2018届人教版数学九年级上学期期末模拟试题(含解析)1

合集下载

{3套试卷汇总}2018年贵阳市九年级上学期数学期末学业质量监测试题

{3套试卷汇总}2018年贵阳市九年级上学期数学期末学业质量监测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是( )A .B .C .D .【答案】D【分析】根据把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【详解】A 、不是中心对称图形,故此选项错误;B 、不是中心对称图形,故此选项错误;C 、不是中心对称图形,故此选项错误;D 、是中心对称图形,故此选项正确;故选:D .【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.2.由22y x =的图像经过平移得到函数()2267y x =-+的图像说法正确的是( )A .先向左平移6个单位长度,然后向上平移7个单位长度B .先向左平移6个单位长度,然后向下平移7个单位长度C .先向右平移6个单位长度,然后向上平移7个单位长度D .先向右平移6个单位长度,然后向下平移7个单位长度【答案】C【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,上加下减确定平移方向即可得解.【详解】解:抛物线y=2x 2的顶点坐标为(0,0),抛物线y=2(x-6)2+1的顶点坐标为(6,1),所以,先向右平移6个单位,再向上平移1个单位可以由抛物线y=2x 2平移得到抛物线y=2(x-6)2+1. 故选:C .【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键. 3.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是 ( ) A .120°,60° B .95°,105° C .30°,60° D .90°,90°【答案】D【分析】根据两个直角互补的定义即可判断.【详解】解:∵互补的两个角可以都是直角,∴能说明命题“如果两个角互补,那么这两个角一定是锐角,另一个是钝角”为假命题的两个角是90°,90°, 故选:D.考点:本题考查的是两角互补的定义点评:解答本题的关键是熟练掌握两角互补的定义,即若两个角的和是180°,则这两个角互补. 4x 2﹣x+c =0的一个根,则c 的值是( )A .﹣6B .6 CD .【答案】B【解析】把代入方程x 2,求出所得方程的解即可.【详解】把代入方程x 2得:3-9+c=0,解得:c=6,故选B .【点睛】本题考查了一元二次方程的解的应用,解此题的关键是得出关于c 的方程.5.要将抛物线2y x 平移后得到抛物线223y x x =++,下列平移方法正确的是( )A .向左平移1个单位,再向上平移2个单位B .向左平移1个单位,再向下平移2个单位C .向右平移1个单位,再向上平移2个单位D .向右平移1个单位,再向下平移2个单位【答案】A【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0), 则平移的方法可以是:将抛物线y=x 2向左平移1个单位长度,再向上平移2个单位长度.故选:A .【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.6.对于不为零的两个实数a ,b ,如果规定a ★b ()()211,42.a b a b b a b a⎧+>⎪⎪=⎨⎪-≤⎪⎩,那么函数2y x =★的图象大致是( )A .B .C .D .【答案】C【分析】先根据所给新定义运算求出分段函数解析式,再根据函数解析式来判断函数图象即可.【详解】解:∵a ★b ()()211,42.a b a b b a b a⎧+>⎪⎪=⎨⎪-≤⎪⎩, ∴2y x =★()()2112,422.x x x x⎧+>⎪⎪=⎨⎪-≤⎪⎩ ∴当x>2时,函数图象在第一象限且自变量的值不等于2,当x ≤2时,是反比例函数,函数图象在二、四象限.故应选C.【点睛】本题考查了分段函数及其图象,理解所给定义求出分段函数解析式是解题的关键.7.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =5,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处【答案】D【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin A =, ∴54DC AC AC ==,∴5∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C =228445+=,故答案为D.8.如图,⊙O 是正△ABC 的外接圆,点D 是弧AC 上一点,则∠BDC 的度数( ).A .50°B .60°C .100°D .120°【答案】B 【分析】根据等边三角形的性质和圆周角定理的推论解答即可.【详解】解:∵△ABC 是正三角形,∴∠A=60°, ∴∠BDC=∠A=60°.故选:B .【点睛】本题考查了等边三角形的性质和圆周角定理的推论,属于基础题型,熟练掌握上述基本知识是解题的关键. 9.如图,路灯距离地面8米,若身高1.6米的小明在距离路灯的底部(点O )20米的A 处,则小明的影子AM 的长为( )A .1.25米B .5米C .6米D .4米【答案】B 【分析】易得:△ABM ∽△OCM ,利用相似三角形对应边成比例可得出小明的影子AM 的长.【详解】如图,根据题意,易得△MBA ∽△MCO ,根据相似三角形的性质可知AB AM OC OA AM =+ ,即1.6820AM AM=+, 解得AM=5m . 则小明的影子AM 的长为5米.【点睛】此题考查相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.10.如图,在△ABC中,中线BE、CF相交于点G,连接EF,下列结论:①EFBC=12;②EGFCGBSS=12;③AFAB=GEGB;④GEFAEFSS=13.其中正确的个数有()A.1个B.C.3个D.4个【答案】C【解析】根据三角形的中位线定理推出FE∥BC,利用平行线分线段成比例定理、相似三角形的判定与性质和等底同高的三角形面积相等一一判断即可.【详解】∵AF=FB,AE=EC,∴FE∥BC,FE:BC=1:2,∴AF FE GEAB BC GB==,故①③正确.∵FE∥BC,FE:BC=1:2,∴FG:GC=1:2,△FEG∽△CBG.设S△FGE=S,则S△EGC=2S,S△BGC=4s,∴14EGFCGBSS=,故②错误.∵S△FGE=S,S△EGC=2S,∴S△EFC=3S.∵AE=EC,∴S△AEF=3S,∴GEFAEFSS=13,故④正确.故选C.【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.如图,在平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2,则下列说法正确的是( )A.A1的坐标为(3,1) B.S四边形ABB1A1=3C.B2C=2D.∠AC2O=45°【解析】试题分析:如图:A 、A 1的坐标为(1,3),故错误;B 、11ABB A S 四边形=3×2=6,故错误;C 、B 2C=2231 =10 ,故错误;D 、变化后,C 2的坐标为(-2,-2),而A (-2,3),由图可知,∠AC 2O=45°,故正确.故选D .12.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(4,4)B .(3,3)C .(3,1)D .(4,1)【答案】A 【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C 点坐标.【详解】∵以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD , ∴A 点与C 点是对应点,∵C 点的对应点A 的坐标为(2,2),位似比为1:2,∴点C 的坐标为:(4,4)故选A .【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.二、填空题(本题包括8个小题)13.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.【答案】1【分析】把m 代入方程2x 2﹣1x =1,得到2m 2-1m=1,再把6m 2-9m 变形为1(2m 2-1m ),然后利用整体代入的方法计算.【详解】解:∵m 是方程2x 2﹣1x =1的一个根,∴2m 2﹣1m =1,∴6m 2﹣9m =1(2m 2﹣1m)=1×1=1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 14.如图,AB 为O 的直径,弦CD ⊥AB 于点E ,点F 在圆上,且DF =CD ,BE =2,CD =8,CF 交AB 于点G ,则弦CF 的长度为__________,AG 的长为____________.【答案】485; 83 【分析】如图(见解析),连接CO 、DO ,并延长DO 交CF 于H ,由垂径定理可知CE ,在Rt COE △中,可以求出半径CO 的长;又由DF =CD 和垂径定理得1,2OH CF FH CF ⊥=,根据圆周角定理可得CFD COB ∠=∠,从而可知cos CFD ∠,在Rt DHF ∆中可求出FG ,也就可求得CF 的长度;在Rt DHF ∆中利用勾股定理求出DH ,再求出OH DH OD =-,同样地,在Rt OGH ∆中利用余弦函数求出OG ,从而可求得AG OA OG =-.【详解】2BE =,8CD =,CD AB ⊥4CE DE ∴==,CB BD =(垂径定理)连接CO ,设CO r =,则2OE r =-在Rt COE ∆中,222CE OE CO +=解得=5r5CO ∴=,3OE =连接DO 并延长交CF 于HDF =CD ,由垂径定理可知,1,2OH CF FH CF ⊥=CFD ∠是CD 所对圆周角,COB ∠是BC 所对圆心角,且CD =2BCCFD COB ∴∠=∠,3cos cos 5CFD COB ∴∠=∠= 8DF CD ==,24cos 5FH DF CFD ∴=⋅∠=485CF ∴= 由勾股定理得:325DH = 75OH DH OD ∴=-= HOG BOD COB ∠=∠=∠3cos cos 5HOG COB ∴∠=∠=,7cos 3OH OG HOG ∴==∠ 83AG OA OG ∴=-=.【点睛】本题考查了垂径定理、圆周角定理、直角三角形中的余弦三角函数,通过构造辅助线,利用垂径定理和圆周角定理是解题关键.15.在一个不透明的口袋中,装有1个红球若干个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为14,则此口袋中白球的个数为____________. 【答案】3【分析】根据概率公式即可得出总数,再根据总数算出白球个数即可.【详解】∵摸到红球的概率为14,且袋中只有1个红球, ∴袋中共有4个球,∴白球个数=4-1=3.故答案为:3.【点睛】本题考查概率相关的计算,关键在于通过概率求出总数即可算出白球.16.如图,AB 为O 的直径,30,CDB ∠=︒则CBA ∠=_______________________.【答案】60°【分析】连接AC ,根据圆周角定理求出∠A 的度数,根据直径所对的圆周角是直角得到∠ACB=90°,根据三角形内角和定理计算即可.【详解】解:连接AC ,由圆周角定理得,∠A=∠CDB=30°,∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠CBA=90°-∠A=60°,故答案为:60°.【点睛】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、直径所对的圆周角是直角是解题的关键.17.如图,在平行四边形ABCD 中,添加一个条件________使平行四边形ABCD 是矩形.【答案】AC=BD 或∠ABC=90°【分析】根据矩形的判定方法即可解决问题;【详解】若使平行四边形ABCD 变为矩形,可添加的条件是:AC=BD (对角线相等的平行四边形是矩形);∠ABC=90°(有一个角是直角的平行四边形是矩形)等,任意写出一个正确答案即可,如:AC=BD 或∠ABC=90°.故答案为:AC=BD 或∠ABC=90°【点睛】本题主要考查了平行四边形的性质与矩形的判定,熟练掌握矩形是特殊的平行四边形是解题关键. 18.把抛物线2y x =-向上平移2个单位,所得的抛物线的解析式是__________.【答案】2y -x 2=+【分析】根据题意直接运用平移规律“左加右减,上加下减”,在原式上加2即可得新函数解析式即可.【详解】解:∵2y x =-向上平移2个单位长度,∴所得的抛物线的解析式为2y -x 2=+.故答案为2y -x 2=+.【点睛】本题主要考查二次函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.三、解答题(本题包括8个小题)19.解不等式组,并把解集在数轴上表示出来: 282131x x x >⎧⎨+<-⎩【答案】4x >【分析】分别求出各不等式的解,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解【详解】解:由不等式①得:4x >由不等式②得:2x >∴不等式组的解集:4x >【点睛】本题考查了解一元一次不等式组,熟练掌握解题步骤是解本题的关键.20.(103274(1)|12-+-+-π; (2)解方程311(1)(2)x x x x -=--+. 【答案】(121;(2)无解【分析】(1)先算开方,0指数幂,绝对值,再算加减;(2)两边同时乘以(1)(2)x x -+,去分母,再解整式方程.【详解】(1)解:原式=32121-++ 21-(2)解:两边同时乘以(1)(2)x x -+,得:(2)3(1)(2)x x x x +-=-+222322x x x x x +-=+--1x =经检验1x =是原方程的增根,∴原方程无解.【点睛】考核知识点:解分式方程.把分式方程化为整式方程是关键.21.解方程:x2-5 = 4x.【答案】x1=5,x2=﹣1.【解析】试题分析:移项后,用因式分解法解答即可.试题解析:解:∵x2﹣5=4x,∴x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,∴x﹣5=0或者x+1=0,∴x1=5,x2=﹣1.22.已知:如图,⊙O的直径AB与弦CD相交于点E,且E为CD中点,过点B作CD的平行线交弦AD的延长线于点F .(1)求证:BF是⊙O的切线;(2)连结BC,若⊙O的半径为2,tan∠BCD=34,求线段AD的长.【答案】(1)见解析;(2)16 5【分析】(1)由垂径定理可证AB⊥CD,由CD∥BF,得AB⊥BF,则BF是⊙O的切线;(2)连接BD,根据同弧所对圆周角相等得到∠BCD =∠BAD,再利用圆的性质得到∠ADB=90°,tan∠BCD=tan∠BAD=34,得到BD与AD的关系,再利用解直角三角形可以得到BD、AD与半径的关系,进一步求解即可得到答案.