人教版八年级数学下册第二十章数据的分析20.1.2中位数和众数教学设计

合集下载

人教版八年级数学下册第二十章数据的分析教案

人教版八年级数学下册第二十章数据的分析教案

人教版八年级数学下册教案20.1.1平均数第一课时【学习目标】1.认识和理解数据的权及其作用。

2.通过实例了解加权平均数的意义,会根据加权平均数的计算公式进行有关计算。

【重点难点】重点:加权平均数的概念以及运用加权平均数解决实际问题。

难点:对数据的权及其作用的理解。

【导学指导】学习教材相关内容,思考、讨论、合作交流后完成下列问题:1.你认为书上“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。

3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。

【课堂练习】1.教材练习2.某广告公司欲招聘广告策划人员一名,对甲、乙、丙三名候选人进行了三项素质测试,他们的(1(2)根据实际需要,公司将创新、综合知识、语言三项测试得分按4:2:2的比例确定各人的测试成绩,此时谁将被录用?【要点归纳】你今天有什么收获?与同伴交流一下。

【拓展训练】学校对各个班级的教室卫生情况考察包括以下几项:黑板、门窗、桌椅、地面。

三个班的各项卫生成绩20.1.1平均数第二课时【学习目标】1.理解把算术平均数的简便算法看成加权平均数的道理,进一步加深对加权平均数的认识。

2.能根据频数分布表利用组中值的方法计算加权平均数。

3.掌握利用计算器计算加权平均数的方法。

【重点难点】重点:能根据频数分布表利用组中值的方法应用公式计算加权平均数。

难点:对算术平均数的简便算法与加权平均数算法一致性的理解。

【导学指导】学习教材相关内容,思考、讨论、合作交流后完成下列问题:1.你能为教材的算术平均数举一个例子吗?2.把算术平均数的公式与上节课的加权平均数公式进行对比,思考它们的相同之处与不同之处。

3.教材的“探究”中,各组的载客量不是一个具体值,怎么办?4.你的计算器能求平均数吗?试试看。

20.1.2中位数和众数教案

20.1.2中位数和众数教案
数据
平均数
中位数
众数
20,20,21,24,27,30,32
0,2,3,4,5,5,10
-2,0,3,3,3,8
―6,―4,―2,2,4,6
3.某公司有10名销售业务员,去年每人完成的销售额情况如下表
销售额(万元)
3
4
5
6
7
8
10
销售人数
1
3
2
1
1
1
1
问题:(1)求10名销售员销售额的平均数、中位数和众数(单位:万元)
二、教学重、难点
重点:认识中位数、众数这两种数据代表
难点:利用中位数、众数分析数据信息,做出决策。
三、教学准备
多媒体课件。
四、教学方法
合作、讲练结合。
五、教学过程
(一)复习引入
严格的讲,教材本节课没有引入的问题,而是在复习和延伸中位数定义的过程中拉开序幕的,教师可以一句话引入新课:前面已经和同学们研究过了平均数这个数据代表。它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。
六、板书设计
20.1.2中位数和众数
复习回顾:
复习和延伸中位数的定义
新课教授:
数据分析中的中位数概念
众数概念
例题讲解:
例1
例2
巩固练习:Байду номын сангаас
课堂小结:
中位数和众数概念
布置作业:
七、对应练习
1、判断题:
(1)给定一组数据,那么描述这组数据的平均数一定只有一个.()
(2)给定一组数据,那么描述这组数据的中位数一定只有一个.()

