一元一次方程应用题专题练习
一元一次方程应用题专项练习

一元一次方程应用题专项练习一、单选题1.学校需制作若干块标志牌,由一名工人做要50h 完成.现计划由一部分工人先做4h ,然后增加5人与他们一起做6h 完成这项工作.假设这些工人的工作效率一样,具体应先安排多少人工作?小华的解法如下:设先安排x 人做4h .所列方程为46(5)15050x x ++=,其中“450x ”表示的意思是“x 人先做4h 完成的工作量”,“6(5)50x +”表示的意思是“增加5人后(5)x +人再做6小时完成的工作量”.小军所列的方程如下:(46)5615050x +⨯+=,其中,“(46)50x +”表示的含义是()A .x 人先做4h 完成的工作量.B .先工作的x 人前4h 和后6h 一共完成的工作量.C .增加5人后,新增加的5人完成的工作量.D .增加5人后,(5)x +人再做6h 完成的工作量.2.某书店推出如下优惠方案:(1)一次性购书不超过100元不享受优惠;(2)一次性购书超过100元但不超过300元一律九折;(3)一次性购书超过300元一律八折.某同学两次购书分别付款80元、252元,如果他将这两次所购书籍一次性购买,则应付款()元.A .288B .306C .288或316D .288或3063.足球比赛的记分规则:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队平了()A .3场B .4场C .5场D .6场4.如图,各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为()A .242B .232C .220D .2525.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设共有x 人,这个物品的价格是y 元.有下列四个等式:①8x +3=7x ﹣4;②3487y y -+=;③3487y y +-=;④8x ﹣3=7x +4,其中正确的是()A .①②B .②④C .②③D .③④二、填空题6.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.7.下表是某市居民出行方式以及收费标准:(不足1千米按1千米算)打车方式出租车3千米以内8元;超过3千米的部分2.4元/千米滴滴快车路程:1.4元/千米;时间:0.6元/分钟说明打车的平均车速40千米/时假设乘坐8千米,耗时:8406012÷⨯=分钟;出租车收费:8(83) 2.420+-⨯=元;滴滴快车收费:8 1.4120.618.4⨯+⨯=元.为了提升市场竞争力,出租车公司推出行使里程超过10千米立减4.8元活动.小聪乘坐出租车从甲地到达乙地支付车费22.4元,若改乘滴滴快车从甲地到乙地,则需支付______元.8.我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醐洒一斗直粟三斗,今持粟三斛,得酒五斗,问清跴酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醐洒酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清洒,醐洒酒各几斗?如果设清酒x 斗,那么可列方程为_________.9.明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时1斤=16两,故有“半斤八两”这个成语).这个问题中共有_____两银子.10.《九章算术》中记载这样一道题:今有牛、马、羊食人苗.苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”大意是:现在有一头牛、一匹马、一只羊吃了别人家的禾苗.禾苗的主人要求这些动物的主人共计赔偿五斗粟米.羊的主人说:“我家羊只吃了马吃的禾苗的一半.”马的主人说:“我家马只吃了牛吃的禾苗的一半."按此说法,羊的主人应当赔偿给禾苗的主人多少斗粟米?设羊的主人赔x 斗,根据题意,可列方程为________.三、解答题11.一套精密仪器由一个A 部件和两个B 部件构成,用31m 钢材可以做40个A 部件或240个B 部件,现在要用34m 钢材制作这种仪器.(1)请问用多少钢材做A 部件,多少钢材做B 部件,可以恰好制成整套的仪器?(2)可以制成仪器套.(3)现在某公司要租赁这批仪器a 套,每天的付费方案有两种选择:方案一:当a 不超过50套时,每套支付租金100元;当a 超过50套时,超过的套数每套支付租金打八折;方案二:不论租赁多少套,每套支付租金90元.当a >50时,请回答下列问题:①若按照方案一租赁,公司每天需支付租金元(用含a 代数式表示);若按照方案二租赁,公司每天需支付租金元(用含a 代数式表示).②假如你是公司负责人,请你谋划一下,选择哪种租赁方案更合算?并说明理由.12.我市是蔬菜水果生产大县.去年秋季,我市某果树基地安排26名工人将采摘的水果包装成果篮,每个工人每小时可包装 200 个苹果或者 300 个梨,每个果篮中放 3 个苹果和 2 个梨,为了使包装的水果刚好完整配成果篮,应该安排多少名工人包装苹果,多少名工人包装梨?(1)若设安排x 名工人包装苹果,y 名工人包装梨,请求出x ,y 的值;(2)若每个果篮可卖25元,每名工人每天工作8个小时,问该果树基地一天可以卖得多少钱?13.小敏和小强假期到某厂参加社会实践,该工厂用白板纸做包装盒,设计每张白板纸做盒身3个或者盒盖5个,且一个盒身和两个盒盖恰好做成一个包装盒.设裁成盒身的白板纸有x 张,回答下列问题:(1)若有11张白板纸.①请完成下表:x 张白板纸裁成盒身()张白板纸裁成盒盖盒身的个数()0盒盖的个数0()②若盒身与盒盖全部配套用完,求可做多少个包装盒.(2)若仓库中已有5个盒身,4个盒盖和21张白板纸,现把白板纸分成两部分,一部分裁成盒身,一部分裁成盒盖,当盒身与盒盖全部配套用完,可做多少个包装盒?(3)若有n 张(5060)n ≤≤白板纸,先把一张纸适当裁成3个盒身和1个盒盖,余下白板纸分成两部分,一部分裁成盒身,一部分裁成盒盖,当盒身与盒盖全部配套用完,求n 的可能值.14.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.(1)求该车间当前参加生产的工人有多少人;(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该车间共780万剂的生产任务,问该车间还需要多少天才能完成任务.15.某水果店以5元/千克的价格购进一批橙子,很快售罄,该店又再次购进,第二次进货价格比第一次每千克便宜了2元,两次一共购进600千克,且第二次进货的花费是第一次进货花费的1.2倍.(1)该水果店两次分别购进了多少千克的橙子?(2)售卖中,第一批橙子在其进价的基础上加价%a 进行定价,第二批橙子因为进价便宜,因此以第一批橙子的定价再打八折进行销售.销售时,在第一批橙子中有5%的橙子变质不能出售,在第二批橙子中有10%的橙子变质不能出售,该水果店售完两批橙子能获利2102元,求a 的值.16.