【详解】(1)证明:∵⊙O的直径AB与弦CD相交于点E,且E为CD中点∴ AB ⊥CD, ∠AED =90°∵ CD // BF∴∠ABF =∠AED =90°∴AB⊥BF∵ AB是⊙O的直径∴ BF是⊙O的切线(2)解:连接BD∵∠BCD、∠BAD是同弧所对圆周角∴∠BCD =∠BAD∵ AB是⊙O的直径∴∠ADB=90°∵ tan∠BCD= tan∠BAD=3 4∴34 BD AD∴设BD=3x,AD=4x∴AB=5x∵⊙O的半径为2,AB=4∴5x=4,x=4 5∴AD=4x=16 5【点睛】本题考查了切线的判定与性质,垂径定理,圆周角定理,解直角三角形的知识.关键是利用圆周角定理将已知角进行转化,利用直径证明直角三角形.23.元旦了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,求九(2)班有多少个同学?【答案】40个【解析】设九(2)班有x个同学,则每个同学交换出(x﹣1)件小礼物,根据全班交换小礼物共1560件,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】设九(2)班有x个同学,则每个同学交换出(x﹣1)件小礼物,根据题意得:x(x﹣1)=1560,解得:x1=40,x2=﹣39(不合题意,舍去).答:九(2)班有40个同学.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.24.“辑里湖丝”是世界闻名最好的蚕丝,是浙江省的传统丝织品,属于南浔特产,南浔某公司用辑丝为原料生产的新产品丝巾,其生产成本为20元/条.此产品在网上的月销售量y(万件)与售价x(元/件)之间的函数关系为y=﹣0.2x+10(由于受产能限制,月销售量无法超过4万件).(1)若该产品某月售价为30元/件时,则该月的利润为多少万元?(2)若该产品第一个月的利润为25万元,那么该产品第一个月的售价是多少?(3)第二个月,该公司将第一个月的利润25万元(25万元只计入第二个月成本)投入研发,使产品的生产成本降为18元/件.为保持市场占有率,公司规定第二个月产品售价不超过第一个月的售价.请计算该公司第二个月通过销售产品所获的利润w为多少万元?【答案】(1)该月的利润为40万元;(1)该产品第一个月的售价是45元;(3)该公司第二个月通过销售产品所获的利润w至少为13万元,最多获利润16.1万元.【分析】(1)根据题意销售量与售价的关系式代入值即可求解;(1)根据月利润等于销售量乘以单件利润即可求解;(3)根据根据(1)中的关系利用二次函数的性质即可求解.【详解】(1)根据题意,得:当x=30时,y=﹣0.1×30+10=4,4×10=40,答:该月的利润为40万元.(1)15=(x﹣10)(﹣0.1x+10),解得x1=45,x1=15(月销售量无法超过4万件,舍去).答:该产品第一个月的售价是45元.(3)∵由于受产能限制,月销售量无法超过4万件,且公司规定第二个月产品售价不超过第一个月的售价.∴30≤x≤45,w=y(x﹣18)﹣15=(﹣0.1x+10)(x﹣18)﹣15=﹣0.1x1+13.6x﹣105=﹣0.1(x﹣34)1+16.1.当30≤x≤45时,13≤w≤16.1.答:该公司第二个月通过销售产品所获的利润w至少为13万元,最多获利润16.1万元.【点睛】本题主要考查了二次函数的应用,解决本题的关键是掌握销售问题各个量之间的关系并熟练运用二次函数. 25.在一不透明的口袋中装有3个球,这3个球分别标有1,2,3,这些球除了数字外都相同.(1)如果从袋子中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)小明和小亮玩摸球游戏,游戏的规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小亮随机摸出一个球,记下数字.谁摸出的球的数字大,谁获胜.请你用树状图或列表法分析游戏规则对双方是否公平?并说明理由.【答案】(1)13.(2)公平,理由见解析.【分析】(1)利用概率公式直接求出即可;(2)首先利用列表法求出两人的获胜概率,判断双方取胜所包含的情况数目是否相等,即可得出答案.【详解】(1)从3个球中随机摸出一个,摸到标有数字是2的球的概率是:1 3 .(2)游戏规则对双方公平.列表如下:由表可知,P(小明获胜)=13,P(小东获胜)=13,∵P(小明获胜)=P(小东获胜),∴游戏规则对双方公平.【点睛】考点:1.游戏公平性;2.列表法与树状图法.26.为增强中学生体质,篮球运球已列为铜陵市体育中考选考项目,某校学生不仅练习运球,还练习了投篮,下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题.投篮次数(n)50 100 150 200 250 300 500 投中次数(m)28 60 78 104 124 153 252 (1)估计这名同学投篮一次,投中的概率约是多少?(精确到0.1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?【答案】(1)约0.5;(2)估计这名同学投篮622次,投中的次数约是311次.【分析】(1)对于不同批次的定点投篮命中率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法;(2)投中的次数=投篮次数×投中的概率,依此列式计算即可求解.【详解】解:(1)估计这名球员投篮一次,投中的概率约是28+60+78+104+124+153+2520.5 50+100+150+200+250+300+500;(2)622×0.5=311(次).故估计这名同学投篮622次,投中的次数约是311次.【点睛】本题考查频率估计概率,解题的关键是掌握频率估计概率.27.在如图所示的平面直角坐标系中,已知△ABC.(1)将△ABC向左平移4个单位得到△A1B1C1,画出△A1B1C1的图形,并写出点A1的坐标.(2)以原点O为旋转中心,将△ABC顺时针旋转90°得到△A2B2C2,画出△A2B2C2图形,并写出点A2的坐标.【答案】(1)图见解析,A1(-1,3);(2)图见解析,A2(3,-3).【分析】(1)依据平移的性质画出△A1B1C1图象,写出A1坐标即可;(2)依据旋转的性质确定出点A2、B2、C2,连线画出△A2B2C2,表达出A2坐标即可.【详解】解:(1)如图所示:△A1B1C1即为所求,A1(-1,3)(2)如图所示:△A2B2C2为所求,A2(3,-3),【点睛】本题考查了作图——旋转变换及平移变换,解题的关键是能够理解平移及旋转的性质,找出平移或旋转后的对应点.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.二次根式1x -有意义的条件是( )A .x>-1B .x≥-1C .x≥1D .x =-1 【答案】C【解析】根据二次根式有意义,被开方数为非负数,列不等式求出x 的取值范围即可.【详解】∵二次根式1x -有意义,∴x-1≥0,∴x≥1,故选:C.【点睛】本题考查二次根式有意义的条件,要使二次根式有意义,被开方数为非负数;熟练掌握二次根式有意义的条件是解题关键.2.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④512BC AC -=.A .1个B .2个C .3个D .4个【答案】C 【分析】①③,根据已知把∠ABD ,∠CBD ,∠A 角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC ∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC -=解得BC=512AC ,故④正确.【详解】①BC 是⊙A 的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD 平分∠ABC 交AC 于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A, ∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD 中,AD+BD >AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD, ∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得BC=512-AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质.3.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2 B.2πC.4 D.4π【答案】B【解析】根据阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积),代入数值解答即可.【详解】∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=,∠ACB=∠A'CB'=45°,∴阴影部分的面积==2π,故选B.【点睛】本题考查了扇形面积公式的应用,观察图形得到阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积)是解决问题的关键.4.某篮球队14名队员的年龄如表:年龄(岁)18 19 20 21人数 5 4 3 2则这14名队员年龄的众数和中位数分别是( )A .18,19B .19,19C .18,4D .5,4 【答案】A【分析】根据众数和中位数的定义求解可得.【详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19, ∴中位数是19192+=19(岁), 故选:A .【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.5.下列多边形一定相似的是( )A .两个平行四边形B .两个矩形C .两个菱形D .两个正方形【答案】D【分析】利用相似多边形的定义:对应边成比例,对应角相等的两个多边形相似,逐一分析各选项可得答案.【详解】解:两个平行四边形,既不满足对应边成比例,也不满足对应角相等,所以A 错误, 两个矩形,满足对应角相等,但不满足对应边成比例,所以B 错误,两个菱形,满足对应边成比例,但不满足对应角相等,所以C 错误,两个正方形,既满足对应边成比例,也满足对应角相等,所以D 正确,故选D .【点睛】本题考查的是相似多边形的定义与判定,掌握定义法判定多边形相似是解题的关键.6.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>【答案】D【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.7.已知4(0)a c b d b d ==+≠,则a c b d +=+( ) A .1B .2C .4D .8 【答案】C【分析】根据比例的性质得出44a b c d ==,再代入要求的式子,然后进行解答即可.【详解】解:∵4a c b d==, ∴a=4b ,c=4d ,∴444a c b d b d b d++==++, 故选C .【点睛】此题考查了比例的性质,熟练掌握比例线段的性质是解题的关键,是一道基础题.8.如图是由三个边长分别为6、9、x 的正方形所组成的图形,若直线AB 将它分成面积相等的两部分,则x 的值是( )A .1或9B .3或5C .4或6D .3或6【答案】D 【解析】以AB 为对角线将图形补成长方形,由已知可得缺失的两部分面积相同,即3×6=x×(9-x),解得x=3或x=6,故选D.【点睛】本题考查了正方形的性质,图形的面积的计算,准确地区分和识别图形是解题的关键. 9.如图是一个可以自由转动的转盘,转盘分成黑、白两种颜色指针的位置固定,转动的转盘停止后,指针恰好指向白色扇形的穊率为78(指针指向OA 时,当作指向黑色扇形;指针指OB 时,当作指向白色扇形),则黑色扇形的圆心角∠AOB =( )A.40°B.45°C.50°D.60°【答案】B【分析】根据针恰好指向白色扇形的概率得到黑、白两种颜色的扇形的面积比为1:7,计算即可.【详解】解:∵指针恰好指向白色扇形的穊率为78,∴黑、白两种颜色的扇形的面积比为1:7,∴∠AOB=18×360°=45°,故选:B.【点睛】本题考查的知识点是求圆心角的度数,根据概率得出黑、白两种颜色的扇形的面积比为1:7是解此题的关键.10.关于反比例函数5yx=,下列说法不正确的是()A.y随x的增大而减小B.图象位于第一、三象限C.图象关于直线y x=对称D.图象经过点(-1,-5)【答案】A【分析】根据反比例函数的图像及性质逐个分析即可.【详解】解:选项A:要说成在每一象限内y随x的增大而减小,故选项A错误;选项B:50k=>,故图像经过第一、三象限,所以选项B正确;选项C:反比例函数关于直线y x=对称,故选项C正确;选项D:将(-1,-5)代入反比例函数5yx=中,等号两边相等,故选项D正确.故答案为:A. 【点睛】本题考查了反比例函数kyx=的性质;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.11.若关于x的一元二次方程x2+2x﹣m=0的一个根是x=1,则m的值是()A.1 B.2 C.3 D.4【答案】C【分析】根据一元二次方程的解的定义,把x =1代入方程得1+2﹣m =0,然后解关于m 的一次方程即可.【详解】解:把x =1代入x 2+2x ﹣m =0得1+2﹣m =0,解得m =1.故选:C .【点睛】本题考查一元二次的代入求参数,关键在于掌握基本运算方法.12.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AH BC ⊥于点H ,连接OH ,若4OB =,24ABCD S =菱形,则OH 的长为( )A .3B .4C .5D .6【答案】A 【分析】根据菱形面积的计算公式求得AC ,再利用直角三角形斜边中线的性质即可求得答案.【详解】∵四边形ABCD 是菱形,OB=4,∴28OA OC BD OB ===,;∵24ABCD S =菱形, ∴1242BD AC =, ∴6AC =;∵AH ⊥BC ,OA OC =, ∴132OH AC ==. 故选:A.【点睛】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式:菱形的面积等于两条对角线乘积的一半是解题的关键.二、填空题(本题包括8个小题)13.如图,在等腰Rt ABC △中,90ABC ∠=︒,点D 是以AB 为直径的圆与AC 的交点,若4AB =,则图中阴影部分的面积为__________.【答案】6π-【分析】取AB 的中点O ,连接OD ,根据圆周角定理得出290DOB A ︒∠=∠=,根据阴影部分的面积ABC AOD S S ∆∆=--扇形BOD 的面积进行求解.【详解】取AB 的中点O ,连接OD ,∵在等腰Rt ABC △中,90ABC ∠=︒,4AB =,∴2OD OB OA ===,45A ︒∠=,∴290DOB A ︒∠=∠=,∴阴影部分的面积ABC AOD S S ∆∆=--扇形BOD 的面积,211902=442282622360πππ⨯⨯⨯-⨯⨯-=--=-, 故答案为:6π-.【点睛】本题考查了圆周角定理,扇形面积计算公式,通过作辅助线构造三角形与扇形是解题的关键. 14.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1 200元,设每件衬衫应降价x 元,则所列方程为_______________________________________.(不用化简)【答案】 (40-x)(2x+20)=1200【解析】试题解析:每件衬衫的利润:40.x -销售量:202.x +。

