第7章统计学

合集下载

统计学原理第七章 抽样调查

统计学原理第七章 抽样调查
29


x A 2 x A ( d ) f ( d )f d σ f f
2
256 72 σ 50 11504 50 53.63 200 200
2
30
第三节 全及指标的推断
一、全及指标的点估计
22
不具有某一标志的单位数用N0表示。 ► 总体成数和标准差与样本成数和标准差的计 算方法相同。只是总体指标用大写字母表示, 样本指标用小写字母表示。例如: ► 具有某一标志的单位数占总体的比重:
N1 P N
总体成数
n1 p n
样本成数
不具有某一标志的单位数占总体的比重:
N0 Q 1 P N
13
► 2.
(二)中心极限定律 ► 1. 独立同分布中心极限定理:证明不论变量 总体服从何种分布,只要它的数学期望和方 差存在,从中抽取容量为n 的样本,则这个 样本的总和或平均数是个随机变量,当n 充 分大时,样本的总和或平均数趋于正态分布.
► 2.
德莫佛-拉普拉斯中心极限定理:证明属性 总体的样本成数和样本方差,在n足够大时, 同样趋于正态分布。
σ N n σ n μx ( ) μx (1 ) n N 1 n N
2 2
总体单位总数
样本单位总数
抽样比例
21
(一)抽样成数的抽样平均误差μp ► 属性总体的标志值是用文字表示的,且标志 只有两个取值,非此即彼,故将属性总体的 标志称为“交替标志”或“是非标志”。 ► 交替标志也可以计算平均数(即成数)和标 准差。为了计算交替标志的平均数和标准差 必须将交替变异的标志过渡到数量标志。 ► 交替标志仍以x表示,设:x =1表示单位具有 某一标志, x = 0表示单位不具有某一标志。 具有某一标志的单位数用N1表示;

统计学答案第七章

统计学答案第七章

1 估计量的含义是指()。

A.用来估计总体参数的统计量的名称B.用来估计总体参数的统计量的具体数值C.总体参数的名称D.总体参数的具体数值2 在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。

这种评价标准称为()。

A.无偏性B.有效性C.一致性D.充分性3 根据一个具体的样本求出的总体均值的95%的置信区间()。

A.以95%的概率包含总体均值B.有5%的可能性包含总体均值C.一定包含总体均值D.要么包含总体均值,要么不包含总体均值4 无偏估计是指()。

A.样本统计量的值恰好等于待估的总体参数B.所有可能样本估计值的数学期望等于待估总体参数C.样本估计值围绕待估总体参数使其误差最小D.样本量扩大到和总体单元相等时与总体参数一致5 总体均值的置信区间等于样本均值加减边际误差,其中的边际误差等于所要求置信水平的临界值乘以()。

A.样本均值的抽样标准差B.样本标准差C.样本方差D.总体标准差6 当样本量一定时,置信区间的宽度()。

A.随着置信系数的增大而减小B.随着置信系数的增大而增大C.与置信系数的大小无关D.与置信系数的平方成反比7 当置信水平一定时,置信区间的宽度()。

A.随着样本量的增大而减小B.随着样本量的增大而增大C.与样本量的大小无关D.与样本量的平方根成正比8 一个95%的置信区间是指()。

A.总体参数有95%的概率落在这一区间内B.总体参数有5%的概率未落在这一区间内C.在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数9 95%的置信水平是指()。

A.总体参数落在一个特定的样本所构造的区间内的概率为95%B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95%C.总体参数落在一个特定的样本所构造的区间内的概率为5%D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5%10 一个估计量的有效性是指()。