人教版八年级下册第二十章《 数据的分析》教学设计

人教版八年级下册第二十章《 数据的分析》教学设计

八年级下册数学第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时 平均数(1)1.使学生理解并掌握数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.重点会求加权平均数.难点对“权”的理解.一、复习导入班级 1班 2班 3班 4班参考人数 40 42 45 32平均成绩 8081 82 79 为什么?x =14×(79+80+81+82)=80.5平均数的概念及计算公式:一般地,如果有n 个数x 1,x 2,x 3,…,x n ,则有x =x 1+x 2+x 3+…+x n n,其中x 叫做这n 个数的平均数,读作“x 拔”.二、讲授新课问题:一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如表所示.应试者 听 说 读 写甲 85 78 85 73乙 73 80 82 83(1)(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?对于问题(1),根据平均数公式,甲的平均成绩为:85+78+85+734=80.25, 乙的平均成绩为73+80+82+834=79.5. 因为甲的平均成绩比乙高,所以应该录取甲.对于问题(2),听、说、读、写成绩按照2∶1∶3∶4的比确定,这说明各项成绩的“重要程度”有所不同,读、写的成绩比听、说的成绩更加“重要”.因此,甲的平均成绩为85×2+78×1+85×3+73×42+1+3+4=79.5, 乙的平均成绩为73×2+80×1+82×3+83×42+1+3+4=80.4. 因为乙的平均成绩比甲高,所以应该录取乙.上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.而问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4分别称为听、说、读、写四项成绩的权,相应的平均数79.5,80.4分别称为甲和乙的听、说、读、写四项成绩的加权平均数.一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n叫做这n 个数的加权平均数.三、例题讲解【例1】教材第112页例1【例2】为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行了测量,结果如下表:(单位:小时)解:这些灯泡的平均使用寿命为:x =450×20+550×10+600×30+650×15+700×2520+10+30+15+25=597.5(小时) 四、巩固练习1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为________.【答案】2x 1+3x 2+4x 3+5x 4x 1+x 2+x 3+x 42.某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶________环.【答案】ax +by a +b五、课堂小结师:这节课你学到了什么新知识?生1:数据的权和加权平均数的概念.生2:掌握加权平均数的计算方法.……平均数是统计中的一个重要概念,新教材注重学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念,基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.第2课时 平均数(2)1.加深对加权平均数的理解.2.会根据频数分布表求加权平均数,解决一些实际问题.3.会用计算器求加权平均数的值.重点根据频数分布表求加权平均数.难点根据频数分布表求加权平均数.一、复习导入采用教材原有的引入问题,设计的几个问题如下:(1)请同学们阅读教材中的探究问题,依据统计表可以读出哪些信息?(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值有什么关系?设计意图(1)主要是想引出根据频数分布表求加权平均数近似值的计算方法;(2)加深了对“权”的意义的理解:当利用组中值近似取代一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权;二、例题精讲【例2】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).解:这个跳水队运动员的平均年龄为x =13×8+14×16+15×24+16×28+16+24+2≈14(岁). 【例3】某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡.它使用寿命/x/h 600≤x<1000 1000≤x<1400 1400≤x<1800 1800≤x<2200 2200≤x<2600灯泡只数 5 10 12 17 6分析:使用寿命来估计这批灯泡的平均使用寿命.解:根据表格,可以得出各小组的组中值,于是x =800×5+1200×10+1600×12+2000×17+2400×650=1672, 即样本平均数为1672.因此,可以估计这批灯泡的平均使用寿命大约是1672 h .三、巩固练习某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用时间进行调查,下表是该校八年级某班50名学生某一天做数学课外作业所用时间的情况统计表.所用时间t(分钟) 人 数0<t ≤10 410<t ≤206 20<t ≤3014 30<t ≤40 1340<t ≤50 950<t ≤60 4求:(1)(2)该班学生平均每天做数学作业所用的时间.【答案】解:(1)15(2)该班学生平均每天做数学作业所用时间为x =5×4+15×6+25×14+35×13+45×9+55×44+6+14+13+9+4=30.8(分钟) 四、课堂小结1.加权平均数的应用.2.根据频数分布表求加权平均数.3.学会用计算器求加权平均数的值.在统计中算术平均数常用于表示对象的一般水平,它是描述数据集中程度的一个统计量,它可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别,可见平均数是统计中的一个重要概念.基于这一认识,这节课注重了以下几个方面:一、在现实生活情境中引入,注重数学与生活的联系.二、创造有效的数学学习方式,理解平均数的意义,学会平均数的算法.20.1.2 中位数和众数第1课时 中位数和众数(1)认识中位数和众数,并会求出一组数据的众数和中位数.重点认识中位数、众数这两种数据代表.难点利用中位数、众数分析数据信息,做出决策.一、复习导入前面已经和同学们研究了平均数这个数据代表.它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据的过程中又起到怎样的作用.二、讲授新课月收入/元45000 18000 10000 5500 5000 3400 3000 1000人数 1 1 1 3 6 1 11 1(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?师:同学们知道如何计算这个公司员工月收入的平均数吗?生:根据加权平均数,可以求出这个公司员工月收入的平均数为:45000+18000+10000+5500×3+5000×6+3400+3000×11+1000=6276.1+1+1+3+6+1+11+1师:很好!那么用第(1)问中算得的平均数来反映该公司全体员工的月收入水平,你认为合理吗?生:不合理.因为在这25名员工中,仅有3名员工的收入在6276元以上,而另外22名员工的收入都在6276元以下.因此,用月收入的平均数反映所有员工的月收入水平不合理.师:这位同学分析得很好!那么应该选择什么数据来反映该公司员工月收入的水平呢?这就要用到本节课要学习的中位数,利用中位数可以更好地反映这组数据的集中趋势.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称位于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.利用中位数分析数据可以获得一些信息.例如,上述问题中将公司25名员工月收入数据由小到大排列,得到的中位数为3400,这说明除去月收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.【例1】教材第117页例4师:刚才我们学习中位数,下面我们再来学习一个反映数据集中趋势的另一众数,一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映该组数据的集中趋势.【例2】一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量尺码/cm22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 3 1出的鞋的尺码组成的一组数据的众数.一段时间内卖出的300双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数,进而估计这家鞋店销售哪种尺码的鞋最多.