2018-2019学年江西省吉安市遂川县九年级(上)期末数学试卷以及逐题解析版

2018-2019学年江西省吉安市遂川县九年级(上)期末数学试卷以及逐题解析版

2018-2019学年江西省吉安市遂川县九年级(上)期末数学试卷以及逐题解析一、选择题(本大题共6小题,每小题3分,共18分) 1.(3分)一元二次方程22x x x -=的根是( ) A .1202x x ==B .1201x x ==C .1203x x ==D .1204x x ==2.(3分)如图所示的几何体的俯视图是( )A .B .C .D .3.(3分)如图,E ,F 分别是矩形ABCD 边AB ,AD 的点(不与矩形的顶点重合),BF CE ⊥,垂足为P ,则图中与BPE ∆相似的三角形有( )A .0个B .1个C .2个D .3个4.(3分)如图,菱形ABCD 的顶点C 在直线MN 上,若150∠=︒,220∠=︒,则ABD ∠的度数为( )A .20︒B .35︒C .40︒D .50︒5.(3分)一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是( )A .23B .12 C .13D .166.(3分)已知二次函数2()y a x h k =-+,其图象过点(0,2)A ,(6,2)B ,则h 的值是( ) A .6B .5C .4D .3二、填空题(本大题共6小题,每小题3分,共18分) 7.(3分)抛物线221y x x =--与y 轴的交点坐标为 . 8.(3分)已知(0,0)23a b a b =≠≠,则ab= . 9.(3分)如图,矩形ABCD 中,4AB =,10BC =,点E ,F 分别在AD ,BC 上,若矩形ABFE ∽矩形BCDA ,则BF 的长为 .10.(3分)如图,在55⨯的正方形网格中,A ,B ,C 三点都是格点,则tan ABC ∠的值为 .11.(3分)直线2y x =与反比例函数ky x=的图象交于A ,B 两点,且AB =k 的值为 .12.(3分)ABCD 中,5AB =,8BC =,4sin 5ABC ∠=,P 是ABCD 上一点,PBC ∆是直角三角形,则CP 的长为 .三、(本大题共5小题,每小题6分,共30分) 13.(6分)解方程:2640x x -+=(用配方法)14.(6分)如图1是由正方体切成的几何体,请在图2的网格中,画出这个几何体的三视图.15.(6分)如图所示(背面完全相同)A 、B 、C 三张卡片,正面分别写上整式24x -,2x ,4;现将这三张卡片背面向上洗匀,从中随机抽取两张,然后将所抽取卡片上的两个整式分别放在“=”的两边,组成一个等式.(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是 .A .必然事件B .不可能事件C .随机事件D .确定事件(2)求所抽取的卡片组成的等式不是一元二次方程的概率.16.(6分)如图,过原点O 的直线与反比例函数ky x=在第一象限交于点A ,过点A 作x 轴垂线,垂足为B ,若4OB =,3tan 2AOB ∠=. (1)直接写出k 的值为 ; (2)求点A 的坐标和OA 长.17.(6分)如图是由两个底在同一直线上的等腰直角三角形组合成的图形,请分别在图1和图2中,仅用无刻度的直尺按要求画图. (1)在图①中,作出AD 的中点;(2)在图②中,ABC ∆与DEF ∆的相似比为2:3,2BC CE =,作出BF 的垂直平分线.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱笆的厚度忽略不计),求当矩形ABCD 的面积最大时AB 的长.19.(8分)已知关于x 的一元二次方程2210x x m --+=. (1)若方程的两根之积为5-,求m 的值;(2)若方程2210x x m --+=有两个不相等的实数根,试判断另一个关于x 的一元二次方程2(2)120x m x m --+-=的根的情况.20.(8分)如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图.测得其灯臂AB 长为28cm ,灯罩BC 长为15cm ,底座AD 厚度为3cm ,根据使用习惯,灯臂AB 的倾斜角DAB ∠固定为60︒.(1)当BC 转动到与桌面平行时,求点C 到桌面的距离;(2)在使用过程中发现,当BC 转到至145ABC ∠=︒时,光线效果最好,求此时灯罩顶端C1.7≈,sin250.4︒≈,cos250.9︒≈,tan250.5︒≈,结果精确到个位).五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,在Rt ABC ∆中,6AC =,90ACB ∠=︒,CD AB ⊥,垂足为D ,AF 平分CAB ∠,交CD 于点E ,交CB 于点F .(1)若30B ∠=︒,CE 与CF 的数量关系是 ,CF 长为 ;(2)过点F 作AB 的垂线,垂足为G ,连接EG ,则四边形CEGF 的形状为 ,若10AB =,求CE 的长.22.(9分)如图,△n n AB C 系列三角形是以点A 为直角顶点,两腰在同一直线上的等腰直角三角形(n 为正整数).以A 为原点,以△n n AB C 的底边上的高所在直线为y 轴,建立平面直角坐标系,并设2n n B C n =,经过A ,n B ,n C 的抛物线为n y . (1)求2y 的表达式,并猜想抛物线n y 的表达式(不必证明);(2)求经过1n B -,1n C -,n B ,n C 四点的抛物线的顶点P 的坐标,并直接判断△11n n PB C --与△n n PB C ,是否相似(不必说明理由).六、(本大题1小题,12分)23.(12分)如图,正方形ABCD 中,以BF 为底向正方形外侧作等腰直角三角形BEF ,连接DF ,取DF 的中点G ,连接EG ,CG .(1)如图1,当点A 与点F 重合时,猜想EG 与CG 的数量关系为 ,EG 与CG 的位置关系为 ,请证明你的结论;(2)如图2,当点F 在AB 上(不与点A 重合)时,(1)中的结论是否仍然成立?请说明理由;(3)如图3,点F 在AB 的左侧时,(1)中的结论是否仍然成立?直接作出判断,不必说明理由.2018-2019学年江西省吉安市遂川县九年级(上)期末数学试卷答案与解析一、选择题(本大题共6小题,每小题3分,共18分) 1.(3分)一元二次方程22x x x -=的根是( ) A .1202x x ==B .1201x x ==C .1203x x ==D .1204x x ==【分析】先观察再确定方法解方程,根据方程的特点可利用因式分解法. 【解答】解:移项得220x x x --=,(3)0x x -=, 解得10x =,23x =. 故选:C .【点评】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.2.(3分)如图所示的几何体的俯视图是( )A .B .C .D .【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【解答】解:从上往下看,易得一个长方形. 故选:D .【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)如图,E ,F 分别是矩形ABCD 边AB ,AD 的点(不与矩形的顶点重合),BF CE ⊥,垂足为P ,则图中与BPE ∆相似的三角形有( )A .0个B .1个C .2个D .3个【分析】根据已知及相似三角形的判定方法找出存在的相似三角形即可. 【解答】解:矩形ABCD , 90ABC A ∴∠=∠=︒, BF CE ⊥,90EPB BPC ∴∠=∠=︒, BEP BEC ∴∠=∠, BEP BEC ∴∆∆∽,EBP ABF ∠=∠, ABF BPE ∴∆∆∽,90BEC BCP ∠+∠=︒,90BEC EBP ∠+∠=︒, EBP BCP ∴∠=∠, BEP BPC ∴∆∆∽,故选:D .【点评】此题考查了相似三角形的判定,矩形的性质,熟练掌握相似三角形的判定定理是解题的关键.4.(3分)如图,菱形ABCD 的顶点C 在直线MN 上,若150∠=︒,220∠=︒,则ABD ∠的度数为( )A .20︒B .35︒C .40︒D .50︒【分析】由180MCN ∠=︒,可求出BCD ∠的度数,根据菱形的性质可得A ∠的度数,再由AB AD =,进而可求出ABD ∠的度数.【解答】解:四边形ABCD 是菱形,A BCD ∴∠=∠,AB AD =, 150∠=︒,220∠=︒,1805020110BCD ∴∠=︒-︒-︒=︒, 110A ∴∠=︒,AB AD =,180110352ABD ADB ︒-︒∴∠=∠==︒, 故选:B .【点评】本题考查了菱形的性质、三角形内角和定理的运用以及等腰三角形的判定和性质,熟记菱形的各种性质是解题的关键.5.(3分)一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是( ) A .23B .12 C .13D .16【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与随机从袋中摸出两个球,颜色是一红一蓝的情况,再利用概率公式即可求得答案. 【解答】解:画树状图得:共有6种等可能的结果,随机从袋中摸出两个球,颜色是一红一蓝的有4种情况,∴随机从袋中摸出两个球,颜色是一红一蓝的概率4263==, 故选:A .【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 6.(3分)已知二次函数2()y a x h k =-+,其图象过点(0,2)A ,(6,2)B ,则h 的值是( ) A .6B .5C .4D .3【分析】根据抛物线的顶点式得到抛物线的对称轴为直线x h =,由于A 、B 的纵坐标都是2,求得对称轴为直线0632x +==,即可得出3h =. 【解答】解:由解析式可知抛物线的对称轴为直线x h =, 点(0,2)A ,(6,2)B ,它们的纵坐标相同,∴对称轴为直线0632x +== 3h ∴=.故选:D .【点评】本题考查了二次函数的性质:二次函数数2()y a x h k =-+的顶点坐标为(,)h k . 二、填空题(本大题共6小题,每小题3分,共18分) 7.(3分)抛物线221y x x =--与y 轴的交点坐标为 (0,1)- .【分析】把0x =代入抛物线2231y x x =-+-中,求y 的值,即可求出答案. 【解答】解:把0x =代入抛物线221y x x =--得: 1y =-,∴抛物线221y x x =--与y 轴的交点坐标是(0,1)-,故答案为:(0,1)-.【点评】本题主要考查对二次函数图象上点的坐标特征的理解和掌握,知道抛物线与Y 轴交点的横坐标等于0是解此题的关键. 8.(3分)已知(0,0)23a b a b =≠≠,则a b =23. 【分析】交换内项即可. 【解答】解:(0,0)23a ba b =≠≠, ∴23a b =. 故答案为23. 【点评】本题考查了比例的性质:熟练掌握内项之积等于外项之积,合比性质,分比性质,合分比性质,等比性质.9.(3分)如图,矩形ABCD 中,4AB =,10BC =,点E ,F 分别在AD ,BC 上,若矩形ABFE ∽矩形BCDA ,则BF 的长为 1.6 .【分析】根据矩形ABFE ∽矩形BCDA 得出比例式,再代入求出即可. 【解答】解:矩形ABFE ∽矩形BCDA ,∴AB BCBF AB=, 4AB =,10BC =,∴4104BF =, 解得: 1.6BF =, 故答案为:1.6.【点评】本题考查了矩形的性质和相似四边形的性质,能根据相似得出比例式是解此题的关键.10.(3分)如图,在55⨯的正方形网格中,A ,B ,C 三点都是格点,则tan ABC ∠的值为 2 .【分析】根据网格内图形特点,构造直角三角形,利用锐角三角函数求解即可. 【解答】解:如图,设方格单位长度为1,BC 是22⨯方格对角线,取BC 中点D ,连接AD , AB AC AD BC =∴⊥,在Rt ABD ∆中,AD =,BD =tan 2ADABD BD∴∠==. 故答案为2.【点评】本题考查了解直角三角形,解题关键是构造直角三角形.11.(3分)直线2y x =与反比例函数ky x=的图象交于A ,B 两点,且AB =k 的值为 2 .【分析】根据题意OA OB ==,0k >,设(,2)A m m ,0m >,根据勾股定理得出222(2)m m +=,求得1m =,则(1,2)A ,即可求得122k =⨯=.【解答】解:直线2y x =与反比例函数ky x=的图象交于A ,B 两点,且AB =∴反比例函数ky x=的图象位于一三象限,OA OB ==0k ∴>,设(,2)A m m ,0m >,222(2)m m ∴+=,解得1m =, (1,2)A ∴, 122k ∴=⨯=,故答案为2.【点评】本题考查反比例函数与一次函数的交点,解题的关键是求得A 或B 点的坐标,本题属于基础题型.12.(3分)ABCD 中,5AB =,8BC =,4sin 5ABC ∠=,P 是ABCD 上一点,PBC ∆是直角三角形,则CP 的长为325或【分析】分三种情况:①当点P 在AB 上,90BPC ∠=︒时,由三角函数定义即可得出答案; ②当点P 在AD 上,90BPC ∠=︒时,作BN AD ⊥于N ,CM AD ⊥于M ,则BN CM =,8MN BC ==,90BNP CMP CMD ∠=∠=∠=︒,由三角函数定义求出445BN CM CD ===,证明BPN PCM ∆∆∽,得出BN PNPM CM=,求出4PM =,由勾股定理即可得出答案; ③当点P 在AD 上,90BCP ∠=︒时,则CP BC ⊥,证出CP AD ⊥,由三角函数定义求出4CP =即可.【解答】解:分三种情况:①当点P 在AB 上,90BPC ∠=︒时,如图1所示: 4sin 5CP ABC BC ∠==, 44328555CP BC ∴==⨯=; ②当点P 在AD 上,90BPC ∠=︒时,如图2所示: 作BN AD ⊥于N ,CM AD ⊥于M ,则BN CM =,8MN BC ==,90BNP CMP CMD ∠=∠=∠=︒, 90PBN BPN ∴∠+∠=︒,四边形ABCD 是平行四边形,D ABC ∴∠=∠,8AD BC ==,5CD AB ==, 4sin sin 5CM D ABC CD ∴==∠=, 445BN CM CD ∴===,90BPC ∠=︒,90BPN CPM ∴∠+∠=︒, PBN CPM ∴∠=∠, BPN PCM ∴∆∆∽,∴BN PN PM CM =,即484PMPM -=, 解得:4PM =,CP ∴=③当点P 在AD 上,90BCP ∠=︒时,如图3所示: 则CP BC ⊥,//AD BC , CP AD ∴⊥, 4sin sin 5CP D ABC CD ==∠=, 445CP CD ∴==;综上所述,PBC ∆是直角三角形,则CP 的长为325或4;故答案为:325或4.【点评】本题考查了平行四边形的性质、解直角三角形、相似三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的性质和解直角三角形是解题的关键. 三、(本大题共5小题,每小题6分,共30分) 13.(6分)解方程:2640x x -+=(用配方法) 【分析】配方法的一般步骤: (1)把常数项移到等号的右边; (2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方. 【解答】解:由原方程移项,得 264x x -=-,等式的两边同时加上一次项系数的一半的平方,得26949x x -+=-+,即2(3)5x -=,3x ∴=,13x ∴=,23x =.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 14.(6分)如图1是由正方体切成的几何体,请在图2的网格中,画出这个几何体的三视图.【分析】根据三视图的画法,分别从正面看、上面看、左面看物体的形状,注意物体的各个面形状和大小.【解答】解:画出的三视图如图所示【点评】考查三视图的画法,注意物体的各个面的形状和大小,更要注意“长对正,宽相等,高平齐”,掌握大小比例关系.15.(6分)如图所示(背面完全相同)A 、B 、C 三张卡片,正面分别写上整式24x -,2x ,4;现将这三张卡片背面向上洗匀,从中随机抽取两张,然后将所抽取卡片上的两个整式分别放在“=”的两边,组成一个等式.(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是 C .A .