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?17.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房都住7人,那么有7人无房可住;如果每一间客房都住9人,那么就空出一间房.求该店有客房多少间?该批住店房客多少人?18.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?19.甲、乙两家超市新年期间推出优惠活动,推出如表购物优惠方案:甲超市乙超市消费金额(元)优惠活动消费金额(元)优惠活动0~100(包含100)无优惠0~200(包含200)无优惠100~350(包含350)一律享受九折优惠超过200元的部分享受大于200八折优惠大于350一律享受八折优惠(1)小王需要购买价格为240元的商品,去哪家店更划算?(2)小李带了252元去购物、为了买到最多的商品,应选择哪家超市?最多能买到原价为多少元的商品?(3)小刘在甲超市购物、两次购物分别付了80元和288元,如果小刘把这两次购物改为一次性购物,付款多少元?20.相传大禹治水时,“洛水”中出现了一个神龟,其背上有美妙的图案,史称“洛书”.用现在的数字翻译出来,就是三阶幻方.三阶幻方是最简单的幻方,又叫九宫格,其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,且幻和恰好等于中心数的3倍.如图1,是由1、2、3、4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2所示,则幻和=;(2)若4b =,6c =,求a 的值;(3)由三阶幻方可以衍生出许多有特定规律的新幻方.在如图3所示的“幻方”中,每个小三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等,当2x =,=3y -时,则a b c d --+的值为多少?21.数轴是一个非常重要的数学工具,它把数和数轴上的点建立了对应关系,形象地揭示了数与数轴上的点之间的内在联系,是数形结合的基础.小明在一条长方形纸带上画了一条数轴,进行如下操作探究:(1)操作1:折叠纸带,使数轴上表示3的点与表示1-的点重合,则表示数23a +的点与表示数___________(用含a 的式子)的点重合;(2)操作2:若点A 、B 表示的数分别是1-、4,点P 从点A 出发,沿数轴以每秒2个单位长度的速度向左匀速运动;同时,点Q 从点B 出发,沿数轴以每秒4个单位长度的速度向左匀速运动.设运动时间为t 秒,在运动过程中,当t 为何值时,点P 与点Q 之间的距离为2;(3)操作3:在数轴上剪下6个单位长度(从1-到5)的一条线段,并把这条线段沿某点向左对折,然后在重叠部分的某处剪一刀得到三条线段(如图),若这三条线段的长度之比为1:2:3,则折痕处对应的点表示的数可能是___________.22.如图,在数轴上,点O 为原点,点A 表示的数为a ,点B 表示的数为b ,且a ,b 满足29(05)a b +-+=.(1)a =;b =;(2)动点P ,Q 分别从点A ,点B 同时出发,沿着数轴向右匀速运动,点P 的速度为每秒3个单位长度,点Q 的速度为每秒1个单位长度.①几秒时,点P 与点Q 距离2个单位长度?②动点P ,Q 分别从点A ,点B 出发的同时,动点R 也从原点O 出发,沿着数轴向右匀速运动,速度为每秒()3n n >个单位长度.记点P 与点R 之间的距离为PR ,点A 与点Q 之间的距离为AQ ,点O 与点R 之间的距离为OR .设运动时间为t 秒,请问:是否存在n 的值,使得在运动过程中,743PR OR AQ -+的值是定值?若存在,请求出此n 值和这个定值;若不存在,请说明理由.23.为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过20吨,每吨水收费2元,如果每户每月用水超过20吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费,但她不清楚家里每月用水是否超过20吨.(1)如果小红家每月用水15吨,则水费是元;如果小红家每月用水23吨,则水费是元.(2)如果字母x 表示小红家每月用水的吨数,那么小红家每月的水费该如何用x 的代数式表示.当020x ≤≤时,每个月的水费为:(用含x 的代数式表示);当20x >时,每个月的水费为:(用含x 的代数式表示);(3)小红家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额(单位:元)263450.5小红家这个季度共用水多少吨?24.探究与发现:a b -表示a 与b 之差的绝对值,实际上也可理解为a 与b 两数在数轴上所对应的两点之间的距离.如3x -的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.(1)如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且20AB =,则数轴上点B 表示的数;(2)若82x -=,则x =.(3)拓展与延伸:在(1)的基础上,解决下列问题:动点P 从O 点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为()0t t >秒.求当t 为多少秒时?A ,P 两点之间的距离为2;(4)数轴上还有一点C 所对应的数为30,动点P 和Q 同时从点O 和点B 出发分别以每秒5个单位长度和每秒10个单位长度的速度向C 点运动,点Q 到达C 点后,再立即以同样的速度返回,点P 到达点C 后,运动停止.设运动时间为()0t t >秒.问当t 为多少秒时?P ,Q 之间的距离为425.如图1是2022年2月的日历表:(1)在图1中用优美的“”U 形框框住五个数,其中最小的数为1,则U 形框中的五个数字之和为_________;(2)在图1中将U 形框上下左右移动,框住日历表中的5个数字,设最小的数字为x ,用代数式表示U 形框框住的五个数字之和为_________;(3)在图1中移动U 形框的位置,若U 形框框住的五个数字之和为53,则这五个数字从小到大依次为_________;(4)在图1日历表的基础上,继续将连续的自然数排列成如图2的数表,在图2中U 形框框住的5个数字之和能等于2023吗?若能,分别写出U 形框框住的5个数字;若不能,请说明理由.26.小颖在国庆期间用五天时间看完了一本课外阅读书,第一天看了全书的15,第二天看的页数比第一天多14,第三天看的页数比第二天多了13,第四天看了52页,第五天看了第三天余下的13,这本课外阅读书共有多少页?27.我们规定:对于数轴上不同的三个点M ,N ,P ,当点M 在点N 左侧时,若点P 到点M 的距离恰好为点P 到点N 的距离的k 倍,且k 为正整数,(即PM kPN =),则称点P 是“[]M N ,整k 关联点”如图,已知在数轴上,原点为O ,点A ,点B 表示的数分别为24A B x x =-=,.