解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5 cm的鞋销售量最大,因此可以建议鞋店多进23.5 cm的鞋.三、巩固练习1.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是________,众数是________.【答案】992.一组各不相同的数据23,27,20,18,x,12,它的中位数是21,则x的值是________.【答案】223.数据92,96,98,100,x的众数是96,则其中位数和平均数分别是() A.97,96B.96,96.4C.96,97 D.98,97【答案】B4.如果在一组数据中,23,25,28,22出现的次数依次为3,5,3,1,并且没有其他的数据,则这组数据的众数和中位数分别是()A.24,25 B.23,24C.25,25 D.23,25【答案】C四、课堂小结1.认识了中位数和众数.2.理解了中位数和众数的意义和作用,并能利用它们分析数据信息,做出决策.本次教学中,我通过引导学生在了解中位数和众数的意义之后,让学生利用中位数和众数的知识解决实际问题,沟通了知识与实际生活的联系,让学生体会到中位数与众数知识的实用性.第2课时中位数和众数(2)1.进一步认识到平均数、众数、中位数都是数据的代表.2.了解平均数、中位数、众数在描述数据时的差异.重点了解平均数、中位数、众数之间的差异.难点灵活运用这三个数据代表解决问题.一、复习导入平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据集中趋势的量.它们各有自己的特点,能够从不同的角度提供信息,在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.另外要注意:(1)平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;(2)众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算也不受极端值的影响;(3)平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应地引起平均数的变动;(4)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势;(5)实际问题中求得的平均数、众数、中位数应带上单位.二、例题讲解【例1】在一次环保知识竞赛中,某班50名学生成绩如下表所示:得分50 60 70 80 90 100 110 120人数 2 3 6 14 15 5 4 1解:众数90分中位数85分平均数84.6分【例2】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,5,5,6,6,36,55.(1)甲群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映甲群游客年龄特征的是________;(2)乙群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映乙群游客年龄特征的是________.解:(1)151515众数(2)15 5.55,6中位数【例3】教材第119页例6三、巩固练习某公司的33名职工的月工资(以元为单位)如下:职员董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为应该使用平均数和中位数中的哪一个来描述该公司职工的工资水平?【答案】(1)209115001500(2)328815001500(3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.四、课堂小结1.了解平均数、中位数、众数之间的差异.2.灵活运用这三个数据代表解决问题.本节课首先从复习平均数、中位数和众数的定义开始,接着列出这三种统计量各自的特点和适用条件,为避免太过抽象,在后面设计的例题中都有这些统计量的应用,培养学生应用数学的意识.20.2数据的波动程度1.了解方差的定义和计算公式.2.理解方差概念的产生和形成过程.3.会用方差比较两组数据的波动大小.重点方差产生的必要性和应用方差公式解决实际问题.难点理解方差的概念并会运用方差的公式解决实际问题.一、情境导入1.请同学们看下面的问题:(幻灯片出示)农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量(单位:t)如下表所示.甲7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41乙7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49上面两组数据的平均数分别是x甲≈7.54,x乙≈7.52,说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们的平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量的分布情况,我们把这两组数据画成下面的图1和图2.师:比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米在各试验田的产量较集中地分布在平均量附近,从图中看出的结果能否用一个量来刻画呢?这就是我们本节课所要学习的内容——方差.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).2.方差的概念教师讲解:为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:设在一组数据中,各数据与它们的平均数的差的平方的和的平均数是s 2,那么我们用s 2=1n [(x 1-x)2+(x 2-x)2+…+(x n -x)2]来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据的方差越大,说明这组数据的波动越大;数据的方差越小,说明这组数据的波动越小,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解了方差的概念之后,再回到了引例中,通过计算甲、乙两种甜玉米的方差,根据理论说明哪种甜玉米的产量更好.教师示范:两组数据的方差分别是s 甲2=(7.65-7.54)2+(7.50-7.54)2+…+(7.41-7.54)210≈0.01, s 乙2=(7.55-7.52)2+(7.56-7.52)2+…+(7.49-7.52)210≈0.002. 显然s 甲2>s 乙2,即甲种甜玉米的波动较大,这与我们从图1和图2看到的结果一致.由此可知,在试验田中,乙种甜玉米的产量比较稳定.正如用样本的平均数估计总体的平均数一样,也可以用样本的方差来估计总体的方差.因此可以推测,在这个地区种植乙种甜玉米的产量比甲种的稳定.综合考虑甲、乙两个品种的平均产量和产量的稳定性,可以推测这个地区比较适合种植乙种甜玉米.这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.二、例题讲解【例1】教材第125页例1【例2】教材第127页例2【例3】(幻灯片出示)已知两组数据:甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名学生到黑板计算.解:根据公式可得x 甲=10+18(-0.1+0.3-0.2+0.1+0.4+0-0.2-0.3)=10+18×0=10x 乙=10+18(0.2+0-0.5+0.3+0.5-0.4-0.2+0.1)=10+18×0=10s 甲2=18[(9.9-10)2+(10.3-10)2+…+(9.7-10)2]=18(0.01+0.09+…+0.09)=18×0.44=0.055s 乙2=18[(10.2-10)2+(10-10)2+…+(10.1-10)2]=18(0.04+0+…+0.01)=18×0.84=0.105从s 甲2<s 乙2知道,乙组数据比甲组数据波动大.三、巩固练习1.已知一组数据为2,0,-1,3,-4,则这组数据的方差为________.【答案】62.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下: 甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,7,7经过计算,两人射击环数的平均数相同,但s 甲2________s 乙2,所以确定________去参加比赛.【答案】> 乙四、课堂小结1.知识小结:通过这节课的学习,我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小,而描述一组数据的波动大小的量不止一种,最常用的是方差.2.方法小结:求一组数据方差的方法:先求平均数,再利用平均数求方差.本次教学在解决引例问题时,通过对数据的分析,发现以前学过的统计知识不能解决新问题,引出矛盾,这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花,真正体现“不同的人,在数学上得到不同的发展”.。