必然事件B .不可能事件C .随机事件D .确定事件(2)求所抽取的卡片组成的等式不是一元二次方程的概率.【分析】(1)根据随机事件的定义进行判断即可;(2)将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是随机事件. 故选C ;(2)共有224x x -=、244x -=、24x =三种等可能的结果,为一元二次方程的有244x -=、24x =两种是一元二次方程,故P (抽取的卡片组成的等式不是一元二次方程)13=.【点评】考查了列表与树状图法求概率的知识,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )mn=.注意本题是不放回实验.16.(6分)如图,过原点O 的直线与反比例函数ky x=在第一象限交于点A ,过点A 作x 轴垂线,垂足为B ,若4OB =,3tan 2AOB ∠=. (1)直接写出k 的值为 24 ; (2)求点A 的坐标和OA 长.【分析】(1)根据正切的定义得到32AB OB =,而4OB =,得到6AB =,则A 点坐标为(4,6),然后把(4,6)A 代入ky x=即可求出k ; (2)根据勾股定理计算出OA 的长. 【解答】解:(1)AB x ⊥轴,4OB =,3tan 2AOB ∠=. ∴32AB OB =, 6AB ∴=,A ∴点坐标为(4,6),把(4,6)A 代入ky x=得,4624k =⨯=, 故答案为24;(2)4OB =,6AB =, (4,6)A ∴,在Rt AOB ∆中,OA ==.【点评】本题考查了反比例函数与一次函数的交点,先利用几何条件确定反比例函数图象上点的坐标,再利用待定系数法确定反比例函数的解析式,也考查了勾股定理.17.(6分)如图是由两个底在同一直线上的等腰直角三角形组合成的图形,请分别在图1和图2中,仅用无刻度的直尺按要求画图. (1)在图①中,作出AD 的中点;(2)在图②中,ABC ∆与DEF ∆的相似比为2:3,2BC CE =,作出BF 的垂直平分线.【分析】(1)延长BA 交CD 的延长线于F ,连接CF 交AD 于点O ,点O 即为所求. (2)延长BA 交CD 的延长线于M ,作直线EM ,直线EM 即为所求. 【解答】解:(1)如图1中,点O 即为所求.(2)如图2中,直线EM 即为所求.【点评】本题考查作图-复杂作图,等腰直角三角形的性质,矩形的性质,线段的垂直平分线等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱笆的厚度忽略不计),求当矩形ABCD 的面积最大时AB 的长.【分析】设AB xm =,矩形的面积为2sm ,根据题意可以用相应的代数式表示出矩形绿地的面积,从而建立x 和s 的二次函数关系式,即可解答本题.【解答】解:设矩形的面积为2sm ,AB xm =,则1(9003)2BC x =-,由题意可得,1(9003)2S AB BC x x =⨯=⨯-,23(300)2x x =--,23(150)337502x =--+,∴当150x =时,S 取得最大值,此时,33750S =,答:当150AB m =,矩形ABCD 的面积最大.【点评】本题考查二次函数的应用以及矩形的性质,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的顶点式求函数的最值. 19.(8分)已知关于x 的一元二次方程2210x x m --+=. (1)若方程的两根之积为5-,求m 的值;(2)若方程2210x x m --+=有两个不相等的实数根,试判断另一个关于x 的一元二次方程2(2)120x m x m --+-=的根的情况.【分析】(1)由方程的两根之积为5-得出15m -+=-,解之可得.(2)由方程根的情况,根据根的判别式可得到关于m 的取值范围,进一步可判断第二个方程根的判别式的符号,可求得其根的情况. 【解答】解:(1)方程的两根之积为5-, 15m ∴-+=-,解得6m =;(2)方程2210x x m --+=有两个不相等的实数根,∴△0>,即2(2)4(1)0m ---+>,解得0m >,方程2(2)120x m x m --+-=其判别式△22(2)4(12)4m m m m =---=+,∴当0m >时,240m m +>, ∴第二个方程有两个不等实根.【点评】本题主要考查根的判别式,一元二次方程20(0)ax bx c a ++=≠的根与△24b ac =-有如下关系:①当△0>时,方程有两个不相等的两个实数根; ②当△0=时,方程有两个相等的两个实数根; ③当△0<时,方程无实数根.20.(8分)如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图.测得其灯臂AB 长为28cm ,灯罩BC 长为15cm ,底座AD 厚度为3cm ,根据使用习惯,灯臂AB 的倾斜角DAB ∠固定为60︒.(1)当BC 转动到与桌面平行时,求点C 到桌面的距离;(2)在使用过程中发现,当BC 转到至145ABC ∠=︒时,光线效果最好,求此时灯罩顶端C1.7≈,sin250.4︒≈,cos250.9︒≈,tan250.5︒≈,结果精确到个位).【分析】(1)如图2,作C M E F⊥于M ,BP AD ⊥于P ,交EF 于N ,则C M B N =,3PN =,由直角三角形的性质得出1142AP AB ==,BP =,得出3CM BN BP PN ==+=即可;(2)如图3,作CM EF ⊥于M ,作BQ CM ⊥于Q ,BP AD ⊥于P ,交EF 于N ,则90QBN ∠=︒,CM BN =,3PN =,由(1)得26.8QM BN ==,求出25CBQ ∠=︒,由三角函数得出sin 25150.46CQ BC =⨯︒≈⨯=,得出626.832.8CM CQ QM =+=+=即可. 【解答】解:(1)当BC 转动到与桌面平行时,如图1所示: 作CM EF ⊥于M ,BP AD ⊥于P ,交EF 于N , 则CM BN =,3PN =, 60DAB ∠=︒, 30ABP ∴∠=︒, 1142AP AB ∴==,BP ==314 1.7326.8()CM BN BP PN cm ∴==+=≈⨯+=,即点C 到桌面的距离为26.8cm ;(2)作CM EF ⊥于M ,作BQ CM ⊥于Q ,BP AD ⊥于P ,交EF 于N ,如图2所示: 则90QBN ∠=︒,CM BN =,3PN =, 由(1)得:26.8QM BN ==, 60DAB ∠=︒, 30ABP ∴∠=︒, 145ABC ∠=︒,145903025CBQ ∴∠=︒-︒-︒=︒,在Rt BCQ ∆中,sin CQCBQ BC∠=, sin 25150.46CQ BC ∴=⨯︒≈⨯=,626.832.8()CM CQ QM cm ∴=+=+=,即此时灯罩顶端C 到桌面的高度约为32.8cm .【点评】本题考查了解直角三角形、翻折变换的性质、含30︒角的直角三角形的性质等知识;通过作辅助线构造直角三角形是解题的关键. 五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,在Rt ABC ∆中,6AC =,90ACB ∠=︒,CD AB ⊥,垂足为D ,AF 平分CAB ∠,交CD 于点E ,交CB 于点F .(1)若30B ∠=︒,CE 与CF 的数量关系是 相等 ,CF 长为 ;(2)过点F 作AB 的垂线,垂足为G ,连接EG ,则四边形CEGF 的形状为 ,若10AB =,求CE 的长.【分析】(1)根据三角形的内角和得到60CAB ∠=︒,根据角平分线的定义得到30CAF BAF ∠=∠=︒,推出CEF ∆是等边三角形,得到CE CF =,解直角三角形即可得到结论;(2)根据垂直的定义和角平分线的性质得到90ACF AGF ∠=∠=︒,CF GF =,根据全等三角形的性质得到AFC AFG ∠=∠,推出四边形CEGF 是菱形;根据勾股定理得到8BC =,设C E C F F G x===,由勾股定理列方程即可得到结论.【解答】解:(1)90ACB ∠=︒,30B ∠=︒, 60CAB ∴∠=︒,CD AB ⊥, 90ADC ∴∠=︒, 30ACD ∴∠=︒,AF 平分CAB ∠,30CAF BAF ∴∠=∠=︒, 60CFE ECF ∴∠=∠=︒, CEF ∴∆是等边三角形, CE CF ∴=, 6AC =,CF AC ∴=,故答案为:相等, (2)FG AB ⊥,FC AC ⊥,AF 平分CAB ∠,90ACF AGF ∴∠=∠=︒,CF GF =, 在Rt ACF ∆与Rt AGF ∆中,AF AFCF GF =⎧⎨=⎩,Rt ACF Rt AGF(HL)∴∆≅∆, AFC AFG ∴∠=∠, CD AB ⊥,FG AB ⊥, //CD FG ∴, CEF EFG ∴∠=∠, CEF CFE ∴∠=∠, CE CF ∴=, CE FG ∴=,∴四边形CEGF 是菱形;6AC =,10AB =, 8BC ∴=,设CE CF FG x ===, 6AG AC ==, 4BG ∴=,8BF x ∴=-,222BF FG BG =+,222(8)4x x ∴-=+, 解得:3x =, 3CE ∴=.故答案为:菱形.【点评】本题考查了菱形的拍的还行在,全等三角形的判定和性质,直角三角形的性质,等边三角形的判定和性质,正确的识别图形是解题的关键.22.(9分)如图,△n n AB C 系列三角形是以点A 为直角顶点,两腰在同一直线上的等腰直角三角形(n 为正整数).以A 为原点,以△n n AB C 的底边上的高所在直线为y 轴,建立平面直角坐标系,并设2n n B C n =,经过A ,n B ,n C 的抛物线为n y . (1)求2y 的表达式,并猜想抛物线n y 的表达式(不必证明);(2)求经过1n B -,1n C -,n B ,n C 四点的抛物线的顶点P 的坐标,并直接判断△11n n PB C --与△n n PB C ,是否相似(不必说明理由).【分析】(1)设函数的表达式为:22y ax =,则点2B 的坐标为(2,2)-,将点2B 的坐标代入上式,即可求解;(2)由(1)知,点1n B -的坐标为:(1,1)n n --、点n B 的坐标为:(,)n n -,将上述两点坐标代入函数:2y ax c =+,即可求解.【解答】解:(1)设函数的表达式为:22y ax =,则点2B 的坐标为(2,2)-,将点2B 的坐标代入上式得:24a -=⨯, 解得:12a =-,故抛物线的表达式为:2212y x =-;同理点(,)n B n n -,将点n B 的坐标代入:2n y ax =, 同理可得:21n y x n=-;(2)由(1)知,点1n B -的坐标为:(1,1)n n --、点n B 的坐标为:(,)n n -,将上述两点坐标代入函数:2y ax c =+得:221(1)()n a n c n a n c ⎧-=-+⎨-=+⎩,解得:211221a n n n c n ⎧=⎪⎪-⎨-⎪=⎪-⎩, 故点P 的坐标为:2(0,)21n n n --,11//n n n n B C PB C --,而1n PC -与1n B -1n C -的夹角和n PC 与n n B C 的夹角不相等,故△11n n PB C --与△n n PB C 不相似.【点评】本题考查的是二次函数综合运用,解题的关键是确定点n B 的坐标,并要避免符号错误.六、(本大题1小题,12分)23.(12分)如图,正方形ABCD 中,以BF 为底向正方形外侧作等腰直角三角形BEF ,连接DF ,取DF 的中点G ,连接EG ,CG .(1)如图1,当点A 与点F 重合时,猜想EG 与CG 的数量关系为 EG CG = ,EG 与CG 的位置关系为 ,请证明你的结论;(2)如图2,当点F 在AB 上(不与点A 重合)时,(1)中的结论是否仍然成立?请说明理由;(3)如图3,点F 在AB 的左侧时,(1)中的结论是否仍然成立?直接作出判断,不必说明理由.【分析】(1)过E 作EM AD ⊥交AD 的延长线于M ,证明AME ∆是等腰直角三角形,得出12AM EM AE AB ===,证出12DG AG AD AM EM ====,得出GM CD =,证明()GEM CGD SAS ∆≅∆,得出EG CG =,EGM GCD ∠=∠,证出1809090CGE ∠=︒-︒=︒,即可得出EG CG ⊥;(2)延长EG 至H ,使HG EG =,连接DH 、CH 、CE ,证明()EFG HDG SAS ∆≅∆,得出EF HD =,EFG HDG ∠=∠,证明()CBE CDH SAS ∆≅∆,得出CE CH =,BCE DCH ∠=∠,得出90ECH BCD ∠=∠=︒,证明ECH ∆是等腰直角三角形,得出12CG EH EG ==,EG CG ⊥;(3)延长EG 至H ,使HG EG =,连接DH 、CH 、CE ,证明()EFG HDG SAS ∆≅∆,得出EF HD =,EFG HDG ∠=∠,证明()CBE CDH SAS ∆≅∆,得出CE CH =,BCE DCH ∠=∠,得出90ECH BCD ∠=∠=︒,证明ECH ∆是等腰直角三角形,得出12CG EH EG ==,EG CG ⊥.【解答】解:(1)EG CG =,EG CG ⊥;理由如下: 过E 作EM AD ⊥交AD 的延长线于M ,如图1所示: 则90M ∠=︒,四边形ABCD 是正方形,AB AD CD ∴==,90BAD D ∠=∠=︒, 90BAM ∴∠=︒,BEF ∆是等腰直角三角形,45BAE ∴∠=︒,AE AB =, 45MAE ∴∠=︒,AME ∴∆是等腰直角三角形,12AM EM AE AB ∴===, G 是DF 的中点,12DG AG AD AM EM ∴====, GM CD ∴=,在GEM ∆和CGD ∆中,90EM DG M D GM CD =⎧⎪∠=∠=︒⎨⎪=⎩,()GEM CGD SAS ∴∆≅∆, EG CG ∴=,EGM GCD ∠=∠, 90GCD DGC ∠+∠=︒, 90EGM DGC ∴∠+∠=︒, 1809090CGE ∴∠=︒-︒=︒, EG CG ∴⊥;(2)(1)中的结论仍然成立,理由如下:延长EG 至H ,使HG EG =,连接DH 、CH 、CE ,如图2所示: G 是DF 的中点,FG DG ∴=,在EFG ∆和HDG ∆中,EG HGEGF HGD FG DG =⎧⎪∠=∠⎨⎪=⎩,()EFG HDG SAS ∴∆≅∆,EF HD ∴=,EFG HDG ∠=∠, BEF ∆是等腰直角三角形,EF BE ∴=,45BFE FBE ∠=∠=︒, BE DH ∴=,四边形ABCD 是正方形,//AB CD ∴,90ABC BCD ∠=∠=︒,BC CD =, AFD CDG ∴∠=∠, 135AFE CDH ∴∠=∠=︒, 9045135CBE ∠=︒+︒=︒, CBE CDH ∴∠=∠,在CBE ∆和CDH ∆中,BE DH CBE CDH BC CD =⎧⎪∠=∠⎨⎪=⎩,()CBE CDH SAS ∴∆≅∆, CE CH ∴=,BCE DCH ∠=∠, 90ECH BCD ∴∠=∠=︒, ECH ∴∆是等腰直角三角形, EG HG =, 12CG EH EG ∴==,EG CG ⊥; (3)(1)中的结论仍然成立,理由如下:延长EG 至H ,使HG EG =,连接DH 、CH 、CE ,如图3所示: G 是DF 的中点,FG DG ∴=,在EFG ∆和HDG ∆中,EG HGEGF HGD FG DG =⎧⎪∠=∠⎨⎪=⎩,()EFG HDG SAS ∴∆≅∆,EF HD ∴=,EFG HDG ∠=∠, BEF ∆是等腰直角三角形, EF BE ∴=,90BEF ∠=︒, BE DH ∴=,四边形ABCD 是正方形,//AB CD ∴,90ABC BCD ∠=∠=︒,BC CD =, BNF CDG ∴∠=∠,360EFG BNF BEF ABE HDG CDG CDH ∠+∠+∠+∠=∠+∠+∠=︒, BEF ABE CDH ∴∠+∠=∠,ABC ABE CDH ∴∠+∠=∠,即CBE CDH ∠=∠, 在CBE ∆和CDH ∆中,BE DH CBE CDH BC CD =⎧⎪∠=∠⎨⎪=⎩,()CBE CDH SAS ∴∆≅∆, CE CH ∴=,BCE DCH ∠=∠, 90ECH BCD ∴∠=∠=︒, ECH ∴∆是等腰直角三角形, EG HG =, 12CG EH EG ∴==,EG CG ⊥.【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键。