(1)原点O ________(填“是”或“不是”)“[]A B ,整k 关联点”;(2)若点C 是“[]A B ,整2关联点”,则点C 所表示的数C x =_______;(3)若点A 沿数轴向左运动,每秒运动2个单位长度,同时点B 沿数轴向右运动,每秒运动1个单位长度,则运动时间为________秒时,原点O 恰好是“[]A B ,整k 关联点”,此时k 的值为_______.(4)点Q 在A ,B 之间运动,且不与A ,B 两点重合,作“[]A Q ,整2关联点”,记为A ',作“[]Q B ,整3关联点”,记为B ',且满足A ',B '分别在线段AQ 和BQ 上.当点Q 运动时,若存在整数m ,n ,使得式子mQA nQB ''+为定值,求出m ,n 满足的数量关系.28.已知M 、N 两点在数轴上所装示的数分别为m 、n ,且m 、n 满足()21020m n -++=:(1)则m =_________,n =_________;(2)①情境:有一个玩具汽车AB 如图所示,放置在数轴上,将汽车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具汽车的长为_________个单位长度;②应用:一天,小阳问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢;若是我现在这么大,我已是老寿星,116 岁了!”小阳心想:爷爷的年龄到底是多少岁呢?聪明的你能帮小阳求出来吗?(3)在(2)①的条件下,当汽车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记汽车AB 运动后对应的位置为A B ''.是否存在常数k 使得2PQ kB A '-的值与它们的运动时间无关?若存在,请直接写出k 的值;若不存在,请说明理由.29.如图,点A 表示的数是a ,点B 表示的数是b ,满足210(8)0a b -++=,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒,动点P 表示的数是p .(1)直接写=a ______,b =______,p =______(用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,①问点P 运动多少秒时追上点Q ?②问点P 运动多少秒时与点Q 相距4个单位长度?并求出此时点P 表示的数;(3)点P 、Q 以(2)中的速度同时分别从点A 、B 向右运动,同时点R 从原点O 以每秒7个单位的速度向右运动,是否存在常数m ,使得23QR OP mOR +-的值为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由.30.学校为了让学生积极参加体育锻炼强健体魄,做好大课间活动,计划购买体育用品,价格如下表:备选体育用品篮球排球羽毛球拍价格60元/个35元/个25元/支(1)若用2550元全部用来购买篮球、排球和羽毛球拍,篮球和排球的数量比2:3,排球与羽毛球拍数量的比为4:5,求篮球、排球和羽毛球拍的购买数量各为多少?(2)初一学年计划购买篮球,初二学年计划购买排球,商场的优惠促销活动如下:打折前一次性购物总金额优惠措施不超过500元不优惠超过500元且不超过600元售价打九折超过600元售价打八折按上述优惠条件,若初一年级一次性付款420元,初二年级一次性付款504元,那么这两个年级购买两种体育用品的数量一共是多少?。
完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。
问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。
变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。
请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。
2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。
变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。
如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。
7上数学第五章《一元一次方程应用题》练习

一元一次方程应用题练习
1.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24 天。
如果由这两支工程队从两端同时施工,需要多少天可以铺好这条管线?
2.在一次劳动课上,有27名同学在甲处劳动,有19名同学在乙处劳动. 现在从其他班级另调20人去支援,使得在甲处的人数为在乙处人数的2倍,应调往甲、乙两处各多少人?
3.一台仪器由1个A部件和3个B部件构成。
用1 m3钢材可以做40个A 部件或240个B部件。
现要用6 m3钢材制作这种仪器,应用多少立方米钢材做A部件,多少立方米钢材做B部件,才能制作尽可能多的仪器?最多能制成多少台仪器?
4.制作一张桌子要用1个桌面和4条桌腿,1m3木材可制作20个桌面,或者制作400条桌腿.现有12 m3木材,应怎样计划用料才能制作尽可能多的桌子?
5.某车间每天能制作500个甲种零件,或250个乙种零件(同一天内不能同时
制作这两种零件),甲、乙两种零件各1个配成1套产品.现要用30天制作最
多的成套产品,甲、乙两种零件各应制作多少天?
6.某项工作由甲、乙两人单独做分别需要
7.5h和5h.如果让甲、乙两人一起
工作1 h,再由乙单独完成剩余部分,一共需要多长时间?
7.整理一批数据,由1人整理需80 h完成。
现在计划先由一些人整理2h,再增加5人整理8h,完成这项工作的4
,怎样安排参与整理数据的具体人数?
5
8.用A型和B型机器生产同样的产品,已知5台A型机器一天生产的产品装满8箱后还剩4个,7台B型机器一天生产的产品装满11箱后还剩1个,每台A 型机器比B型机器一天多生产1个产品。
求每箱装多少个产品。
第三章一元一次方程微专题——应用题行程问题专练+2023—2024学年人教版数学七年级上册