八年级数学下册 第二十章 数据的分析 .2 中位数和众数(第2课时)导学课件下册数学课件

八年级数学下册 第二十章 数据的分析 .2 中位数和众数(第2课时)导学课件下册数学课件

吗?
目的是减少极端值对平均分的影响,使得选手的得分更加公平.
12/12/2021
第四页,共十二页。
1.为了调查某小区居民(jūmín)的用水情况,随机抽查了若干户家庭
的月用水量,结果如下表:
则关于(guānyú)这若干户家庭的月用水量,下列说法中错误的是( A )
A.众数是4
C.调查了10户家庭的月用水量
他们都认为自己的成绩比另两位同学好,你认为谁的成绩要好
12/12/2021
一些?说明你的理由.
第三页,共十二页。
1.回答“问题(wèntí)导引”中的问题(wèntí).
小华的成绩最好(zuì hǎo),因为小华的平均分、众数都是三个人中
最高的,他的中位数仅次于小明,所以小华的成绩最好.
2.你知道唱歌比赛评分时,为什么要去掉一个最高分和一个最低分
B.平均数是4.6
D.中位数是4.5
12/12/2021
第五页,共十二页。
2.近年来,我国持续大面积的雾霾天气(tiānqì)让环保和健康问题成为焦点.
为了进一步普及环保和健康知识,某校举行了“建设宜居成都,关注环境
保护”的知识竞赛,某班的学生成绩统计如下:
则该班学生竞赛(jìngsài)成绩的众数和中位数分别是(
学习(xuéxí)重

平均数、中位数、众数之间的差异和灵活选用.
12/12/2021
第二页,共十二页。
八(1)班的教室里,三位同学正在为谁的数学成绩(chéngjì)最好
而争论,他们的5次数学成绩(单位:分)如下:
小华:62,94,95,98,98;小明:62,62,98,99,100;小
丽:40,62,89,97,97.