2017-2018学年北京市顺义区2018届初三上学期期末数学试卷(WORD版含答案)

2017-2018学年北京市顺义区2018届初三上学期期末数学试卷(WORD版含答案)

北京市顺义区2018届初三上学期期末考试数学试卷考生须知1.本试卷共6页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、班级、姓名和准考证号.3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效.4.在答题纸上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷和答题纸一并交回.一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的.1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是A. aB. bC.cD. d2.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cos C的值为A.513B.1213C.512D.1253.右图是百度地图中截取的一部分,图中比例尺为1:60000,则卧龙公园到顺义地铁站的实际距离约为(注:比例尺等于图上距离与实际距离的比)A.1.5公里B.1.8公里C.15公里D.18公里4.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R 表示电流I 的函数表达式为A .3I R =B .I R =-6 C .3I R=-D .I R=65.二次函数的部分图象如图所示,对称轴是1x =-, 则这个二次函数的表达式为A . 223y x x =-++ B . 223y x x =++C . 223y x x =-+- D . 223y x x =--+6. 如图,已知⊙O 的半径为6,弦AB 的长为8,则圆心O 到AB 的距离为A .5B .25C .27D .107.已知△ABC ,D ,E 分别在AB ,AC 边上,且DE ∥BC , AD =2,DB =3,△ADE 面积是4,则四边形DBCE 的面积 是A .6B .9C .21D .258.如图1,点P 从△ABC 的顶点A 出发,沿A -B -C 匀速运动,到点C 停止运动.点P 运动时,线段AP 的长度y 与运动时间x 的函数关系如图2所示,其中D 为曲线部分的最低点,则△ABC 的面积是A .10B .12C .20D .24二、填空题(共8道小题,每小题2分,共16分) 9.分解因式:22a b ab b -+= .10.如图,利用成直角的墙角(墙足够长),用10m 长的栅栏围成一个矩形的小花园,花园的面积S (m 2)与它一边长a (m )的 函数关系式是 ,面积S 的最大值是 .11.已知∠α,∠β如图所示,则tan ∠α与tan ∠β的大小关系是 .12.如图标记了 △ABC 与△DEF 边、角的一些数据,如果再添加一个条件使△ABC ∽△DEF , 那么这个条件可以是 .(只填一个即可)13.已知矩形ABCD 中, AB =4,BC =3,以点B 为圆心r 为半径作圆,且⊙B 与边CD 有唯一公共点,则r 的取值 范围是 .14.已知y 与x 的函数满足下列条件:①它的图象经过(1,1)点;②当1x >时,y 随x的增大而减小.写出一个符合条件的函数: .15.在ABC △中,45A ∠=o ,6AB =,2BC =,则AC 的长为 .16.在平面直角坐标系xOy 中,抛物线2122y x x =++可以看作是抛物线2221y x x =---经过若干次图形的变化(平移、翻折、旋转)得到的,写出一种由抛物线y 2得到抛物线y 1的过程: .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式组:()52365142x x x x -≤+⎧⎪⎨-<+⎪⎩.18.计算:2212sin 458tan 60-+︒-+︒.19.如图,E 是□ABCD 的边BC 延长线上一点,AE 交CD 于点F ,FG ∥AD 交AB 于点G .(1)填空:图中与△CEF 相似的三角形有 ;(写出图中与△CEF 相似的所有三角形)(2)从(1)中选出一个三角形,并证明它与△CEF 相似.20.制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB 的长为3 000mm ,弯形管道部分BC ,CD 弧的半径都是1 000mm , ∠O =∠O ’=90°,计算图中中心虚线的长度.21. 已知二次函数243y x x =-+.(1)在网格中,画出该函数的图象. (2)(1)中图象与x 轴的交点记为A ,B ,若该图象上存在一点C ,且△ABC 的面积为3,求点C 的坐标.22.已知:如图,在△ABC 的中,AD 是角平分线,E 是AD 上一点, 且AB :AC = AE :AD . 求证:BE =BD .23.如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B 的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米) (参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18,2≈1.41,3≈1.73)24.已知:如图, AB 为⊙O 的直径,CE ⊥AB 于E ,BF ∥OC ,连接BC ,CF .求证:∠OCF =∠ECB .25.如图,在平面直角坐标系xOy 中,直线2y x =-与双曲线ky x=(k ≠0)相交于A ,B 两点,且点A 的横坐标是3.(1)求k 的值;(2)过点P (0,n )作直线,使直线与x 轴平行,直线与直线2y x =-交于点M ,与双曲线ky x=(k ≠0)交于点N ,若点M 在N 右边,求n 的取值范围.26.已知:如图,在△ABC 中,AB =AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 于点E ,交AC 的延长线于点F . (1)求证:DE ⊥AB ; (2)若tan ∠BDE =12, CF =3,求DF 的长.27.综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC,同学们通过构造直角三角形的办法求出三角形三边的长,则AB=;(2)如图2,已知直角三角形纸片△DEF,∠DEF=90°,EF=2DE,求出DF的长;(3)在(2)的条件下,若橫格纸上过点E的横线与DF相交于点G,直接写出EG的长.28.在平面直角坐标系xOy 中,抛物线219y x bx =+经过点A (-3,4). (1)求b 的值;(2)过点A 作x 轴的平行线交抛物线于另一点B ,在直线AB 上任取一点P ,作点A 关于直线OP 的对称点C ;①当点C 恰巧落在x 轴时,求直线OP 的表达式; ②连结BC ,求BC 的最小值.顺义区2017——2018学年度第一学期期末九年级教学质量检测数学答案一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的. 答案 1 2 3 4 5 6 7 8CABDDBCB二、填空题(共8道小题,每小题2分,共16分)9.()21b a -; 10.220S a a =-+; 11.tan ∠α<tan ∠β; 12.略;13.35r ≤≤; 14.略; 15.221+ 16.略 .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式1得8x ≤…………………………………………………………….2分解不等式2得1x >-…………………………………………………………….4分 ∴不等式组的解集为18x -<<.………………………………………………….5分18.计算:2212sin 458tan 60-+︒-+︒. 22122232=-+⨯-+ 212223=-+-+………………………………………………….4分(每项1分)2=………………………………………………………………………….5分19.(1)△ADF ,△EBA ,△FGA ;………………………….3分(每个一分) (2)证明:△ADF ∽△ECF ∵四边形ABCD 为平行四边形∴BE ∥AD …………………………………………………….4分 ∴∠1=∠E ,∠2=∠D∴△ADF ∽△ECF …………………………………………….5分(其它证明过程酌情给分)20. 901000500180180n r l πππ⨯===…………………………….…….……….3分 中心虚线的长度为 3000500230001000ππ+⨯=+…………………4分=30001000 3.14=6140+⨯……………………………………………..…5分21.(1)…………………………….……….,…….2分(2)令y =0,代入243y x x =-+,则x =1,3,∴A (0,1),B (0,3),∴AB =2,……….……….,.………………..…….….3分∵△ABC 的面积为3,∴AB 为底的高为3,令y =3,代入243y x x =-+,则x =0,4,∴C (0,3)或(4,3).…………….……….,…………………….….……….5分(各1分)22.证明:∵AD 是角平分线,∴∠1=∠2,……………………………………….1分又∵AB AD = AE AC ,……………………….2分∴△ABE ∽△ACD ,………………………………………..…….3分 ∴∠3=∠4,……………………………………………………….4分 ∴∠ BED =∠BDE ,∴BE =BD .………………………………………………………..5分23.解:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=AEDE,∠1=30°,………………………….…..1分∴AE=DE×tan∠1=40×tan30°=40×3≈40×1.73×13≈23.1……………………..2分在Rt△DEB中,∠DEB=90°,tan∠2=BEDE,∠2=10°,……………………………...3分∴BE=DE×tan∠2=40×tan10°≈40×0.18=7.2………………………………..………..4分∴AB=AE+BE≈23.1+7.2=30.3米.………………………………………………………..5分24.证明:延长CE交⊙O于点G.∵AB为⊙O的直径,CE⊥AB于E,∴BC=BG,∴∠G=∠2,……………………………………………..2分∵BF∥OC,∴∠1=∠F,………………………………………………3分又∵∠G=∠F,………………………………………..….5分∴∠1=∠2.…………………………………………….…6分(其它方法对应给分)25.解:(1)令x =3,代入2y x =-,则y =1,∴A (3,1),…………………………………………………………….....1分 ∵点A (3,1),在双曲线k y x=(k ≠0)上, ∴3k =.………………………..………………..………………………...3分(2)………………………………….…..4分(画图)如图所示,当点M 在N 右边时,n 的取值范围是1n >或30n -<<.………6分26.(1)证明: 连接OD .………………………………………..1分∵EF 切⊙O 于点D ,∴OD ⊥EF .……………………………………….……..2分又∵OD =OC ,∴∠ODC =∠OCD ,∵AB =AC ,∴∠ABC =∠OCD ,∴∠ABC =∠ODC ,∴AB ∥OD ,∴DE ⊥AB .…………………………………….………..3分(2)解:连接AD .…………………………….…………….…4分∵AC 为⊙O 的直径,∴∠ADB =90°,…………………………………..…5分∴∠B +∠BDE =90°,∠B +∠1=90°,∴∠BDE=∠1,∵AB=AC,∴∠1=∠2.又∵∠BDE =∠3,∴∠2=∠3.∴△FCD∽△FDA…………………………………….6分∴FC CD FD DA=,∵tan∠BDE=12,∴tan∠2=12,∴1=2CDDA,∴1=2FCFD,∵CF=3,∴FD=6.……………………………….…7分27.(1)AB=26;……………………….2分(2)解:过点E作横线的垂线,交l1,l2于点M,N,……………………………..….3分∴∠DME=∠EDF= 90°,∵∠DEF=90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME∽△ENF,………….…….4分∴DM ME DE EN NF EF==,∵EF=2DE,∴12 DM ME DEEN NF EF===,∵ME=2,EN=3,∴NF=4,DM=1.5,根据勾股定理得DE=2.5,EF=5,552DF=.……………………….5分(3)EG=2.5.…………………………………………………………..…….7分28. (1)∵抛物线219y x bx =+经过点A (-3,4) 令x =-3,代入219y x bx =+,则()14939b =⨯+⨯-, ∴b =-3.………………………………………………………………………....2分(2)①…………………………………….....3分由对称性可知OA =OC ,AP =CP ,∵AP ∥OC ,∴∠1=∠2,又∵∠AOP =∠2,∴∠AOP =∠1,∴AP =AO ,∵A (-3,4),∴AO =5,∴AP =5,∴P 1(2,4),同理可得P 2(-8,4),∴O P 的表达式为2y x =或12y x =-. ………………………………….5分(各1分)…………………………………….....6分②以O 为圆心,OA 长为半径作⊙O ,连接BO ,交⊙O 于点C∵B (12,4),∴OB =410, ∴BC 的最小值为4105-. ………………………….7分。