人教版数学七年级上册第三章一元一次方程微专题——应用题行程问题专练1.列一元一次方程解应用题.从甲城到乙城,普通列车原来需行驶8个小时,开通高铁以后,路程缩短了80千米,车速平均每小时增加了180千米,结果只需3个小时即可到达.求甲乙两城之间开通高铁以后的路程.2.某船在静水中的速度是每小时8千米,水速是每小时2千米,这船从甲地到乙地,再从乙地回到甲地,共用8小时,求甲乙两地的距离.3.明明家和学校相距2300m,每天步行上学,有一天他正以每分钟80m的速度前进着,一抬头看见路边的钟表发现要迟到,他马上改用每分钟150m的速度跑步前进,途中共用20分钟,准时到达了学校.明明在离学校多远的地方开始跑步?4.甲车从A地开往B地,乙车从B地开往A地,两车同时出发,沿着A,B两地间的同一条笔直的公路匀速行驶,出发1小时后两车相距48千米,又过1小时,两车又相距48千米,且此时两车均未到达终点,求A,B两地间的距离.5.我国古代数学著作《九章算术》中记载以下问题:今有凫起南海,七日至北海;雁起北海,九日至南海,今凫雁俱起,问何日相逢?意思是:野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海,野鸭与大雁从南海和北海同时起飞,经过几天相遇?请解决上述问题.6.一艘客船从A地出发到B地顺流行驶,用了2.5小时;从B地返回A地逆流行驶,用了3.5小时,已知水流的速度是4千米∕ 时,求客船在静水中的平均速度?7.在一条直线上顺次有A地,B地,C地.小明和小红分别从A地和B地同时出发前往C 地,小明慢跑,小红步行,且小明慢跑的速度比小红步行速度的2倍还多10米/分钟.他们出发5分钟时,小明到达B地.他们出发9分钟时,小明追上小红.(1)求小明慢跑的速度和小红步行速度分别是多少?(2)小明到达C地后休息了2分钟,沿原路以原速返回A地.当小红到达C地时,小明刚好到达B地.求B地与C地的距离是多少?8.为了打通城市和景区的交通线路,某市新修了高铁线路,使得两地总里程比原来缩短了29千米,高铁行驶速度比原来火车行驶速度的3倍还多9千米,原来的火车行完全程用时3小时,现在高铁用时50分钟,求开通后高铁的平均速度是多少千米/小时?9.一架飞机在A、B两地飞行,风速为15km/h,它从A地顺风飞往B地需12.5h,它逆风飞行同样的航线需13h.求(1)飞机无风时的平均速度;(2)两地之间的航程.10.一艘轮船以每小时40千米的速度从甲港开往乙港,行了全程的20%后,又行驶了1小时,这时未行路程与已行路程的比是3:1.甲乙两港相距多少千米?11.甲、乙两人分别从A,B两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h、相遇后乙再经1h到达A地.(1)甲、乙两人的速度分别是多少?(2)甲、乙两人分别从A,B两地同时出发后,经过多长时间两人相距20km?12.一个自行车队进行训练,训练时所有队员都以30km/h的速度前进.突然,1号队员以50 km/h的速度独自行进,行进20 km后掉转车头,仍以50km/h的速度往回骑,直到与其他队员会合.1号队员从离队开始到与队员重新会合,经过了多长时间?13.某市实验中学学生步行到郊外旅游.七(1)班学生组成前队,步行速度为4千米/时,七(2)班学生组成后队,速度为6千米/时.前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?14.列方程解答下题:甲、乙两人同时骑摩托车从相距160千米的两地相向而行,经过4小时相遇,甲每小时比乙慢6千米,甲、乙的速度分别是多少?15.小明家和小刚家相距28千米,两人约定见面,他们同时从家出发,小明的速度为8千米/时,小刚的速度为6千米/时,小明的爸爸在小明出发30分钟后发现小明忘了带东西,于是就以10千米/时的速度追赶小明,当小明和小刚相遇时,爸爸追上小明了吗?若没有追上,他要想追上小明,速度至少为多少.16.一列动车从甲站开往乙站,若动车以180千米/小时的速度行驶,能准时到达乙站,现在动车以160千米/小时的速度行驶了2小时后把速度提高到240千米/小时,也能准时到达乙站,求甲、乙两站之间的距离.17.一列货车和一列客车同时从相距504千米的两地相对开出,4.5小时相遇,客车每小时行64千米,货车每小时行多少千米?(列方程解答)18.当甲在60m赛跑中冲过终点线时,比乙领先10m,比丙领先20m.如果乙和丙按各自原来的速度继续冲向终点,那么当乙到达终点时,将比丙领先几米?19.甲、乙两人练习短距离赛跑,测得甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑2秒,那么几秒钟后甲可以追上乙?(列方程解应用题)20.已知甲码头在江的上游,乙码头在江的下游.一艘船在静水中每小时航行20千米,在水流速度为每小时4千米的江中,往返甲、乙两码头共用了12.5小时,求甲、乙两码头之间的距离.21.甲,乙两地相距162千米,甲地有一辆货车,速度为每小时48千米,乙地有一辆客车,速度为每小时60千米,求:(1)若两车同时相向而行,货车在路上耽误了半小时,多长时间可以相遇?(2)若两车相向而行,同时出发,多长时间两车相距54千米?22.(列方程解应用题)甲、乙两车自南向北行驶,甲车的速度是每小时48千米,乙车的速度是每小时72千米,甲车开出25分钟后,乙车开出,问几小时后乙车追上甲车?23.面对突然暴发的新型冠状病毒肺炎,全国人民情系灾区,捐资捐物.淳朴善良的山东寿光菜农们把自己种植的新鲜蔬菜捐献出来运往武汉灾区.已知寿光距武汉1090千米,甲车装满蔬菜从寿光出发开往武汉,行驶100千米后,乙车从武汉出发返回寿光,乙车出发6小时后与甲车相遇,若甲车每小时行驶的路程比乙车每小时行驶的路程少35千米,那么甲车平均每小时行驶多少千米⋅24.(列方程解应用题)一个通讯员骑摩托车要在规定的时间内把文件送到.他骑摩托车的速度是每小时36千米,结果早到20分钟,若每小时30千米,就迟到12分钟.求规定时间是多少?这段路程是多少?25.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,行程中小张必经过小李家.(1)若两人同时出发,小张车速为18千米每小时,小李车速为12千米每小时,经过多少小时两人能相遇?(2)若小李的车速为10千米/时,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?26.甲、乙两人练习跑步,从同一地点同时同向出发,甲每分钟跑250米,乙每分钟跑200米,甲比乙早3分钟到达终点,求两人所跑的路程.27.小明和小丽分别从甲、乙两地相向而行,假设他们在行走过程中各自保持一定的速度不小变.如果两人同时出发,那么经过32分钟两人相遇;如果小丽先出发半小时,那么再经过13时两人相遇.如果小丽的速度是每小时4千米,问小明的速度是每小时多少千米?28.周末小明坐车从家里出发到大剧场听音乐,去时汽车的速度为40千米/小时,回来时因道路受阻,汽车必须绕道而行,因此比去时多走了8千米,虽然车速增加了5千米/小时,但比去时还多用了8分钟,求小明家距大剧场多远?29.小明参加了一场1000米的赛跑,他以6米/秒的速度跑了一段路程,又以5米/秒的速度跑完了其余的路程,一共花了3分钟,小明以6米/秒的速度跑了多少米?30.一列火车匀速通过一座1200米长的桥,从火车上桥到火车完全离开桥经历50秒,整列火车在桥上的时间为30秒,求火车的长度.。
一元一次方程应用题练习题

一元一次方程应用题练习题 篇一:一元一次方程应用题专题训练 一元一次方程应用题归类汇集 一般行程问题(相遇与追击问题) 1.行程问题中的三个基本量及其关系: 路程=速度×时间时间=路程÷速度速度=路程÷时间 2.行程问题基本类型 (1)相遇问题:快行距+慢行距=原距 (2)追及问题:快行距-慢行距=原距 1、从甲地到乙地,某人步行比乘公交车多用 3.6 小时,已知步行速度为每小时 8 千米, 公交车的速 度为每小时 40 千米,设甲、乙两地相距 x 千米,则列方程为。
2、某人从家里骑自行车到学校。