应用统计学第7章 假设检验

应用统计学第7章 假设检验


μp
(1 )
σp
n
7.3 几种常见的假设检验
• p的抽样分布接近于 正态分布,所以检
验统计量是ZSTAT 值:
p的假设检验
Z STAT

nπ 5和 n(1-π) 5
π(1 π)
n
nπ < 5或 n(1-π) < 5
本章不讨论
7.3 几种常见的假设检验
关于总体比例,可建立如下假设:
提出原假设和备择假设 选择显著性水平 确定检验统计量 建立决策准则 做出决策
7.2 假设检验的五个步骤
7.2.1提出原假设和备择假设 原假设,H0
检验的声称或断言
例:在美国每个家庭平均有3台电视机
(H0 : μ 3)
是总体参数,不是样本统计量
H0 : μ 3
H0 : X 3
7.2 假设检验的五个步骤
的假设检验
σK已n知own (Z 检验)
检验统计量是:
σ Un未kn知own (t 检验)
7.3 几种常见的假设检验
根据抽样分布原理,当总体服从正态分布N(μ,2)时,那
么从中抽取(重复抽样)容量为n 的样本,其样本均值
服从正态分布
N , 2 / n ,而统计量
Z
x
服从标
准正态分布。
n
对于双侧检验,对给定的显著性水平α,当
解:由题意知,这是左单侧检验问题,可建立如下假设:
H0 : 0.9
H1 : 0.9
样本比例
p 82 0.82 ,检验统计量的值为:
100
Z
p
= 0.82 0.9 2.67
(1 )
0.9 0.1
n
100

统计学--第七章 相关关系分析法---复习思考题

统计学--第七章  相关关系分析法---复习思考题

第七章 相关关系分析法一、填空题1.按相关的程度,相关关系可分为完全相关、 相关和 相关。

2.按相关的方向,直线相关可分为 相关和 相关。

3.回归系数与相关系数的关系为b= 。

4.估计标准误差与相关系数的关系为y s = 。

5.相关系数的取值范围是 。

6.按相关关系涉及变量的多少,可分为 相关和 相关。

7.如果劳动生产率(千元/人)x 和工资的回归方程为:1070c y x =+,这表明劳动生产率每提高1千元/人,工资增加 元。

二、判断题1.家庭的消费支出随着收入的增加而增加,则消费支出与收入之间呈正相关关系。

( )2.当一个变量变动时,另一个变量也相应地发生大致均等的变动,这种相关关系称为非线性相关。

( )3.正相关是两个变量的变动方向一致。

( )4.两个变量之间的相关称为单相关。

( )5.相关系数和估计标准误差的变化方向是相同的。

( )6.相关系数的取值范围为:10≤≤r 。

( )7.当两个变量之间是完全正相关时,则r=1。

( )8.两个变量之间相关的程度越低,相关系数越接近0。

( ) 9.当相关系数等于0时,说明两个变量之间没有相关关系。

( ) 10.当相关系数等于0.8时, 说明两个变量之间是显著相关。

( ) 三、单项选择题1.若变量x 增加时,变量y 的值也增加,那么变量x 和变量y 之间存在着( ) 相关关系。

A.负B.正C.抛物线D.指数曲线2.如果两个变量之间的相关系数为-1,说明两个变量之间是( ) 相关关系。

A.无B.低度C.高度D.完全3.如果两个变量之间的相关系数为0.8,说明两个变量之间是( ) 相关关系。

A.完全B.高度C.显著D.微弱 4.现象之间相互依存关系的程度越低,则相关系数越( )。

A.接近于0B.接近于1C.接近于-1D.趋向于无穷大 5.相关系数的取值范围是( )。

A.01r ≤≤B.10r -≤≤C.r >0D. 11r -≤≤ 6.用最小平方法配合直线方程,必须满足的一个基本条件是( )。

高级统计学:第七章方差分析

高级统计学:第七章方差分析

第七章方差分析第一节方差分析的基本原理方差分析(Analysis of variance,简称ANOV A)是对多个总体均值是否相等这一假设进行检验的一种方法。

一、方差分析的内容1实例[例] 某饮料生产企业研制出一种新型饮料。

饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。

这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同。

现从地理位置相似、经营规模相仿的五家超级市场上收集了前一期该种饮料的销售量情况,见表7—1。

新型饮料在五家超市的销售情况表解:从表7—1中看到20个数据各不相同,什么原因使其不同呢?2产生的原因①是销售地点的影响;②是饮料颜色的影响。

A 有可能是抽样的随机性造成的;B 有可能是由于人们对不同颜色有所偏爱。

可以将上述问题就归结为一个检验问题——检验饮料颜色对销售量是否有影响,即要检验各个水平的均值k μμμ,,21 是否相等。

二、方差分析的原理1基本概念因素:一个独立的变量就称为一个因素。

如,颜色水平:将因素中不同的现象称为水平。

(每一水平也称为一组) 单因素方差分析:方差分析只针对一个因素进行。

多因素方差分析:同时针对多个因素进行分析。

观察值之间的差异产生来自于两个方面:①是由因素中的不同水平造成系统性差异的; ②是由于抽选样本的随机性产生的差异。

方差分析数据结构表7-2在一元情形下假设:ik i2i1X ,,X ,X ,i=1,2…n j ,j=1,2,…k,为来自总体)N(2σ,μ的随机样本。

如果假设k H μμμ=== 210:也可表达为 j j αμμ+=其中j α是第j 个水平的偏差。

如果各水平下均值相等,则可以表述为: 0:210====k H ααα对于第j 个因素有ij j ij X εαμ++=其中()2,0~σεN ij 为独立同分布随机变量。