山西省晋中市榆次区2018-2019学年九年级上学期期末考试数学试题(含解析版)

山西省晋中市榆次区2018-2019学年九年级上学期期末考试数学试题(含解析版)

山西省晋中市榆次区2019届九年级上学期期末考试数学试题一、选择题(每小题3分,共30分)1.cos30°的值是()A.1B.C.D.2.若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6B.﹣2C.2D.63.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm4.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.抛物线y=(x+2)2﹣1可以由抛物线y=x2平移得到,下列平移方法中正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位6.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2C.5D.107.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是()A.B.C.D.8.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()A.160米B.(60+160)C.160米D.360米9.如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 C.0<x<1B.x<﹣2D.﹣2<x<0或x>110.如图,若二次函数y=ax2+b x+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x 轴交于点A、点B(﹣1,0),则( 【①二次函数的最大值为 a +b +c ;②a ﹣b +c <0;③b 2﹣4ac <0;④当 y >0 时,﹣1<x <3.其中正确的个数是()A .1B .2C .3D .4二、填空题(每小题 3 分,共 15 分)11.抛物线 y =3(x ﹣2)2+5 的顶点坐标是.12.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排 21 场比赛,应邀请多少个球队参赛?设邀请 x 个球队参赛,根据题意,可列方程为.13.如图,某商店营业大厅自动扶梯AB 的倾斜角为 31°,AB 的长为 12 米,则大厅两层之间的高度为米.结果保留一位小数)参考数据:sin31°=0.515,cos31°=0.867,tan31°=0.601】14.如图,在平面直角坐标系中,矩形 OABC 的 两边 OA ,OC 分别在 x 轴和 y 轴上,并且OA =5,OC =3.若把矩形 OABC 绕着点 O 逆时针旋转,使点 A 恰好落在 BC 边上的 A 1处,则点 C 的对应点 C 1 的坐标为.( ,15.如图,A ,B 是反比例函数 y = 在第一象限内的图象上的两点,且 A ,B 两点的横坐标分别是 2 和 △4,则 OAB 的面积是.三、解答题16.(11 分)(1)计算 2tan60°(2)解方程:2x 2+3x ﹣1=017. 8 分)如图,一次函数 y =kx +b 的图象与反比例函数 y = 的图象交于点 A (﹣3,m +8)B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式;(△2)求 AOB 的面积.18.(8 分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表项目机器人3D打印航模其他男生(人数)7m25女生(人数)942n根据以上信息解决下列问题:(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.19.(7分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.20.(7分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(9分)如图,在矩形AB CD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:(1)当t为何值时,△QAP是等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?22.(11分)如图(1),△Rt ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(△1)中的ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.0 , y23.(14 分)如图,已知抛物线 y =ax 2+ x +c 与 x 轴交于 A ,B 两点,与 y 轴交于点 C ,且A (2, ) C (0,﹣4),直线 l : =﹣ x ﹣4 与 x 轴交于点 D ,点 P 是抛物线 y =ax 2+ x +c 上的一动点,过点 P 作 PE ⊥x 轴,垂足为 E ,交直线 l 于点 F .(1)试求该抛物线表达式;(2)如图(1),当点 P 在第三象限,四边形 PCOF 是平行四边形,求 P 点的坐标;(3)如图(2),过点 P 作 PH ⊥y 轴,垂足为 H ,连接 AC .①求证:△ACD 是直角三角形;②试问当 P 点横坐标为何值时,使得以点 P 、C 、H 为顶 点的三角形与△ACD 相似?参考答案一、选择题1.解:cos30°=.故选:B.2.解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.3.解:∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4cm.在△Rt OCE中,OC=5cm,CE=4cm,∴OE==3cm,∴AE=AO+OE=5+3=8cm.故选:A.4.解:俯视图从左到右分别是2,1,2个正方形,如图所示:.故选:B.5.解:∵函数y=x2的图象沿沿x轴向左平移2个单位长度,得,y=(x+2)2;然后y轴向下平移1个单位长度,得,y=(x+2)2﹣1;故可以得到函数y=(x+2)2﹣1的图象.故选:B.6.解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==∴AO=3,,在△Rt AOB中,由勾股定理得:AB=故选:C.7.解:如图,==5,,共有16种结果,小明和小红分在同一个班的结果有4种,故小明和小红分在同一个班的机会==.故选:A.8.解:过点A作AD⊥BC于点D,则∠BAD=30°,∠CAD=60°,AD=120m,在△Rt ABD中,BD=AD•tan30°=120×在△Rt ACD中,CD=AD•tan60°=120×∴BC=BD+CD=160(m).故选:C.=40=120(m),(m),9.解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.10.解:①∵二次函数y=ax2+b x+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.二、填空题(本大题共5个小题每小题3分,共15分)11.解:∵抛物线y=3(x﹣2)2+5,∴顶点坐标为:(2,5).故答案为:(2,5).12.解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故答案为:x(x﹣1)=21.13.解:在△Rt ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.14.解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,NO=∠A1MO=90°,由题意可得:∠C1∠1=∠2=∠3,则△A1△OM∽OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x =± (负数舍去),则 NO = ,NC 1=,故点 C 的对应点 C 1 的坐标为:(﹣ ,故答案为:(﹣ ,).).15.解:∵A ,B 是反比例函数 y = 在第一象限内的图象上的两点,且 A ,B 两点的横坐标分别是 2 和 4,∴当 x =2 时,y =2,即 A (2,2),当 x =4 时,y =1,即 B (4,1).如图,过 A ,B 两点分别作 AC ⊥x 轴于 C ,BD ⊥x 轴于 D ,则 S △AOC =S △BOD = ×4=2.∵S 四边形 AODB = △S AOB + △S BOD =S △AOC+S 梯形 ABDC ,∴ △S AOB =S 梯形 ABDC ,∵S 梯形 ABDC = (BD +AC )•CD = (1+2)×2=3, ∴ △S AOB =3.故答案是:3.三、解答题(本大题共 8 个小题,共 75 分,解答应写出文字说明证明过程或演算步骤)16.解:(1)原式=2×﹣2 ﹣1+3=2;(2)∵2x 2+3x ﹣1=0,∴a =2,b =3,c =﹣1,∴△=9+8=17,∴x=17.解:(1)将A(﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣4;(2)设AB与x轴相交于点C,令﹣2x﹣4=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,△S AOB△S AOC+△S BOC,==×2×2+×2×6,=2+6,=8.18.解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数=故答案为:144;(3)列表得:×360°=144°,男1男2女1女2男1﹣﹣男1男2男1女1男1女2男2男2男1﹣﹣男2女1男2女2女1女1男1女1男2﹣﹣女1女2女2女2男1女2男2女2女1﹣﹣由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“1名男生、1名女生”有8种可能.所以P(1名男生、1名女生)=.19.解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为:180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.20.解:在△Rt ACE中,∵tan∠CAE=∴AE=在△Rt DBF中,∵tan∠DBF=∴BF=,=≈≈21(cm),=≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.21.解:(1)对于任何时刻t,AP=2t,DQ=t,QA=6﹣t.当QA=AP时,△QAP为等腰直角三角形,即:6﹣t=2t,解得:t=2(s),所以,当t=2s时,△QAP为等腰直角三角形.(2)根据题意,可分为两种情况来研究,在矩形ABCD中:①当QA:AB=AP:BC时,△QAP∽△ABC,那么有:(6﹣t):12=2t:6,解得t==1.2(s),即当t=1.2s时,△QAP∽△ABC;②当QA:BC=AP:AB时,△P AQ∽△ABC,那么有:(6﹣t):6=2t:12,解得t=3(s),即当t=3s时,△P AQ∽△ABC;所以,当t=1.2s或3s时,以点Q、A、P为顶点的三角形与△ABC相似.22.(1)证明:∵AF平分∠CAB,∴∠CAF=∠EAD,∵∠ACB=90°,∴∠CAF+∠CF A=90°,∵CD⊥AB于D,∴∠EAD+∠AED=90°,∴∠CF A=∠AED,又∠AED=∠CEF,∴∠CF A=∠CEF,∴CE=CF;(2)猜想:BE′=CF.证明:如图,过点E作EG⊥AC于G,连接EE′,又∵AF平分∠CAB,ED⊥AB,EG⊥AC,∴ED=EG,由平移的性质可知:D′E′=DE,∴D′E′=GE,∵∠ACB=90°,∴∠ACD+∠DCB=90°∵CD⊥AB于D,∴∠B+∠DCB=90°,∴∠ACD=∠B,在△CEG与△BE′D′中,,∴△CEG≌△BE′D′(AAS),∴CE=BE′,由(1)可知CE=CF,∴BE′=CF.23.解:(1)由题意得:,解得:,∴抛物线的表达式为y=x2+x﹣4.(2)设P(m,m2+m﹣4),则F(m,﹣m﹣4).m.∴PF=(﹣m﹣4)﹣(m2+m﹣4)=﹣m2﹣∵PE⊥x轴,∴PF∥OC.∴PF=OC时,四边形PCOF是平行四边形.∴﹣m2﹣m=4,解得:m=﹣或m=﹣8.当m=﹣时,m2+m﹣4=﹣,当m=﹣8时,m2+m﹣4=﹣4.∴点P的坐标为(﹣,﹣)或(﹣8,﹣4).(3)①证明:把y=0代入y=﹣x﹣4得:﹣x﹣4=0,解得:x=﹣8.∴D(﹣8,0).∴OD=8.∵A(2,0),C(0,﹣4),∴AD=2﹣(﹣8)=10.由两点间的距离公式可知:AC2=22+42=20,DC2=82+42=80,AD2=100,∴AC2+CD2=AD2.∴△ACD是直角三角形,且∠ACD=90°.②由①得∠ACD=90°.当△ACD∽△CHP时,=,即=解得:n=0(舍去)或n=﹣5.5或n=﹣10.5.当△ACD∽△PHC时,=,即=,解得:n=0(舍去)或n=2或n=﹣18.综上所述,点P的横坐标为﹣5.5或﹣10.5或2或﹣18时,使得以点P、C、H为顶点的三角形与△ACD相似.。

2018-2019学年重庆市江北区九年级(上)期末数学试卷试题及答案(解析版)

2018-2019学年重庆市江北区九年级(上)期末数学试卷试题及答案(解析版)