若每小时行 15 千米,可比预定时间早到 15 分钟;若每 小时行 9 千 米,可比预定时间晚到 15 分钟;求从家里到学校的路程有多少千米? 3、一列客车车长 200 米,一列货车车长 280 米,在平行的轨道上相向行驶,从两车头相 遇到两车 车尾完全离开经过 16 秒,已知客车与货车的速度之比是 3:2,问两车每秒各行驶多少 米? 4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小 时 3.6km, 骑自行车的人的速度是每小时 10.8km。
如果一列火车从他们背后开来,它通过行人的时 间是 22 秒, 通过骑自行车的人的时间是 26 秒。
⑴ 行人的速度为每秒多少米?⑵ 这列火车的 车长是多少米? 6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速 度是 60 千 米/时,步行的速度是 5 千米/时,步行者比汽车提前 1 小时出发,这辆汽车到达目的地 后,再回头接步行的这部分人。
出发地到目的地的距离是 60 千米。
问:步行者在出发后经过 多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计) 7、某人计划骑车以每小时 12 千米的速度由 A 地到 B 地,这样便可在规定的时间到达 B 地,但他因 事将原计划的时间推迟了 20 分,便只好以每小时 15 千米的速度前进,结果比规定时间 早 4 分钟到达 B 地,求 A、B 两地间的距离。
人教版七年级上册数学期末一元一次方程应用题(行程问题)专题训练

人教版七年级上册数学期末一元一次方程应用题(行程问题)专题训练1.一艘船从A码头到B码头顺流行驶,用了3小时;再从B码头返回A码头逆水行驶,用了4小时,已知水流的速度为5千米/小时,则这艘船在静水中航行的速度为多少千米/小时?2.元旦期间,小明的爸爸妈妈带小明外出旅游,乘轮船从A地到B地共用3h,从B地返回A地共用6h,已知水流速度是4km/h,求轮船在静水中的速度及A,B两地之间的距离.3.甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400米,乙每秒跑6米,甲每秒跑8米.(1)如果甲乙两人在跑道上同时同地反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙前面8米处同时同向出发,那么经过多少秒两人首次相遇?4.一辆卡车从A地出发匀速..开往B地,速度为40千米/时,卡车出发两小时后,一辆出租车从B地出发匀速..开往A地,卡车出发6小时,两车同时到达各自的目的地(到达目的地后两车都停止行驶).解答下列问题:(1)出租车的速度为______千米/时;(2)用含x的代数式表示两车行驶的路程之和....;(3)当两车相距180千米时,求卡车行驶的时间.5.为了打通城市和景区的交通线路,某市利用高架桥和钻隧道等技术,缩短了城市和景区的距离,使得两地总里程比原来缩短了26千米,修建新路线后高铁行驶速度比原来火车行驶速度的3倍还多9千米,原来的火车行完全程用时3小时,现在高铁用时50分6.甲车的速度是乙车的1.4倍,两车从A、B两地同时出发相向而行,1.5小时后在距A、B两地的中点12km处相遇.(1)甲车的速度是多少?(2)A、B两地相距多少千米?7.已知A,B两地相距46千米,甲骑自行车从A地前往B地,速度为每小时15千米,1小时后,乙骑摩托车也沿相同的路线从A地前往B地,速度为每小时40千米.(1)乙出发多长时间后能追上甲?(2)若乙到达B地后立即返回,则乙出发_________小时在返回途中与甲相遇,且相遇的地点距B地_________千米.8.两船从B港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.(1)4小时后两船相距多远?(2)若甲船由B港到A港用了4小时36分钟,再立即由A港返回B港时,共花10小时,试求水流速度a.9.甲乙两车分别从相距660km的A、B两地出发,甲车的速度为60km/h,乙车的速度为50km/h,两车同时出发,相向而行.求经过多少小时两车相遇?10.甲车的速度是乙车的1.4倍,两车从A、B两地同时出发相向而行,1.5小时后在距A、B两地的中点15km处相遇.(1)甲车的速度是多少?(2)A、B两地相距多少千米?11.周末,甲乙两人沿环形生态跑道散步,甲每分钟行80米,乙每分钟行120米,跑道一圈长400米.求:(1)若甲乙两人同时同地同向出发,多少分钟后他们第一次相遇?(2)若两人同时同地反向出发,多少分钟后他们第一次相距100米?12.已知:A,B两地相距500km,甲、乙两车分别从A,B两地同时出发,甲的速度为每小时60千米,乙的速度为每小时40千米,请按下列要求列方程解题:(1)若同时出发,相向而行,多少小时相遇?(2)若同时出发,同向而行,多长时间后两车相距100km?13.已知A,B两地相距400千米,甲、乙两车从A地向B地运送货物.甲车的速度为每小时60千米,乙车的速度为每小时80千米,甲车先出发0.5小时后乙车才开始出发.(1)乙车出发几小时后,才能追上甲车?(2)追上乙车时,距离B地还有多远?14.已知甲、乙两地相距160km,A、B两车分别从甲、乙两地同时出发,A车速度为85km/h,B车速度为65km/h.(1)A、B两车同时同向而行,A车在后,经过几小时A车追上B车?(2)A、B两车同时相向而行,经过几小时两车相距20km?15.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度是a km/h.(1)2h后两船相距多远?(2)2h后甲船比乙船多航行多少千米?(3)一艘小快艇送游客在两个码头问往返,若去程是逆水,则回程是顺水,其中去程的时间是回程时间的3倍,则小快艇在静水中的速度v与水流速度a的关系是______.(用数学表达式直接写出v与a的数量关系)16.A,B两地相距46千米,甲骑自行车从A地前往B地,速度为每小时15千米,1小时后,乙骑摩托车也沿相同的路线从A地前往B地,速度为每小时40千米,(1)乙出发多长时间后能追上甲?(2)若乙到达B地后立即返回,返回途中与甲相遇的地点距B地多少千米?17.某校七年级学生步行到距离学校16千米的教育基地参加实践活动.七年一班学生步行速度为4千米/时,七年二班学生步行速度为6千米/时,七年一班学生出发1小时后,七年二班学生才出发.(1)七年二班学生追上七年一班学生需要多长时间?(2)请直接写出七年一班学生出发多长时间时两班相距1千米?18.甲乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行110公里.(1)两车同时开出,背向而行,多少小时后两车相距800公里?(2)两车同时开出,同向而行,出发时快车在慢车的后面,多少小时后两车相距40公里?19.甲和乙在长400米的环形跑道上散步,甲的速度是6米/秒,乙的速度是4米/秒.(1)两人同时同地同向走,几秒钟第一次相遇?(2)两人同时同地反向走,几秒后两人第二次相距10米?20.A、B两地相距480km在A、B两地之间.一辆轿车以100km/h的速度从A地出发匀速行驶,前往B地.同时,一辆货车以80km/h的速度从B地出发,匀速行驶,前往A地.(1)当两车相遇时,求轿车行驶的时间;(2)当两车相距120km时,求轿车行驶的时间.参考答案:。