对于观察值则有)()(j ij j ij x x x x xx -+-+=将式两端减去x 然后平方,得))((2)()()(222j ij j j ij j ij x x x x x x x x x x --+-+-=-等式两边求和,有也即如上例可以建立如下的假设:43210:μμμμ===H ;43211,,,:μμμμH 不全相等。

统计学第7章 相关与回归分析 (2)

统计学第7章 相关与回归分析 (2)
完成量(小时)
20 50 20 30 50 20 50 40 20 80 40 20 50 80 30 单位成本(元/小时) 16 16 18 16 15 18 15 14 16 14 15 16 14 15 15
完成量(小时)
整理后有
20 20 20 20 20 20 20 20 20 30 30 30 30 30 40 单位成本(元/小时) 15 16 16 16 16 18 18 18 18 15 15 15 16 16 14
rXY
样本相关系数
通过X和Y的样本观测值去估计样本相关系 数变量X和Y的样本相关系数通常用 r 表示
r
rXY
( x x )( y y ) (x x) ( y y)
2
2
特点:样本相关系数是根据从总体中抽取的随机样 本的观测值计算出来的,是对总体相关系数 的估计,它是个随机变量。
例:为了研究分析某种劳务产品完成量与其单位 产品成本之间的关系,调查30个同类服务公司得到的 原始数据如表。 相关表:将自变量x的数值按照从小到大的顺序,并 配合因变量y的数值一一对应而平行排列的表。
20 30 20 20 40 30 40 80 80 50 40 30 20 80 50 单位成本(元/小时) 18 16 16 15 16 15 15 14 14 15 15 16 18 14 14
根据相关关系的方向划分
1、正相关。指两个因素(或变量)之间的变化方向 一致,都是呈增长或下降的趋势。即自变量x的值 增加(或减少),因变量y的值也相应地增加(或 减少),这样的关系就是正相关。例如,工业总 产值增加,企业税利总额也随之增加;家庭消费 支出随收入增加而增加等。 2、负相关。指两个因素或变量之间变化方向相反, 即自变量的数值增大(或减小),因变量随之减 小(或增大)。 如劳动生产率提高,产品成本降 低;产品成本降低,企业利润增加等。

统计学(贾5)课后练答案(7-8章)

第七章参数估计7.1 (1) =0。

7906(2)==1。

54957。

2 某快餐店想要估计每位顾客午餐的平均花费金额。

在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1)假定总体标准差为15元,求样本均值的抽样标准误差。

=2。

143(2)在95%的置信水平下,求估计误差。

,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=因此,=1.96×2。

143=4。

2(3)如果样本均值为120元,求总体均值的95%的置信区间.置信区间为:==(115.8,124.2)7.3 ==(87818.856,121301。

144)7.4 从总体中抽取一个n=100的简单随机样本,得到=81,s=12。

要求:大样本,样本均值服从正态分布:或置信区间为:,==1。

2(1)构建的90%的置信区间.==1.645,置信区间为:=(79。

03,82.97)(2)构建的95%的置信区间。

==1。

96,置信区间为:=(78。

65,83.35)(3)构建的99%的置信区间.==2.576,置信区间为:=(77。

91,84.09)7.5 (1)==(24.114,25.886)(2)==(113。

184,126.016)(3)==(3.136,3。

702)7。

6 (1)==(8646.965,9153.035)(2)==(8734。

35,9065。

65)(3)==(8761。

395,9038。

605)(4)==(8681。

95,9118.05)7.7 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调解:(1)样本均值=3。

32,样本标准差s=1.61=0。

9,t===1.645,==(2。

88,3。

76)=0。

95,t===1。

96,==(2。

79,3.85)=0.99,t===2.576,==(2。

63,4.01)7。

8 ==(7.104,12.896)7。

9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是:10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。