2018-2019学年重庆市江北区九年级(上)期末数学试卷一、选择题:(木大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请用2B 铅笔将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列四张扑克牌图案,属于中心对称图形的是( )A .B .C .D .2.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球3.二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )A .抛物线开口向下B .抛物线经过点(2,3)C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点4.如果两个相似多边形面积的比为1:5,则它们的相似比为( )A .1:25B .1:5C .1:2.5D .5.如图,A 的半径为3,圆心A 的坐标为(1,0),点(,0)B m 在A 内,则m 的取值范围是( )A .4m <B .2m >-C .24m -<<D .2m <-或4m > 6.若反比例函数(0)k y k x =≠的图象经过(2,3),则k 的值为( ) A .5 B .5- C .6 D .6-7.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是( )A .种植10棵幼树,结果一定是“有9棵幼树成活”B .种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C .种植10n 棵幼树,恰好有“n 棵幼树不成活”D .种植n 棵幼树,当n 越来越大时,种植成活幼树的频率会越来越稳定于0.98.已知:如图,在O 中,OA BC ⊥,70AOB ∠=︒,则ADC ∠的度数为( )A .30︒B .35︒C .45︒D .70︒9.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,旋转角为(090)αα︒<<︒.若1112∠=︒,则α∠的大小是( )A .68︒B .20︒C .28︒D .22︒10.如图,圆O 的弦AB OC ⊥,且将半径OC 分为2:1的两部分(:2:1)OD DC =,AB =则圆O 的半径为( )A .3B .5C .6D .911.如图,一次函数1y x =-的图象与反比例函数2y x=的图象在第一象限相交于点A ,与x 轴相交于点B ,点C 在y 轴上,若AC BC =,则点C 的坐标为( )A .(0,1)B .(0,2)C .5(0,)2D .(0,3)12.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数(1)11y m x m =-++-经过一、二、四象限且关于x 的分式方程8388mx x x x x =+--的解为整数的概率是( ) A .12 B .13 C .14 D .23二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的橫线上.13.已知:如图,ABC ∆的面积为12,点D 、E 分别是边AB 、AC 的中点,则四边形BCED 的面积为 .14.在平面直角坐标系中,将二次函数2(2)2y x =-+的图象向左平移2个单位,所得图象对应的函数解析式为 .15.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数k y x=的图象上,1OA =,6OC =,则正方形ADEF 的边长为 .16.如图,已知C ,D 是以AB 为直径的半圆周上的两点,O 是圆心,半径2OA =,120COD ∠=︒,则图中阴影部分的面积等于 .17.如图,在Rt ABC ∆中,90ACB ∠=︒,5AC cm =,12BC cm =,将ABC ∆绕点B 顺时针旋转60︒,得到BDE ∆,连接DC 交AB 于点F ,则ACF ∆与BDF ∆的周长之和为 cm .18.小明同学为筹备缤纷节财商体验活动,准备在商店购入小商品A 和B .已知A 和B 的单价和为25元,小明计划购入A 的数量比B 的数量多3件,但一共不超过28件.现商店将A 的单价提高20%,B 打8折出售,小明决定将A 、B 的原定数量对调,这样实际花费比原计划少6元.已知调整前后的价格和数量均为整数,求小明原计划购买费用为 元.三、解答题:(本大题共2个小题,每小题8分,共16分)解答应写出文字说明,演算步骤或证明过程.19.如图,在ABC ∆和ADE ∆中,点E 在BC 边上,BAC DAE ∠=∠,B D ∠=∠,AB AD =.求证:AEC C ∠=∠.20.已知二次函数2y x bx c =++的图象与y 轴交于点(0,6)C -,与x 轴的一个交点坐标是(2,0)A -.求二次函数的解析式,并写出顶点D 的坐标;四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.22.如图,在平面直角坐标xOy中,正比例函数y kx=的图象与反比例函数myx=的图象都经过点(2,2)A-.(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及ABC∆的面积.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了%m ,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2%m ,但销售均价比去年减少了%m ,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m 的值.24.如图一所示,ABC ∆是等腰直角三角形,其中90BAC ∠=︒,D 是AB 边上的一点,连接CD ,过A 作AE CD ⊥,E 为垂足,AF AE ⊥,且AF AE =.连接FB(1)求证:CE FB =;(2)如图二,延长FE 交BC 于G 点,如果G 点正好为BC 的中点,EA FB +=.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.材料一:把一个自然数的个位数字截太再用余下的数加上个位数的4倍,如果和是13的倍数,则原数能被13整除.如果和太大不易看出是否13的倍数,可重复上述「截尾、倍大、相加、验和」的过程,直到能清楚判断为止.例如,判断377是否13的倍数的过程如下:377465+⨯=,65135÷=,所以,377是13的倍数;又例如判断8632是否13的倍数的过程如下:86324871+⨯=,871491+⨯=,91137÷=.所以,8632是13的倍数. 材料二:若一个四位自然数n ,满足千位与个位相同,百位与十位相同,我们称这个数为“对称数”.将“对称数” n 的前两位与后两位交换位置得到一个新的n ',记()99n n F n -'=,例如3113n =,1331n '=,31131331(3113)1899F -==. (1)请用材料一的方法判断1326与3366能否被13整除;(2)若m 、p 是“对称数”,其中m abba =,(05p caac b a =<剟,15c a <剟且a ,b ,c 均为整数),若m 能被3l 整除,且()()36F m F p -=,求p .26.如图一,已知抛物线2y ax bx c =++的图象经过点(0,3)A 、(1,0)B ,其对称轴为直线:2l x =,过点A 作//AC x 轴交抛物线于点C ,AOB ∠的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m .(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;在四边形AOPE 面积最大时,在线段OE 上取点M ,在y 轴上取点N ,当PM MN AN ++取最小值时,求出此时N 点的坐标. (3)如图二,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P ,使POF ∆成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.2018-2019学年重庆市江北区九年级(上)期末数学试卷参考答案与试题解析一、选择题:(木大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请用2B 铅笔将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列四张扑克牌图案,属于中心对称图形的是( )A .B .C .D .【解答】解:A 、是中心对称图形,符合题意;B 、不是中心对称图形,不符合题意;C 、不是中心对称图形,不符合题意;D 、不是中心对称图形,不符合题意.故选:A .2.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球【解答】解:A .摸出的是3个白球是不可能事件;B .摸出的是3个黑球是随机事件;C .摸出的是2个白球、1个黑球是随机事件;D .摸出的是2个黑球、1个白球是随机事件,故选:A .3.二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )A .抛物线开口向下B .抛物线经过点(2,3)C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点【解答】解:A 、2a =,则抛物线223y x =-的开口向上,所以A 选项错误; B 、当2x =时,2435y =⨯-=,则抛物线不经过点(2,3),所以B 选项错误;C 、抛物线的对称轴为直线0x =,所以C 选项错误;D 、当0y =时,2230x -=,此方程有两个不相等的实数解,所以D 选项正确. 故选:D .4.如果两个相似多边形面积的比为1:5,则它们的相似比为( )A .1:25B .1:5C .1:2.5D .【解答】解:两个相似多边形面积的比为1:5,∴它们的相似比为.故选:D .5.如图,A 的半径为3,圆心A 的坐标为(1,0),点(,0)B m 在A 内,则m 的取值范围是( )A .4m <B .2m >-C .24m -<<D .2m <-或4m >【解答】解:以(1,0)A 为圆心,以3为半径的圆交x 轴两点的坐标为(2,0)-,(4,0), 点(,0)B m 在以(1,0)A 为圆心,以3为半径的圆内,24m ∴-<<.故选:C .6.若反比例函数(0)k y k x =≠的图象经过(2,3),则k 的值为( ) A .5 B .5- C .6 D .6-【解答】解:反比例函数(0)k y k x=≠的图象经过(2,3), 236k ∴=⨯=, 故选:C .7.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是( )A .种植10棵幼树,结果一定是“有9棵幼树成活”B .种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C .种植10n 棵幼树,恰好有“n 棵幼树不成活”D .种植n 棵幼树,当n 越来越大时,种植成活幼树的频率会越来越稳定于0.9【解答】解:用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,是在大量重复实验中得到的概率的近似值,故A 、B 、C 错误,D 正确,故选:D .8.已知:如图,在O 中,OA BC ⊥,70AOB ∠=︒,则ADC ∠的度数为( )A .30︒B .35︒C .45︒D .70︒【解答】解:OA BC ⊥,70AOB ∠=︒,∴AB AC =,1352ADC AOB ∴∠=∠=︒. 故选:B .9.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,旋转角为(090)αα︒<<︒.若1112∠=︒,则α∠的大小是( )A .68︒B .20︒C .28︒D .22︒【解答】解:四边形ABCD 为矩形,90BAD ABC ADC ∴∠=∠=∠=︒,矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,旋转角为α,BAB α∴∠'=,90B AD BAD ∠''=∠=︒,90AD C ADC ∠''=∠=︒,21112∠=∠=︒,而90ABC D ∠=∠'=︒,3180268∴∠=︒-∠=︒,906822BAB ∴∠'=︒-︒=︒,即22α∠=︒.故选:D .10.如图,圆O 的弦AB OC ⊥,且将半径OC 分为2:1的两部分(:2:1)OD DC =,AB =则圆O 的半径为( )A .3B .5C .6D .9【解答】解:设2OD a =,则CD a =,2OA a =,AB OC ⊥,OC 为半径,1122AD BD AB ∴===⨯=在Rt ODA ∆中,由勾股定理得:222(3)(2)a a =+,2a =(负数舍去), 326OA =⨯=,故选:C .11.如图,一次函数1y x =-的图象与反比例函数2y x=的图象在第一象限相交于点A ,与x 轴相交于点B ,点C 在y 轴上,若AC BC =,则点C 的坐标为( )A.(0,1)B.(0,2)C.5(0,)2D.(0,3)【解答】解:由12y xyx=-⎧⎪⎨=⎪⎩,解得21xy=⎧⎨=⎩或12xy=-⎧⎨=-⎩,(2,1)A∴,(1,0)B,设(0,)C m,CA CB=,222212(1)m m∴+=+-,2m∴=,(0,2)C∴,故选:B.12.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m,则使得一次函数(1)11y m x m=-++-经过一、二、四象限且关于x的分式方程8388mx xxx x=+--的解为整数的概率是()A.12B.13C.14D.23【解答】解:一次函数(1)11y m x m=-++-经过一、二、四象限,10m-+<,110m->,111m∴<<,∴符合条件的有:2,5,7,8,把分式方程8388mx xxx x=+--去分母,整理得:23160x x mx--=,解得:0x=,或163mx+ =,8x ≠,∴1683m+≠,8m ∴≠, 分式方程8388mx x x x x =+--的解为整数, 2m ∴=,5,∴使得一次函数(1)11y m x m =-++-经过一、二、四象限且关于x 的分式方程8388mx x x x x =+--的解为整数的整数有2,5, ∴使得一次函数(1)11y m x m =-++-经过一、二、四象限且关于x 的分式方程8388mx x x x x =+--的解为整数的概率为2163=; 故选:B .二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的橫线上.13.已知:如图,ABC ∆的面积为12,点D 、E 分别是边AB 、AC 的中点,则四边形BCED 的面积为 9 .【解答】解:设四边形BCED 的面积为x ,则12ADE S x ∆=-,点D 、E 分别是边AB 、AC 的中点,DE ∴是ABC ∆的中位线,//DE BC ∴,且12DE BC =, ADE ABC ∴∆∆∽, 则2()ADE ABC S DE S BC∆∆=,即121124x -=, 解得:9x =,即四边形BCED 的面积为9,故答案为:9.14.在平面直角坐标系中,将二次函数2(2)2y x =-+的图象向左平移2个单位,所得图象对应的函数解析式为 22y x =+ .【解答】解:二次函数2(2)2y x =-+的图象向左平移2个单位,得:22(22)22y x x =-++=+.15.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数k y x=的图象上,1OA =,6OC =,则正方形ADEF 的边长为 2 .【解答】解:1OA =,6OC =,B ∴点坐标为(1,6),166k ∴=⨯=,∴反比例函数解析式为6y x =,设AD t =,则1OD t =+,E ∴点坐标为(1,)t t +,(1)6t t ∴+=,整理为260t t +-=,解得13t =-(舍去),22t =,∴正方形ADEF 的边长为2.故答案为:2.16.如图,已知C ,D 是以AB 为直径的半圆周上的两点,O 是圆心,半径2OA =,120COD ∠=︒,则图中阴影部分的面积等于 3 .【解答】解:图中阴影部分的面积221120222360ππ⨯⨯=⨯-423ππ=- 23π=. 答:图中阴影部分的面积等于23π. 故答案为:23π. 17.如图,在Rt ABC ∆中,90ACB ∠=︒,5AC cm =,12BC cm =,将ABC ∆绕点B 顺时针旋转60︒,得到BDE ∆,连接DC 交AB 于点F ,则ACF ∆与BDF ∆的周长之和为 42 cm .【解答】解:将ABC ∆绕点B 顺时针旋转60︒,得到BDE ∆,ABC BDE ∴∆≅∆,60CBD ∠=︒,12BD BC cm ∴==,BCD ∴∆为等边三角形,12CD BC CD cm ∴===,在Rt ACB ∆中,13AB ===,ACF ∆与BDF ∆的周长之和513121242()AC AF CF BF DF BD AC AB CD BD cm =+++++=+++=+++=, 故答案为:42.18.小明同学为筹备缤纷节财商体验活动,准备在商店购入小商品A 和B .已知A 和B 的单价和为25元,小明计划购入A 的数量比B 的数量多3件,但一共不超过28件.现商店将A 的单价提高20%,B 打8折出售,小明决定将A 、B 的原定数量对调,这样实际花费比原计划少6元.已知调整前后的价格和数量均为整数,求小明原计划购买费用为 311 元.【解答】解:设小商品A 的单价为x 元/件,则B 商品的单价为(25)x -元/件,计划购买小商品Aa 件,则B 商品为(3)a -件,(120%)(3)0.8(25)6(25)(3)x a a x xa x a +-+-+=+--,解得77.4 3.830.8a x a-=+, 由题意得:328a a +-…16.5a …, x 和a 都是整数,∴当14a =时,12x =,小明原计划购买费用为:(25)(3)14121311311xa x a +--=⨯+⨯=.故答案为:311三、解答题:(本大题共2个小题,每小题8分,共16分)解答应写出文字说明,演算步骤或证明过程.19.如图,在ABC ∆和ADE ∆中,点E 在BC 边上,BAC DAE ∠=∠,B D ∠=∠,AB AD =.求证:AEC C ∠=∠.【解答】证明:在ABC ∆和ADE ∆中BAC DAE AB ADB D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABC ADE ASA ∴∆≅∆,AED C ∴∠=∠20.已知二次函数2y x bx c =++的图象与y 轴交于点(0,6)C -,与x 轴的一个交点坐标是(2,0)A -.求二次函数的解析式,并写出顶点D 的坐标;【解答】解:二次函数2y x bx c =++的图象与y 轴交于点(0,6)C -,与x 轴的一个交点坐标是(2,0)A -,∴26(2)20c b c =-⎧⎨--+=⎩, 解得,16b c =-⎧⎨=-⎩, ∴该函数的解析式为26y x x =--,221256()24y x x x =--=--, ∴顶点D 的坐标为1(2,25)4-. 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A (骑自行车)、B (乘公交车)、C (步行)、D (乘私家车)、E (其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是 300 人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是 ,“其他方式”所在扇形的圆心角度数是 ;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.【解答】解:(1)接受调查的总人数是:5430018%=(人), 则步行上学的人数为:30054126122088----=(人).故答案是:300;(2)在扇形统计图中,“步行”的人数所占的百分比是:88100%29.3% 300⨯≈;“其他方式”所在扇形的圆心角度数是:20360100%24300︒⨯⨯=︒.故答案是:29.3%;24︒;(3)画树状图:由图可知,共有20种等可能的结果,其中一男一女有12种结果;则()123 205P==一男一女.22.如图,在平面直角坐标xOy中,正比例函数y kx=的图象与反比例函数myx=的图象都经过点(2,2)A-.(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及ABC∆的面积.【解答】解:(1)根据题意,将点(2,2)A -代入y kx =,得:22k -=,解得:1k =-,∴正比例函数的解析式为:y x =-,将点(2,2)A -代入m y x =,得:22m -=, 解得:4m =-; ∴反比例函数的解析式为:4y x=-;(2)直线:OA y x =-向上平移3个单位后解析式为:3y x =-+,则点B 的坐标为(0,3), 联立两函数解析式34y x y x =-+⎧⎪⎨=-⎪⎩,解得:14x y =-⎧⎨=⎩或41x y =⎧⎨=-⎩, ∴第四象限内的交点C 的坐标为(4,1)-,//OA BC ,1134622ABC OBC C S S BO x ∆∆∴==⨯⨯=⨯⨯=. 23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了%m ,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2%m ,但销售均价比去年减少了%m ,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m 的值.【解答】解:(1)设该果农今年收获樱桃x 千克,根据题意得:4007x x -…,解得:50x …, 答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1%)30200(12%)20(1%)1003020020m m m -⨯+⨯+⨯-=⨯+⨯, 令%m y =,原方程可化为:3000(1)4000(12)(1)7000y y y -++-=, 整理可得:280y y -=解得:10y =,20.125y =10m ∴=(舍去),212.5m = 212.5m ∴=,答:m 的值为12.5.24.如图一所示,ABC ∆是等腰直角三角形,其中90BAC ∠=︒,D 是AB 边上的一点,连接CD ,过A 作AE CD ⊥,E 为垂足,AF AE ⊥,且AF AE =.连接FB(1)求证:CE FB =;(2)如图二,延长FE 交BC 于G 点,如果G 点正好为BC 的中点,EA FB +=.【解答】证明:(1)AE CD ⊥,AF AE ⊥,90AFB AEC ∴∠=∠=︒,AF AE =,AB AC =,Rt AEC Rt AFB(HL)∴∆≅∆CE FB ∴=;(2)如图(二),过点G作GH EG⊥,交CD于H,连接AG,Rt AEC Rt AFB∆≅∆,∴=,BAF CAEAF AE∠=∠,∠+∠=︒,CAE DAE90BAF DAE∴∠+∠=︒,90=,∴∠=︒,且AF AEFAE90AFE AEF∴∠=∠=︒,45⊥∴∠=︒,且GH EGGEH45∴∠=∠=︒,45GEH GHE∴=,EG GH∴=,EHBAC∠=︒,点G是BC中点,=,90AB AC∴=,AG GC⊥,AG GC∴∠=∠=︒,AGC EGH90=,AG GC=,∴∠=∠,EG GHAGE CGH∴∆≅∆AEG CHG SAS()∴=,AE CHBF CE EH HC AE∴==+=+.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.材料一:把一个自然数的个位数字截太再用余下的数加上个位数的4倍,如果和是13的倍数,则原数能被13整除.如果和太大不易看出是否13的倍数,可重复上述「截尾、倍大、相加、验和」的过程,直到能清楚判断为止.例如,判断377是否13的倍数的过程如下:377465+⨯=,65135÷=,所以,377是13的倍数;又例如判断8632是否13的倍数的过程如下:86324871+⨯=,871491+⨯=,91137÷=.所以,8632是13的倍数. 材料二:若一个四位自然数n ,满足千位与个位相同,百位与十位相同,我们称这个数为“对称数”.将“对称数” n 的前两位与后两位交换位置得到一个新的n ',记()99n n F n -'=,例如3113n =,1331n '=,31131331(3113)1899F -==. (1)请用材料一的方法判断1326与3366能否被13整除;(2)若m 、p 是“对称数”,其中m abba =,(05p caac b a =<剟,15c a <剟且a ,b ,c 均为整数),若m 能被3l 整除,且()()36F m F p -=,求p .【解答】解:(1)13264156+⨯=,156439+⨯=,1326∴能被13整除,33664360+⨯=,360436+⨯=,3366∴不能被13整除;(2)m 能被13整除10010410411a b b a a b ∴+++=+能被13整除0b ∴=,05b a <剟,15c a <剟,2a ∴=或3或4或5,100010010100010010()9()99a b b a b a a b F m a b +++----∴==-, 100010010100010010()9()99c a a c a c c a F p c a +++----==-, 9()9()36a b c a ∴---=,24a c ∴-=当2a =时,0c =(舍去);当3a =时,2c =,23<;2332p ∴=;当4a =时,4c =(舍去);当5a =时,6c =(舍去).综上所述,2332p =.26.如图一,已知抛物线2y ax bx c =++的图象经过点(0,3)A 、(1,0)B ,其对称轴为直线:2l x =,过点A 作//AC x 轴交抛物线于点C ,AOB ∠的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m .(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;在四边形AOPE 面积最大时,在线段OE 上取点M ,在y 轴上取点N ,当PM MN AN ++取最小值时,求出此时N 点的坐标. (3)如图二,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P ,使POF ∆成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线与x 轴的另一个交点为D ,由对称性得:(3,0)D ,设抛物线的解析式为:(1)(3)y a x x =--,把(0,3)A 代入得:33a =,1a =,∴抛物线的解析式;243y x x =-+;(2)如图1,AOE ∆的面积是定值,所以当OEP ∆面积最大时,四边形AOPE 面积最大,设2(,43)P m m m -+, OE 平分AOB ∠,90AOB ∠=︒,45AOE ∴∠=︒,AOE ∴∆是等腰直角三角形,3AE OA ∴==,(3,3)E ∴,则OE 的解析式为:y x =, 过P 作//PG y 轴,交OE 于点G ,(,)G m m ∴,22(43)53PG m m m m m ∴=--+=-+-,()22119131533353222222AOE POE AOPE m S S S PG AE m m m ∆∆∴=+=⨯⨯+⋅=+⨯⨯-+-=-+四边形, 302-<, ∴当52m =时,S 有最大值,此时点5(2P ,3)4-;过点A 作倾斜角为45︒的直线AH ,过点P 作PH AH ⊥于点H ,交OE 于点M 、交y 轴于点N ,则点N 为所求,则NH =,此时PM MN PM MN HN PH +=++=为最小值, 设直线PH 的表达式为:y x b =-+,将点P 的坐标代入上式并解得: 直线PH 的表达式为:74y x =-+, 故点7(0,)4N ; (3)存在,理由:①当P在对称轴的左边,且在x轴下方时,如图2,过P作MN y⊥轴,交y轴于M,交l于N,=,OPF∆是等腰直角三角形,且OP PF∴∆≅∆,()OMP PNF AAS∴=,OM PN2-+,则2432(,43)P m m m-+-=-,m m m解得:m=∴的坐标为,;P②当P在对称轴的左边,且在x轴上方时,如图3,同理得:2-=-+,解得:m=(舍去),243m m m故点P;③当P在对称轴的右边,且在x轴下方时,如图3,过P作MN x⊥于M,⊥轴于N,过F作FM MN同理得ONP PMF∆≅∆,∴=,PN FM则2432m m m-+-=-,解得:m=(舍去),P的坐标为;④当P在对称轴的右边,且在x轴上方时,同理得2432-+=-,m m m解得:m=(舍去),点P的坐标为:;综上,点P的坐标为:或或或,.。

