A速度为每秒√5个单位∴t= 8 5故t值为1310或85②如图设直线AB交l2 于点H设点A横坐标为a,则点D横坐标为a+9由①中方法可知:MN= 54a+54此时点P到MN距离为:a+9﹣8=a+1∵∥PMN的面积等于18∴12×(54a +54)⋅(a +1)=18解得a 1= 12√55−1 ,a 2=﹣ 12√55−1 (舍去)∴AF=6﹣ √52则此时t 为 6√55−12 当t= 6√55−12 时,∥PMN 的面积等于18 20.【答案】(1)解:不同.理由如下:∵ 往、返距离相等,去时用了2小时,而返回时用了2.5小时∴ 往、返速度不同.(2)解:设返程中 y 与 x 之间的表达式为 y =kx +b则 {120=2.5k +b ,0=5k +b.解之,得 {k =−48,b =240.∴ y =−48x +240 .( 2.5x ≤x ≤5 )(3)解:当 x =4 时,汽车在返程中∴y =−48×4+240=48 .∴ 这辆汽车从甲地出发4h 时与甲地的距离为48km.21.【答案】(1)解:在 y =x +2 中当 x =0 时当 y =0 时∴A(−2,0)(2)解: ∵ 点 C(2,m) 在直线 y =x +2 上∴m =2+2=4又 ∵ 点 C(2,4) 也在直线 y =−12x +b 上 ∴ 即 4=12x +5 解得 b =5(3)解:在 y =−12x +5 中 当 x =0 时∴D(10,0)∵A(−2,0)∴AD =12①设 PD =t ,则 AP =12−t过 C 作 CE ⊥AP 于 E ,则 CE =4由 ΔACP 的面积为 10得 12(12−t)×4=10 解得 t =7②过 C 作 CE ⊥AP 于 E则 CE =4∴AC =4√2a. 当 AC =CP 时,如图①所示则 AP =2AE =8∴PD =AD −AP =4∴t =4b. 当 AP 1=AP 2=AC =4√2 时,如图②所示DP 1=t =12−4√2c. 当 CP =AP 时,如图③所示设 EP =a则 CP =√a 2+42∴√a 2+42=a +4解得 a =0∴AP =4∴PD =8∴t =8综上所述,当 t =4 或 t =12−4√2 或 t =12+4√2 或 t =8 时,ΔACP 为等腰三角形22.【答案】(1)1(2)左;12(3)右;左;m=n|k|23.【答案】(1)解:①∵a =2∴A (2,2),B (4,2)∴AB =2∵直线y =kx ﹣2与y 轴相交于C 点∴C (0,﹣2),如图∴S ∥ABC =12AB×(2+2)=12×2×4=4. ②当直线y =kx ﹣2经过点A (2,2)时2k ﹣2=2,解得k =2当直线y =kx ﹣2经过点B (4,2)时4k ﹣2=2,解得k =1∴点A 和点B 在直线y =kx ﹣2的两侧时,1<k <2;(2)解:直线AB 的解析式为:y =a当k =2时,直线y =2x ﹣2∴2x ﹣2=a ,即x =a+22∴D (a+22,a )∴2<a+22<a+2解得a >2又∵AD =a+22−2<3解得a <8所以a 的取值范围为2<a <8.24.【答案】(1)解:设直线AB 的解析式为y=kx+b ,把A(0,1),B(﹣3,0)代入,得{b =1−3k +b =0解得{b =1k =13∴y =13x +1; (2)解:当x=-1时,y =13×(−1)+1=23∵P(﹣1,n)∴PD=n−2 3∴∥ABP的面积=∥APD的面积+∥BPD的面积=12PD⋅OB=12(n−23)×3=32n−1;(3)解:①3;②设C(0,c)∵P(-1,2),B(﹣3,0)∴PC2=(−1−0)2+(2−c)2=c2−4c+5BC2=(−3−0)2+(0−c)2=c2+9当PC=BC时c2-4c+5= c2+9∴c=-1∴C(0,-1).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 新竹初级中学2010—2011学年度第一学期 八年级数学一次函数与几何综合练习题

班别: 姓名: 座号: 成绩: 1、平面直角坐标系中,点A的坐标为(4,0),点P在直线y=-x-m上,且AP=OP=4,则m的值是多少?