统计学第五版袁卫课后答案第七章思考与练习

统计学第五版袁卫课后答案第七章思考与练习一、单项选择题1要进行一项调查,调查者在马路上随机拦截部分人进行调查,这种方式属于()。

[河海大学2020研]A.简单随机抽样B.分层抽样C.自愿抽样D.方便抽样【答案】D袁卫统计学第5版课后题及答案【解析】方便抽样是调查过程中由调查员依据方便的原则,自行确定入样的单位的非概率抽样方法。

例如,调查员在街头、公园、商店等公共场所进行拦截式的调查;厂家在出售产品的柜台前对路过的顾客进行调查,等等。

2对于大批量的数据,最适合描述其分布的图形是()。

[中国海洋大学2018研;山东师范大学2018研]A.条形图B.茎叶图C.直方图D.饼图【答案】C袁卫统计学第5版课后题及答案【解析】在应用方面,直方图通常适用于大批量数据,茎叶图通常适用于小批量数据。

条形图是用宽度相同的条形的高度或长短来表示数据多少的图形;饼图是用圆形及圆内扇形的角度来表示数值大小的图形,它主要用于表示一个样本(或总体)中各组成部分的数据占全部数据的比例。

3如果回归模型中存在多重共线性,则()。

[中国海洋大学2018研]A.整个回归模型的线性关系不显著B.肯定有一个回归系数通不过显著性检验C.肯定导致某个回归系数的符号与预期的相反D.肯定导致某些回归系数通不过显著性检验【答案】D袁卫统计学第5版课后题及答案【解析】当回归模型中两个或两个以上的自变量彼此相关时,则称回归模型中存在多重共线性。

如果出现下列情况,暗示存在多重共线性:①模型中各对自变量之间显著相关;②当模型的线性关系检验(F检验)显著时,几乎所有回归系数βi的t检验却不显著;③回归系数的正负号与预期的相反。

495%置信水平的区间估计中95%的置信水平是指()。

[山东大学2019研;山东师范大学2018研;湘潭大学2015研;厦门大学2014研;江苏大学2012研;北京工业大学2012研;中央财经大学2011研]A.总体参数落在一个特定的样本所构造的区间内的概率为95% B.总体参数落在一个特定的样本所构造的区间内的概率为5% C.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95%D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5%【答案】C袁卫统计学第5版课后题及答案【解析】置信水平95%不是用来描述某个特定的区间包含总体参数真值可能性的,而是针对随机区间而言的。

统计学课程作业(第七章)