人教版八年级下册第二十章数据的分析20.1.2-中位数和众数(第1课时)

人教版八年级下册第二十章数据的分析20.1.2-中位数和众数(第1课时)
则这组数据的中位数处于中间的两个数146、148的平均数
146 148 147 2
因此样本数据的中位数是147
124 129 136 140 145 146 148 154 158 165 175 180
(2)根据(1)中得到的样本数据的结论,可以估计,在这次的马 拉松比赛中,大约有一半选手的成绩快于147分,有一半选手的成 绩慢于147分,这名选手的成绩是142分,快于中位数147分,可以 推测他的成绩比一半选手的成绩好。
练习 下面的条形图描述了某车间工人加工零件的情况:
人数
请找出这些工人日加工零 件的中位数,说明这个中 位数的意义
10 8 6 4 2 0 3 4 5 6 7 8 日加工零件
中位数是6
由中位数是6可以估计,在这些工人中,大约有一半工人的日加工 零件数大于或等于6个,有一半工人加工零件数小于或等于6个。
第3步:如果是奇个数据,中间的数据就是中位数。 如果是偶数,中位数是中间两个数据的平均数。
3.如何理解中位数在一组统计数据中的意义?
中位数也是一组数据的代表,是数据的位置代表,利用中位 数分析数据也可以获得一些信息,如果已知数据的中位数, 那么可以知道小于或大于这个中位数的数据各占一半。
下面两组数据的中位数分 别是多少?你能说出 着两个中卫数的意义 吗?
初中数学课件
灿若寒星*****整理制作
教 学 目 标
重点 难点
知道什么是中位数,能够准确确定出 知识技能 一组数据的中位数,并能说出其代表
意义
过程与方法
通过对实际问题情境的探究,理解中 位数的概念,感知其代表数据的意义
情感态度价 值观
以积极情感态度投入到探究问题的过 程中去,学会从不同的角度去分析和 处理问题

20.1.2 中位数与众数

20.1.2 中位数与众数
课程设计和实施方案
课题名称
20.1.2中位数和众数
教材版本
人教版八年级数学下册第二十章《数据的分析》
教学目标
知识与技能:认识中位数和众数,并会求出一组数据中的众数和中位数。
过程与方法:理解中位数和众数的意义和作用。学生经历收集、整理、描述和分析数据得出结论,并对结论进行解释或思辨的过程。经历从统计概念、方法、原理统一到数据处理的活动过程中,使学生更好地体会统计的思想。
1.中位数:一组数据按大小顺序排列,位于最中间的一个数据叫做这组数据的中位数。(当偶数个数据时,为最中间两个数据的平均数)
2.众数:一组数据中,出现次数最多的那个数据叫做这组数据的众数。
二、教材P118例5的意图
(1)通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售最好,以便给商家合理的建议。
6000
4000
1600
1500
1400
10ቤተ መጻሕፍቲ ባይዱ0
1000
1000
500
问题1:经计算,该公司的月平均工资是2000元,公司经理是否欺骗了小明?
问题2:月平均工资能否客观地反映员工的实际收入?
问题3:再仔细观察表中的数据,你认为用什么样的统计量反映员工的实际收入比较合适?
内容主体
一、从探究活动得出统计量中位数和众数的定义
情感态度与价值观:通过活动,突出数据处理的基本过程,建立统计观念;课程选取丰富的素材,体现统计与生活的密切联系。
情境导入
情境引题:小明今年大学毕业,为了实现自己的理想,决定去某公司参加工作,于是特别关注招聘信息。该公司员工的月薪如下:
员工
经理
副经理
职员A
职员B

人教版八年级数学下册《20章 数据的分析 选择适当的统计量描述一组数据的集中趋势》教案_18

20.1.2 平均数、中位数和众数的应用一、教材分析:1.内容解析:本节课是在学习加权平均数、中位数和众数的基础上,结合具体实例进一步比较这三种统计量在描述数据集中趋势的优势与不足,学习根据实际问题情境选择适当的统计量描述数据的集中趋势。

2.教学目标:(1)在解决实际问题中进一步理解平均数、中位数、众数作为数据代表的意义,能根据所给信息求出相应的统计量;(2)能结合具体情境体会平均数、中位数、众数三者的特点与差异,根据具体问题选择这些统计量来分析数据;(3)经历整理、描述、分析数据的过程,发展数据分析观念。

3.教学重难点:重点:运用平均数、中位数、众数相关知识解决问题;难点:在具体问题中,选择适当量描述数据的集中趋势。

二、教学方法:教法分析:在学生已经学习了平均数、中位数和众数的概念后,可以从学生的生活经验和已有的知识背景出发,提供他们研究数学活动的机会,激发学生的积极性,帮助他们更好地理解数学知识和思考方法.学法分析:数学概念一般比较抽象,学生大多喜欢做活动、完任务,所以在课堂上要让学生们在活动中表现自我、发现自我,最终理解数学内容。