一元一次方程的应用题训练(工程类)
一元一次方程的应用题训练(工程类)一.选择题1.一项工程,A独做10天完成,B独做15天完成,若A先做5天,再A、B合做,完成全部工程的,共需()A.8天B.7天C.6天D.5天2.甲、乙两个工程队共同承接了某村“煤改气”工程,甲队单独施工需10天完成,乙队单独施工需15天完成.若甲队先做5天,剩下部分由两队合做,则完成该工程还需要()A.2天B.3天C.4天D.8天3.师徒俩人检修一条煤气管道,师傅单独完成需10小时,徒弟单独完成需15小时.若师徒合作2小时后,师傅因事离开由徒弟一人完成工作,则一共需要多少小时完成?设共需x小时完成,可得方程为()A.+=1B.+=1C.+=1D.+=14.一项工程由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙两队合作完成,完成剩下的部分需要甲、乙两队合作()A.3天B.6天C.天D.一天5.为打造县城河道风光带,现有一段长为180米的河道整治任务由甲、乙两个工程队先后接力完成.甲工程队每天整治12米,乙工程队每天整治8米,共用时20天.则甲工程队共整治河道()A.60米B.80米C.100米D.120米6.某市一项重点工程,甲公司单独完成需3年,乙公司单独完成需6年,现在两公司合作完成整项工程后,该市共付工程款360万元,如果按两公司分别完成工作量的多少分配,则甲公司比乙公司多分得()A.120万元B.180万元C.200万元D.240万元7.完成某项工作,甲单独要10天,乙单独要15天,如果两队合作,工作效率可以提高20%,那么两队合作要多少天完成()A.7.5天B.20天C.5天D.6天8.检修一处住宅区的自来水管,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天.前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙丙合作完成,则乙中途离开的天数是()A.2天B.3天C.4天D.5天9.一项工程,甲单独完成需要9天,乙单独完成需要12天,丙单独完成需要15天.若甲、丙先合作3天后,甲因故离开,由乙接替甲的工作,则要完成这项工程的还需要的天数为()A.2B.3C.4D.510.某项工程,甲单独需a天完成,在甲做了c(c<a)天后,剩下工作由乙单独完成还需b天,若开始就由甲乙两人共同合作,则完成任务需()天.A.B.C.D.二.填空题11.一项工程,甲单独完成要20天,乙单独完成要25天,则由甲先做2天,然后甲、乙合做余下的部分还要天才能完成.12.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成,如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完工?设还需x天完成,列方程为.13.一项工程,甲单独做a天完成,乙单独做b天完成.(1)甲的工作效率为,乙的工作效率为.(2)现在甲、乙合作8天完成了这项工程,则可以列出等式为.(3)若甲先单独工作5天后,甲、乙又合作3天完成了这项工程,则可以列出等式为.(4)若甲先单独工作5天后,乙又单独工作2天,最后甲、乙合作2天终于完成了全部工程,则可以列出等式为.(5)若甲、乙合作m天完成了整个工程的﹣半,则可列等式为.(6)若乙单独工作c天,又与甲合作m天完成了整个工程的,则可列等式为.由以上各题可以总结出:工程问题中列方程用到的相等关系﹣般来说都是从工作量、工作效率、工作时间这三个量中的哪个量来找?.14.一项工程,甲单独完成需要10天,乙单独完成需要15天,现两人合作需要天完成.15.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲,乙一起做,则需天完成.16.一项工程,A独做10天完成,B独做15天完成.若A先做5天,再A、B合做,要完成全部工程的三分之二,还需天.17.一次工程,甲独做5小时完成,乙独做比甲晚3小时才能完成,甲、乙二人合作需要小时完成.18.一件工作,甲独做要3小时完成,乙独做要5小时完成,两人合作完成这件工作的,需要小时完成.三.解答题19.某市要对水利工程进行改造,甲队单独做这项工程需要10天完成,乙队单独做这项工程需要15天完成.(1)甲的工作效率是,乙的工作效率是.(2)如果两队同时施工2天,然后由乙队单独施工,还需几天完成?20.一项工程,如果由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙合作完成.(1)(列方程解答)剩下的部分合作还需要几天完成?(2)若该工程的总费用为240万元,根据实际完成情况,甲乙两工程队各得多少万元?21.甲、乙两工程队共同承包了一段长9200米的某“村村通”道路硬化工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成460米,乙队平均每天比甲队多完成230米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?22.一项工程,甲队单独完成需要40天,乙队单独完成需要50天,现甲队单独做4天后两队合作.(1)求甲、乙两队合作多少天才能完成该工程.(2)在(1)的条件下,甲队每天的施工费为3000元,乙队每天的施工费为3500元,求完成此项工程需付给甲乙两队共多少元.23.列方程解应用题:为了治理大气污染,提升空气质量,现在广大农村正在实施“煤改气”工程.甲、乙两个工程队共同承接了某村“燃气壁挂炉注水”任务.若甲队单独施工需10天完成;若乙队单独施工需15天完成.(1)甲、乙两队合做需要几天完成?(2)若甲队先做5天,剩下部分由两队合做,还需要几天完成?24.哈市美化工程招标时,有甲、乙两个工程队投标、经测算:甲队单独完成这项工程需要30天,乙队单独完成这项工程需要45天,若由甲队先做10天,剩下的工程由甲、乙两队合作,共完成总工作量的.(1)求甲、乙两队合作了多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元,该工程由甲队先做若干天后,再由乙队完成剩余的工作,若要求完成此工程的工程款恰好是100万元,求甲队工作了几天?25.一项工程,如果甲队单独做5天可以完成全工程的;如果乙、丙两队合做2天可以完成全工程.三队合做多少天可以完成全工程?26.一项工程甲单独做需要10小时,乙单独做需要8小时,现甲单独做两小时后乙加入一起做,问这项工程完成共需几个小时?27.一项工程,甲独做10h完成,乙独做15h完成,丙独做20h完成,开始时三人合作,中途甲另有任务,由乙、丙两人完成,从开始到工程完成共用6h,问甲实际做了几小时?28.一项工程,甲单独做12小时完成,乙单独做8小时完成,甲先单独做9小时,后因甲由其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?。
解一元一次方程的应用题50道练习题
解一元一次方程的应用题50道练习题
1. 问题:一个数的三倍加四等于20,求这个数是多少?