2、如图,已知点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,试求点B的坐标。

3、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线y=1/3x+b恰好将矩形OABC分为面积相等的两部分,试求b的值。

4、如图,在平面直角坐标系中,直线y= 2x —6与x轴、y轴分别相交于点A、B,点C在x轴上,若△ABC是等腰三角形,试求点C的坐标。

5、在平面直角坐标系中,已知A(1,4)、B(3,1),P是坐标轴上一点,(1)当P的坐标为多少时,AP+BP取最小值,最小值为多少? 当P的坐标为多少时,AP-BP取最大值,最大值为多少?

6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。

A B C O x

y

x y A B O 2

7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。

8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6) 求k1,k2的值 如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标

9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

10、在平面直角坐标系中,一次函数y=Kx+b(b小于0)的图像分别与x轴、y轴和直线x=4交于A、B、C,直线x=4与x轴交于点D,四边形OBCD的面积为10,若A的横坐标为-1/2,求此一次函数的关系式

11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y轴交于点A,且OA=OB:求这个一次函数解析式

12、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,m)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,SAOP=6. 求:(1)△COP的面积 (2)求点A的坐标及m的值; (3)若SBOP =SDOP ,求直线BD的解析式 3

13、一次函数y=-33x+1的图像与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△ABC (1)求△ABC的面积和点C的坐标;

(2)如果在第二象限内有一点P(a,21),试用含a的代数式表示四边形ABPO的面积。 (3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由。

14、已知正比例函数y=k1x和一次函数y=k2x+b的图像如图,它们的交点A(-3,4),且OB=53OA。 (1)求正比例函数和一次函数的解析式; (2)求△AOB的面积和周长; (3)在平面直角坐标系中是否存在点P,使P、O、A、B成为直角梯形的四个顶点?若存在,请直接写出P点的坐标;若不存在,请说明理由。

15、如图,已知一次函数y=x+2的图像与x轴交于点A,与y轴交于点C, (1)求∠CAO的度数; (2)若将直线y=x+2沿x轴向左平移两个单位,试求出平移后的直线的解析式; (3)若正比例函数y=kx (k≠0)的图像与y=x+2得图像交于点B,且∠ABO=30°,求:AB的长及点B的坐标。 4

16、一次函数y=33x+2的图像与x轴、y轴分别交于点A、B,以AB为边在第二象限内做等边△ABC (1)求C点的坐标; (2)在第二象限内有一点M(m,1),使S△ABM =S△ABC ,求M点的坐标;

(3)点C(23,0)在直线AB上是否存在一点P,使△ACP为等腰三角形?若存在,求P点的坐标;若不存在,说明理由。

17、已知正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),一次函数与x轴相交于B,且OB=0.6OA,求这两个函数的解析式

18、已知一次函数y=x+2的图像经过点A(2,m)。与x轴交于点c,求角AOC.

19、已知函数y=kx+b的图像经过点A(4,3)且与一次函数y=x+1的图像平行,点B(2,m)在一次函数y=kx+b的图像上 (1)求此一次函数的表达式和m的值? (2)若在x轴上有一动点P(x,0),到定点A(4,3)、B(2,m)的距离分别为PA和PB,当点P的横坐标为多少时,PA+PB的值最小? 5

答案 3、点到线的最短距离是点向该线做垂线 因为直线与x夹角45度 所以ABO为等腰直角三角形 AB=BO=2分之根号2倍的AO AO=1 BO=2分之根号2

在B分别向xy做垂线 垂线与轴交点就是B的坐标 由于做完还是等腰直角三角形 所以议案用上面的共识 可知B点坐标是(0.5,-0.5)