在这里,我会采用自主探究、合作交流的方式让学生参与到课堂中来。

三、教学过程:1.知识回顾:什么是平均数、中位数和众数?它们代表的数据意义是什么?【设计意图】:学生作答,回顾一下这三个统计量的概念和意义,为后面的对比做好铺垫。

2.探究新知:例:某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场统计了每位营业员在某月的销售额,数据如下(单位:万元)17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定为多少合适?说明理由.【设计意图】:让学生自主思考,探究问题,某些不好理解的点上面老师可以帮忙引导一下。

河南省焦作市孟州河雍中学八年级数学下册 20.1.2 中位数与众数(第1课时)说课稿 (新版)新人教版

20.1.2 中位数与众数一、学生状况分析从八年级开始,学生的思维由形象思维过渡到抽象逻辑思维,而抽象逻辑思维开始由经验型水平向理论型水平转化.在七年级下,学生已经学习了数据的收集、整理与描述. 上一节,已学会用“平均数”来描述一组数据的集中趋势.同时,在小学时已初步接触中位数,这种已有的认知结构,是本节课学习的前提和基础.二、教学任务分析(一)教材的地位和作用《中位数》属于“统计与概率”中的统计部分.统计与概率与生活实际联系紧密.在统计中,对数据的分析以及作出合理判断的能力是非常重要的.平均数、中位数、众数是描述一组数据的集中趋势的三种数据代表,它是学生学会分析数据,作出决策的基础,只是描述的角度和适用范围有所不同.本节内容是在学生充分体会平均数的特点的基础上,引入的第二种描述数据集中趋势的统计量,它是对前面所学知识的深化与拓展,起到了“承上启下”的作用.从知识方面看:它是描述一组数据的集中趋势的知识的进一步完善.从数学的应用价值方面看:从“单一”的“平均数”分析逐步过渡到“多元”的综合分析,有利于逐步形成统计观念.(二)教学目标1.知识与技能(1)了解中位数的意义,会求出一组数据的中位数.(2)会用中位数描述一组数据的集中趋势.(3)体会中位数在描述数据的集中趋势中的作用,体会平均数的局限性..2. 过程与方法通过设置问题情境,经过探索、研究、解决问题,使学生经历中位数产生的过程,体会中位数产生的必要性.3.情感态度与价值观(1)通过小组间的交流与合作,体验数学活动充满探索与创新的特点,从而培养学生的合作交流意识和探索精神.(2)在解决实际问题的情境中,体会数学与实际生活的联系,增强统计意识,培养统计能力.(三)重、难点分析重点:同知识技能目标难点:理解中位数产生的过程及必要性.(四)教法与学法结合学生的年龄特征及本节内容特点,主要采用情境教学、启发探究的教学方法,让学生在不断地的独立思考、自主探究、合作交流中进行探索学习.三、教学过程分析本节课的教学过程包含以下七个环节:初步感知引入新知归纳总结生成新知例题教学应用新知课堂练习自我检测课堂小结收获新知联系实际升华认识布置作业反思提高(一)初步感知引入新知上课伊始,我问:你在日常生活中见过哪些方面的平均数?学生纷纷回答:平均分、平均收入、平均工资、平均年龄、人均住房面积等.平均数用途这么广,那它是万能的吗?学过本节课你就知道.接着向学生呈现如下问题情境.上周,八一班组织了一次安全知识竞赛,经过激烈的角逐,各小组参赛选手的最终成绩如下:(单位:分)(1)第五小组的成绩为80分,该小组的成绩如何?你是如何判断的?这样直接引入是为了刺激学生思维的积极性.由于前一节刚讲过平均数,学生很容易以平均数作为判断依据产生一种答案——该小组成绩较好,因为所有参赛小组成绩的平均分为79分.而一些思维比较灵活的学生也给出了第二种答案——该小组成绩较差,因为一共有七个小组参赛,比80分高的有四组.此时,及时给出评价两种答案都对.问题(2),第五小组的成绩处于哪种水平?这一问的设置是为了使学生产生认知的冲突,同时使学生初步感知平均数并不是惟一的数据代表,有些情况应该选择其它的数据代表.