解:设这个数为x,根据题意可得方程3x + 4 = 20。
解这个方程得到x = 16。
2. 问题:某商品原价100元,现在打七折出售,售价多少?
解:设售价为x,根据题意可得方程0.7x = 100。
解这个方程得到x ≈ 142.86。
3. 问题:一辆汽车以每小时60公里的速度行驶,行驶了3小时后停下来,求汽车行驶的总距离。
解:设汽车行驶的总距离为x,根据题意可得方程60 * 3 = x。
解这个方程得到x = 180。
4. 问题:A和B两个人同时从相距200公里的地点出发,A以每小时50公里的速度向B走去,B以每小时70公里的速度向A走去,多久后他们会相遇?
解:设相遇需要的时间为x,根据题意可得方程50x + 70x = 200。
解这个方程得到x = 2。
5. 问题:某地温度从摄氏度转换成华氏度的公式是F = C * 1.8
+ 32,如果某地温度为20摄氏度,求对应的华氏度。
解:设对应的华氏度为x,根据题意可得方程x = 20 * 1.8 + 32。
解这个方程得到x = 68。
...
(继续写下去,总共50道题目)
...。
专题13一元一次方程的应用(12大题型)专项讲练(原卷版)
专题13 一元一次方程的应用(12大题型)专项讲练一元一次方程的应用题属于必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、方案优化选择、行程问题、工程问题、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题等共十二大题型进行方法总结与经典题型进行分类。
1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答. 注意:(1)“审”指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,及它们之间的关系,寻找等量关系; (2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可; (6)“答”就是写出答案,注意单位要写清楚. 2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。
在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。
长方形面积=长×宽 长方形周长=2(长+宽) 正方形面积=边长×边长 正方形周长=4边长 2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。
我们称这类关系为约定型数量关系。
3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。
我么把这类数量关系称为基本数量关系。
单价×数量=总价 速度×时间=路程 工作效率×时间=总工作量等。
解一元一次方程应用题50道练习题(强化提升练习,准得分)
解一元一次方程应用题50道练习题(强化提升练习,准得分)1. 问题描述本练题集包含了50道一元一次方程的应用题,旨在帮助学生强化提升解题能力,并准备取得高分。
2. 练题列表1. 求解以下方程:2x + 5 = 132. 甲数是乙数的3倍,甲数加上乙数等于16,求甲数和乙数各是多少?3. 一个长方形的长比宽多5米,长方形的周长为34米,求长和宽各是多少?4. 一只苹果和3个橙子的重量总共是1.8千克,一只苹果的重量是0.4千克,求3个橙子的总重量。
5. 一场演唱会的门票总共卖出了150张,门票的价格是75元,门票销售总额是多少?...(题目数量有限,此处省略若干题目)3. 解答和解析1. 解:将方程2x + 5 = 13中的常数项5移到等号右边,得到2x = 13 - 5。
计算右边得到的结果为8。
然后将方程化简为x = 8 ÷ 2,计算得到的解为x = 4。
2. 解:设甲数为x,乙数为y。
根据题意,我们可以得到以下两个方程:x = 3y 和 x + y = 16。
将第一个方程化简为x - 3y = 0,然后将第二个方程化简为x + y = 16。
通过联立这两个方程,我们可以解得x = 12,y = 4。
3. 解:设长为x米,宽为y米。
根据题意,我们可以得到以下两个方程:x = y + 5 和 2x + 2y = 34。
将第一个方程化简为x - y = 5,然后将第二个方程化简为2x + 2y = 34。
通过联立这两个方程,我们可以解得x = 12,y = 7。
4. 解:设3个橙子的总重量为x千克。
根据题意,我们可以得到以下方程:x + 0.4 = 1.8。
将方程化简为x = 1.8 - 0.4,计算得到的解为x = 1.4千克。
5. 解:将门票总销售额定义为x元。
根据题意,我们可以得到以下方程:x = 150 × 75。
通过计算得到的解为x = 元。
...(解答和解析部分省略若干题目)4. 提示和注意事项- 在解一元一次方程应用题时,要仔细分析题目,将问题转化为方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
趣学堂教育 1 一元一次方程应用题专题练习 一、年龄问题 1.小明今年6年,他爷爷今年72岁,问多少年之后小明年龄是他爷爷年龄的14倍? 解:设x年后小明的年龄是爷爷的14倍,根据题意得方程为 : 二、数字问题 2.一个两位数它的个位数字比十位数字大3,那么这个两位数可以表示为什么? 如果把个位数字和十位数字对调,新的两位数可以表示为什么?(添表格并完成解答过程) 解:设这个数的十位数字是x,根据题意得
解方程得: 答
3.两个连续奇数的和为156,求这两个奇数,设最小的数为x,列方程得 4.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。
5.将连续的奇数1,3,5,7,9…,排成如下的数表: (1)十字框中的五个数的平均数与15有什么关系? (2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.
三、日历时钟问题 6、你能在日历中圈出2×2的一个正方形,使得圈出的4个数之和是77吗? 如果能,求出这四天分别是几号?如果不能,请说明理由.