《统计学》课程作业第七章相关分析一、单项选择题1、当变量x 按一定数值变化时,变量y 也近似地按固定数值变化,这表明变量x 和变量y 之间存在着 ( )A 、完全相关关系B 、复相关关系C 、直线相关关系D 、函数关系2. 相关系数的值范围 ( )A 、r -∞<<+∞B 、11r -≤≤+C 、11r -<<+D 、01r ≤≤+3、直线相关分析与直线回归分析的联系表现为 ( )A 、相关分析是回归分析的基础B 、回归分析是相关分析的基础C 、相关分析是回归分析的深入D 、相关分析与回归分析互为条件4、在用一个回归方程进行估计推算时 ( )A 、只能用因变量推算自变量B 、只能用自变量推算因变量C 、既可用因变量推算自变量,也可用自变量推算因变量D 、不需要考虑因变量和自变量问题5、如果估计标准误差0=yx S ,则表明 ( )A 、全部观测值和回归值都不相等B 、回归直线代表性小C 、全部观测值与回归值的离差之积为0D 、全部观测值都落在回归直线上6、判断两个变量间相关关系的密切程度时,“显著相关”通常是指 ( )A 、5.03.0〈≤rB 、8.05.0〈≤rC 、18.0〈≤rD 、高于0.57、在简单重复随机抽样条件下,欲使误差范围缩小一半,其他要求不变,则样本容量必须 ( )A 、增加2倍B 、增加3倍C 、减少2倍D 、减少3倍8、在回归直线方程bx a y c +=中,b 表示 ( )A 、当x 增加一个单位时,y 增加a 的数量B 、当y 增加一个单位时,x 增加b 的数量C 、当x 增加一个单位时,y 的平均增加量D 、当y 增加一个单位时,x 的平均增加量9、配合直线回归方程对资料的要求是 ( )A 、因变量是给定的数值,自变量是随机变量B 、自变量是给定的数值,因变量是随机变量C 、自变量和因变量都是随机变量D 、自变量和因变量都不是随机变量10、当变量x 按一定数值变化时,变量y 也近似地按固定数值变化,这表明变量x 和变量y 之间存在着 ( )A 、完全相关关系B 、复相关关系C 、直线相关关系D 、函数关系11、在价格不变的条件下,商品销售额和商品销售量之间存在着 ( )A 、不完全的依存关系B 、完全的依存关系C 、不完全的随机关系D 、完全的随机关系12、对于有线性相关关系的两变量建立的直线回归方程Y=a+bx 中,回归系数b( )A 、肯定是正数B 、显著不为0C 、可能为0D 、肯定为负数13、下面的几个式子中,错误的是( )A 、y=40+1.6x r=0.89B 、y=-5-3.8x r=-0.94C 、y=36-2.4x r=0.96D 、y=-36+3.8x r=0.9814、直线相关分析与直线回归分析的联系表现在( )A 、相关分析是回归分析的基础B 、回归分析是相关分析的基础C 、相关分析是回归分析的深入D 、相关分析与回归分析互为条件15、如果估计标准误差0yx S =,则表明( )A 、 全部观测值和回归值都不相等B 、回归值代表性小C 、全部观测值与回归值的离差之积为零D 、全部观测值都落在回归直线上二、多项选择题1、相关分析的特点有 () A 、两变量不是对等的B 、两变量只能计算出一个相关系数C 、相关系数有正负号D 、两变量都是随机的E 、相关系数的绝对值介于0和1之间2、如果变量x 与y 之间没有线性相关关系,则 () A 、估计标准误差为0=yx S B 、估计标准误差1=yx S C 、相关系数0=r D 、判定系数02=rE 、回归系数0=b3、下列各种现象之间的关系属于相关关系的有( )A 、劳动生产率与工资水平之间的关系B 、商品销售额与流通费用率的关系C 、农作物收获量与施肥量的关系D 、价格不变条件下,商品销售额与销售量之间的关系E 、正方形的面积与它的边长之间的关系4、设流通费用率(%)对商品销售额(十万元)的直线回归方程为x y c %02.0%8-= ,这说明 ( )A 、流通费用率与销售额按相反方向变动B 、流通费用率与销售额按相同方向变动C 、商品销售额每增加1万元,流通费用率平均下降0.02%D 、商品销售额每增加10万元,流通费用率平均下降0.02%E 、当商品销售额为10万元时,流通费用率为7.98%5、估计标准误差是 ( )A 、能表明变量之间的相关密切程度B 、与标准差的计算原理相同C 、表明回归线的代表性D 、指因变量实际值与理论值的平均离差E 、说明回归方程代表性大小的指标6. 估计标准误差可反映 ( )A.回归直线的代表性大小B.平均数的代表性大小C.估计值的准确程度D.一定程度上反映相关关系的密切程度三、判断题 1、相关系数与回归系数同号。

统计学第7章参数估计1

中,有95%的区间不包含该总体参数
2. 根据一个具体的样本求出的总体均值的95% 的置信区间( )
A 以95%的概率包含总体均值 B 有5%的可能性包含总体均值 C 一定包含总体均值 D 要么包含总体均值,要么不包含总体均值
常用置信水平的临界值(Zα/2值)
置信水平
90% 95% 99%
α
0.10 0.05 0.01
样本均值经标准化处理后服从自由度为
(n-1)的t分布

t x ~ t(n 1)
s/ n
总体均值μ在1-α的置信水平下的置信区间为

x t
2
s n
【例】某时装店的管理人员想估计其顾客的平均
年龄,随机抽取了16位顾客进行了调查,得到 样本均值为32岁,样本标准差为8岁,假定顾客 的年龄近似服从正态分布,求该店全部顾客平均
α/2
0.05 0.025 0.005
Zα/2
1.645 1.96 2.58

X
- 2.58x
-1.65 x
+1.65x + 2.58x
-1.96 x
+1.96x
90%的样本
95% 的样本
99% 的样本
评价估计量的标准
1. 无偏性

E(θ) =θ
2. 有效性
对同一总体参数的两个无偏估计量,标准差 越小的估计量估计效果越好,称估计量越有效。
际误差不超过20元,应抽取多少个顾客作 为样本?
解:已知=120(元),Z/2=1.96,E=20(元)
应抽取的样本容量为
n

Z2 2 2
E2
(1.96) 2120 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档