7、一次函数 的解析式为y=8x+4或y=(25/2)x-5.设一次函数为y=kx+b,则它与两坐标轴的交点是(-b/k,0)(0,b),所以有20=2x+b,|-b/k×b|×1/2=1,解之得k1=8,b1=4;k2=25/2,b2=-5.所以,一次函数 的解析式为y=8x+4或y=(25/2)x-5 8、因为正比例函数和一次函数都经过(3,-6) 所以这点在两函数图像上 所以, 当x=3 y=-6 分别代入 得 k1= -2 k2=1 若一次函数图像与x轴交于点A 说明A的纵坐标为0 把y=0代入到y=x-9中得 x=9 所以A(9,0) 例4、A的横坐标=-1/2,纵坐标=0 0=-k/2+b,k=2b C点横坐标=4,纵坐标y=4k+b=9b B点横坐标=0,纵坐标y=b Sobcd=(\9b\+\b\)*4/2=10 10\b\=5 \b\=1/2 b=1/2,k=2b=1 y=x+1/2 b=-1/2,k=-1 y=-x-1/2

\b\表示b的绝对值

11、?解:设这个一次函数解析式为y=kx+b ∵y=kx+b经过点B(-3,4),与y轴交与点A,且OA=OB ∴{-3k+b=4 {3k+b=0 ∴{k=-2/3 {b=2 ∴这个函数解析式为y=-2/3x+2 ?解2根据勾股定理求出OA=OB=5, 所以,分为两种情况: 当A(0,5)时,将B(-3,4)代入y=kx+b中,y=x/3+5, 当A(0,-5),将B(-3,4)代入y=kx+b中y=3x+5,

12、做辅助线PF,垂直y轴于点F。做辅助线PE垂直x轴于点E。 (1)求S三角形COP 解:S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2 6

(2)求点A的坐标及P的值 解:可证明三角形CFP全等于三角形COA,于是有 PF/OA = FC/OC.代入PF=2和OC=2,于是有FC * OA = 4.(1式) 又因为S三角形AOP=6,根据三角形面积公式有S = 1/2 * AO * PE = 6,于是得到AO * PE = 12.(2式) 其中PE = OC + FC = 2 + FC,所以(2)式等于AO * (2 + FC) = 12.(3式) 通过(1)式和(3)式组成的方程组就解,可以得到AO = 4, FC = 1. p = FC + OC = 1 + 2 = 3. 所以得到A点的坐标为(-4, 0), P点坐标为(2, 3), p值为3. (3)若S三角形BOP=S三角形DOP,求直线BD的解析式 解:因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即 (1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有 (1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即 3BE = 2FD。 又因为:FD:DO = PF:OB 即 FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0) 将BE=2代入上式3BE=2FD,可得FD = 3. D坐标为(0,6) 因此可以得到直线BD的解析式为: y = (-3/2)x + 6

17、正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),所以有 8K1=6....... (1) 8K2+b=6 ....... (2) 又OA=10 所以OB=6 即B点坐标(6,0) 所以6K2+b=0 ....... (3) 解(1)(2)(3)得K1=3/4 K2=3 b=-18 OA=√(8^2+6^2)=10,OB=6,B(6,0),k1=6/8=0.75 正比例函数y=0.75x,一次函数y=3x-18 18、一次函数y=x+2的图像经过点a(2,m),有 m=2+2=4, 与x轴交于点c,当y=0时,x=-2. 三角形aoc的面积是:1/2*|oc|m|=1/2*|-2|*|4|=4平方单位.

19、解:两直线平行,斜率相等 故k=1,即直线方程为y=x+b经过点(4,3) 代入有: b=-1 故一次函数的表达式为:y=x-1 经过点(2,m)代入有: m=1 2)A(4,3),B(2,1)要使得PA+PB最小,则P,A,B在一直线上 AB的直线方程为: (y-1)/(3-1)=(x-2)/(4-2)过点(x,0)代入有: (0-1)/2=(x-2)/2 x=1 即当点P的横坐标为1时,PA+PB的值最小.

相关文档
最新文档