个位 十位 表示为 原数
对调后的新数
3937353331
2927252321
1917151311
97531趣学堂教育
2 7、在6点和7点间,时钟分针和时针重合? 四、几何等量变化问题(等周长变化,等体积变化) 常用公式:三角形面积= ,正方形面积 圆的面积 , 梯形面积 矩形面积 柱体体积 椎体体积 球体体积 8、已知一个用铁丝折成的长方形,它的长为9cm,宽为6cm,把它重新折成一个宽为5cm的长方形, 则新的长方形的宽是多少? 设新长方形长为xcm,列方程为 9、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?
10、如图所示,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影部分的面积为224cm2,求重叠部分面积。
11、如图是两个圆柱体的容器,它们的半径分别是4cm和8cm,高分别为16cm和10cm,先在第一个容器中倒满水,然后将其全部倒入第二个容器中。 (1)问倒完后,第二个容器水面的高度是多少? (2)如右图把容器1口朝上插入容器2水位又升高多少?
容器1 容器2 趣学堂教育
3 五、打折销售:公式:利润=售出价-进货价(成本价) 利润率=×100%
商品利润
商品进价
12、 一只钢笔原价30元,现打8折出售,现售价是 元;如果这支钢笔的成本价为12元,那么不打折前商家每支可以获利 元,打折之后,商家每支还可以获利 元
13、 一件服装标价200元,①按标价的8折销售,仍可获利20元,该服装的进价是 元; ②按标价的8折销售,仍可获利10%,该服装的标价是 元 14、一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是______元. 设进价x元,根据题意列方程得 15、服装店将某种服装按成本提高40%标价,又以八折优惠卖出,每件仍获利15元,则每件的成本为_________. 16、某件商品9折降价销售后每件商品售价为a元,则该商品每件原价为________。
17、一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________。 18、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为______. 19、某商场出售某种文具,每件可盈利2元,为支援贫困山区的小朋友,按7折收给某山区学校,结果每件盈利0.20元。问该文具的进价是每件多少元?
20、杉杉打火机厂生产某种型号的打火机.每只的成本为2元,毛利率为25%.工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%.则这种打火机每只的成本降低
了 .(精确到0.01元.毛利率=00100售价成本成本) 21、某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?
23、某种商品的市场需求量D(千件)与单价p(元/件)服从需求关系: 117033DP.问: (1)当单价为4元时,市场需求量是多少? (2)若单价在4元基础上又涨价1元,则需求量发生了怎样的变化? 趣学堂教育 4 24、八一体育馆设计一个由相同的正方体搭成的标志物(如图所示),每个正方体的棱长为1米,其暴露在外面的面(不包括最底层的面)用五夹板钉制而成,然后刷漆。每张五夹板可做两个面,每平方米用漆500克. (1)建材商店将一张五夹板按成本价提高40%后标价,又以8折优惠卖出,结果每张仍获利4.8元(五夹板必须整张购买): (2)油漆店开展“满100送20,多买多送的酬宾活动”,所购漆的售价为每千克34元.试问购买五夹板和油漆共需多少钱?
六、人员分配调配问题: 25、某班级开展活动而分为甲乙两个小组,甲队29人,乙队19人: (1) 若从甲组调x名学生到乙组,使得两组人数相等,则可列方程: ; (2) 若从乙组调y名学生到甲组,使得甲组人数是乙组人数的两倍,则可列方程: 。 26、如果甲、乙两班共有90人,如果从甲班抽调3人到乙班,则甲乙两班的人数相等,则甲班原有多少人? 解:设甲班原有x人,则乙班原有 人,由题意可得方程 27、某班级开展植树活动而分为甲乙两个小组,甲队29人,乙队19人,后来发现任务比较重,人手不够,从另外一个班调来12个人分配给两个队,怎样分配才能使甲对人数是乙队的2倍
28、温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台。现在决定给武汉8台,南昌6台。每台机器的运费如表1。设杭州运往南昌的机器为x台。 (1)把表2填写完整(单位:百元);
起点到终点的运费情况 起点到终点机器分配情况
终点 起点 南昌(6台) 武汉(8台)
温州厂(10台) 杭州厂(4台) X
终点 起点 南昌 武汉
温州厂 4百元/台 8百元/台
杭州厂 3百元/台 5百元/台 趣学堂教育 5 表1 表2 (2)若总运费为8400元,则杭州运往南昌的机器应为多少台?
29、学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。
30、学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?
31、小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。
七、比值问题:技巧在于根据比值来设未知数 32、 如果两个课外兴趣小组共人数54人,两个小数的人数之比是4:5;如果设人数少的一组有4x人,
那么人数多的一组有___ ___,可列方程为: ______________________
33、 甲乙两人身上的钱数之比为7:6,两人去商店买东西后,甲花去50元,乙花去60时,此时他们身上的钱数之比为3:2,则他们身上余下的钱数分别是多少? 设甲余钱 元,乙余钱 元 ,列方程为
八、部分与整体问题 思路:此类问题中,一般都存在两个等量关系,选择一个关系来设未知数,并表示出其他量,再利用另一个关系来列方程(通常用可列表的方法)。 34、学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块砖,其他年级同学每人搬8块,总共搬了400块砖,问初一同学有多少人参加搬砖? 分析:设初一同学有x人参加搬砖,列表如下 可列出方程:_________________________________________
参加年级 初一学生 其他年级学生 总数 参加人数 x 65 每人搬砖 6 8 共搬砖 400 趣学堂教育 6 35、如果买1本笔记本和1支钢笔刚好需要6元钱,买1本笔记本和4支钢笔,共需18元,那么两种笔的价格分别是多少?
36、某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。
37、某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?
38、某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。
九、工程问题:一般情况下把工作总量看成单位1,公式:工作时间×工作效率=工作总量(单位1) 如:一项工程甲队需30天完成任务,则甲每天完成工作量的130,则工作效率为130;如果乙队需要20天完成任务,则甲每天完成工作量的120,则工作效率为120 ,两人一起可以完成11()2030——工作效率之和
39、 某件文件需要打印,小李独立完成需要6个小时,小王独立完成需要8个小时,如果两人合作的话,需要多少时间可以完成。设需要x小时两人合作可以完成,则可列方程:
40、一项工作甲工程队单独施工需要30天才能完成,乙队单独需要20天才能完成。现在由甲队单独工作5天之后,剩下的工作再由两队合作完成,问他们需要合作多少天?