对问题而(2)解答也出现了与问题(1)相同的两种答案.此时,选择的评价方式是统计同意每种答案的人数,结果只有个别同学同意第一种.这样既增强了学生的信心,又在潜移默化中引入了统计的思想.出示问题(3),你能否找到一个数值作为代表,通过比较,使得每个小组可以清楚地知道自己处于哪种水平?学生很容易就找到了83分,因为它是本组数据的正中间的一个数.紧接着我设计了一道变式——如果再加入一个小组,你能否找到一个数值作为代表,通过比较,使得每个小组可以清楚地知道自己处于哪种水平?设计这一道变式题是为了呈现中位数求法的两种情况,同时渗透分类的数学思想.而学生的解答是这样的(播放视频).这样循序渐进,层层追问就使学生亲身经历了中位数产生的过程,很好地体会到中位数产生的必要性.(二)归纳总结生成新知此时,点明刚才找到的两个作为代表的数83和81.5就是本组数据的中位数,同时,板书课题——中位数.紧接着我问:你能给中位数下一个定义吗?学生回答:中间位置的数.交换本组数据中90和83的位置,那么90就是这一组数据的中位数吗?学生回答:不是,应该先排序.那么第二组数据的中位数呢?哪位同学能完整的总归纳一下中位数的定义?学生回答:把一组数据按大小顺序排列,如果数据的个数是奇数个,处于中间位置的数是本组数据的中位数;如果数据的个数是偶数个,中间两个数据的平均数是本组数据的中位数.紧接着我指定学生总结中位数的求法,并且板书.这样设计就把中位数的定义分层呈现,便于学生理解掌握,也为学生总结中位数的求法做好铺垫,同时渗透了分类和由特殊到一般的数学思想方法.此时,时机已经成熟,可以引入中位数的意义了.我先问:我们找到第一组数据的中位数是83,可以看出哪些小组的成绩处于中下水平,哪些小组的成绩处于中上水平,处于中下水平和中上水平的小组数有什么关系?学生回答:处于中下水平的小组有第七、第三、第五,处于中上水平的小组有第二、第一、第四,处于中上水平和中下水平的小组数相等.我又问:我们找到第二组数据的中位数是81.5,可以看出哪些小组的成绩处于中下水平,哪些小组的成绩处于中上水平,处于中上水平和中下水平的小组数又有什么关系?学生回答:处于中下水平的小组有第七、第三、第八、第五,处于中上水平的小组有第六、第二、第一、第四,处于中上水平和中下水平的小组数相等.我再问:这两组数据的中位数具备什么样的共同特征,它在这组数据中起到了什么作用?学生回答:每组数据中比它大比它小的数各占一半,起到了分界的作用.此时,我板书——分水岭,并点明这就是中位数的意义,并且利用课件出示意义.这样设计使知识的生成过程自然流畅,水到渠成.(三)例题教学应用新知例1 在一次男子马拉松长跑比赛中,抽得12名选手的成绩如下(单位:分): 136, 140,129, 180, 124, 154,146, 145, 158, 175, 165, 148(1)样本数据(12名选手的成绩)的中位数是多少?(2)一名选手的成绩是142分,他的成绩如何?使学生熟练掌握中位数的求法,理解中位数的意义.例1由学生独立完成,我适时指导,然后利用课件出示规范的解题过程.这样可以训练学生独立思考的能力,规范的解题格式,培养学生严谨的人生态度.例2 2013年7月,Tom大学毕业来到某网络公司应聘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.1.2中位数和众数教学设计
第一课时
教学内容:
中位数和众数
教学目标:
1、认识中位数和众数,并会求出一组数据中的中位数和众数;
2、理解中位数和众数的意义和作用
重难点、关键:
1、重点:认识中位数和众数,并会求出一组数据中的中位数和众数;
2、难点:理解中位数和众数的意义和作用
3、关键:中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响;众数着眼于各数据出现的頻数的考虑,其大小只与这组数据中的部分数据有关。

学情分析:
本节是学生在上节课学习的求平均数这个数据代表值有了一定的认识,对样本、总体概念初步有了了解的基础上,进一步学习中位数和众数。

先引入新知识,再边议边理解中位数和众数的概念,结合事例应用知识,明确平均数、中位数、众数,它们分别代表某组数据的特征,然后根据不同的特征值来进行数据处理和判断。

教学过程:
一、新课引入
下表是某公司员工
1、这个公司员工月收入的平均数为(6276);
2、若用上题算得的平均数反映公司全体员工月收入水平,你认为合适吗?
答:平均数远远大于绝大多数人(22人)的实际月工资,绝大多数人“被平均”,不合适。

【活动方略】
教师活动:组织学生讨论,并从中引入中位数、众数的概念。

学生活动:分析以上数据,发现问题,提出看法。

【设计意图】
引入新知识,再边议边理解, 结合事例,及时消化,解决重点并突破难点.
二、研读课文
认真阅读课本第116至118页的内容,完成下面练习并体验知识点的形成过程.
1、将一组数据按照(由小到大)(或由大到小)的顺序排列,如果数据的个数是奇数,则
称处于(中间位置的数)为这组数据的中位数;如果数据的个数是偶数,则称(中间两个数据的平均数)为这组数据的中位数.
2、众数的定义:一组数据中(出现次数最多的数据)称为这组数据的众数.
例4 在一次男子马拉松长跑比赛中,抽得12名选手所用的时间(单位:min)如下:136 140 129 180 124 154
146 145 158 175 165 148
(1)样本数据(12名选手的成绩)的中位数是多少?
(2)一名选手的成绩是142min,他的成绩如何?
解:(1)先将样本数据按照由小到大的顺序排列:
124 129 136 140 145 146 148 154 158 165 175 180(共12个数据是偶数列)
这组数据的中位数为:处于中间的两个数146, 148的平均数,
即=( 146+148) ÷2≒147
答:样本数据的中位数是:147
(2)由(1)知样本数据的中位数为:147,它的意义是:这次马拉松比赛中,大约有:(一半)选手的成绩快于147min,有(一半)选手的成绩慢于147min. 这名选手的成绩是142min,快于中位数(147min),因此可以推测他的成绩比(一半以上)选手的成绩好.
例5 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你能根据表中的数据为这家鞋店提供进货建议码?
解:由上表看出,在鞋的尺码组成的数据中,(23.5)是这组数据的众数,它的意义是:(23.5)cm的鞋销量最大.因此可以建议鞋店多进(23.5)cm的鞋.
思考你还能为鞋店进货提出哪些建议?
【活动方略】
教师活动:组织学生讨论例4、例5
学生活动:进行数据分析,理解中位数是反映“中等水平”的代表值;众数是我们关心的代表值.
【设计意图】通过事例应用知识,明确平均数众数、中位数、众数,它们分别代表这组数据的特征.
三、巩固练习
1、某班一组12人的数学成绩分别为:84,73,89,78,83,86,89,84,100,100,78,100.则这12个数的平均数是_________,中位数是________。

2、10名工人,他们每个月的工资是:400元的5人,450元的2人,560元的3人,则这10名工人每月平均工资是_____________。

3、一组数据从小到大顺序排列为:13、1
4、19、x、23、27、28、31,其中位数是22,则x 为()
A.21 B.22 C.20 D.23
(单位:万元)
(2)你认为使用平均数和中位数中哪一个描述该公司所创年利润的一般水平比较合理?5、下面的条形图描述了某车间工人日加工零件数的情况.
请找出这些工人日加工零件数的中位数,并说明这个中位数的意义.
分析:中位数是大小处于中间位置的数,共有38个数,中间位置的是第19个,与第20个的平均数,这两个分别是6和6,因而中位数是这两个数的平均数是6。

解:这些工人日加工零件数的中位数是6
由中位数是6可以估计,在这些工人中,大约有一半工人的日加工零件数大于或等于6个,有一半工人加工零件数小于或等于6 个。

6、下面的扇形图描述了某种运动服的S 号、M 号、L 号、XL 号、XXL 号在一家商场的销售情况.请你为这家商场提出进货建议.
因为众数是M 号,所以建议商场多进M 号的运动服,其次是进S 号,再其次进L 号,少进XXL 号的运动服。

四、归纳小结
1、将一组数据按照_______________________的顺序排列,如果数据的个数是奇数,则称处于___________________为这组数据的中位数;如果数据的个数是偶数,则称_____________________________为这组数据的中位数.
2、一组数据中___________________________称为这组数据的众数.
3、学习反思:______________________________________________________ 五.布置作业
1、跳远比赛中,所有15位参赛者的成绩互不相同,在已知自己成绩的情况下,要想知道自己是否进入前8名,只需要知道所有参赛者成绩的( ) A 、平均数 B 、众数 C 、中位数 D 、加权平均数
S
16%
8%
24%
30%
22%
M
L
XL
XXL
日加工零件数
人数
2、数据8、9、9、8、10、8、9、9、8、10、7、9、 9、8的中位数是 ,众数是 。

3
(单位:秒)
请你比较着两组数据的平均数、中位数和众数,并谈谈你的看法.
4、某校男子足球队的年龄分布如下面的条形图所示.请找出这些队员年龄的平均数、众数、中位数,并解释它们的意义.
13
14 15 16 17 18
年龄/岁。

相关文档
最新文档