2018-2019学年广西河池市罗城县九年级(上)期末数学试卷(解析版)

2018-2019学年广西河池市罗城县九年级(上)期末数学试卷(解析版)

2018-2019学年广西河池市罗城县九年级(上)期末数学试卷一、选择题(本大共12小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是正确的,请将正确答案的代号填入题后的括号内,每小题选对得3分,选错、不选或多选均得零分.1.若=2﹣a,则a的取值范围是()A.a=2B.a>2C.a≥2D.a≤22.一元二次方程x(x﹣1)=0的解是()A.x=0B.x=1C.x=0或x=﹣1D.x=0或x=1 3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.已知圆的半径是5cm,如果圆心到直线的距离是5cm,那么直线和圆的位置关系是()A.相交B.相切C.相离D.内含5.下列事件中,属于必然事件的是()A.抛掷一枚1元硬币落地后,有国徽的一面向上B.打开电视任选一频道,正在播放襄阳新闻C.到一条线段两端点距离相等的点在该线段的垂直平分线上D.某种彩票的中奖率是10%,则购买该种彩票100张一定中奖6.在△ABC中,∠C=90°,AC=3cm,BC=4cm.若⊙A,⊙B的半径分别为1cm,4cm,则⊙A与⊙B的位置关系是()A.外切B.内切C.相交D.外离7.关于x的方程x2+2kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种8.将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG9.数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.﹣1B.1﹣C.2﹣D.﹣210.某市2010年平均房价为每平方米4000元.连续两年增长后,2012年平均房价达到每平方米5500元.设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是()A.5500(1+x)2=4000B.5500(1﹣x)2=4000C.4000(1﹣x)2=5500D.4000(1+x)2=550011.如图,已知圆锥的底面半径为3,母线长为4,则它的侧面积是()A.24πB.12πC.6πD.1212.如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.使有意义的x的取值范围是.14.方程x2﹣5x=0的解是.15.一个扇形的圆心角为90°,半径为2,则这个扇形的弧长为.(结果保留π)16.有两组扑克牌各三张,牌面数字分别都是1,2,3,随意从每组中个抽出一张.数字和是偶数的概率是.17.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形(即阴影部分)的面之和为cm2.(结果保留π).18.如图,△ABC的3个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B顺时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则线段AB扫过的图形面积是平方单位(结果保留π).三、解答题(共66分)解答应写出必要的文字说明、演算过程或推理步骤.19.计算:.20.先化简,再求值,其中a=,b=.21.用适当的方法解下列方程:(1)x2﹣6x﹣16=0(2)(3x﹣2)2=(x+4)222.如图,点A、B、C、D都在⊙O上,OC⊥AB,∠ADC=30°.(1)求∠BOC的度数;(2)求证:四边形AOBC是菱形.23.小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验.(1)他们在一次实验中共掷骰子60次,试验的结果如下:①填空:此次实验中“5点朝上”的频率为;②小红说:“根据实验,出现5点朝上的概率最大.”她的说法正确吗?为什么?(2)小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.24.如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得△A1BC1,使得C 点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.25.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?26.已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.2018-2019学年广西河池市罗城县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大共12小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是正确的,请将正确答案的代号填入题后的括号内,每小题选对得3分,选错、不选或多选均得零分.1.若=2﹣a,则a的取值范围是()A.a=2B.a>2C.a≥2D.a≤2【解答】解:∵=|a﹣2|=2﹣a,∴a﹣2≤0,故选:D.2.一元二次方程x(x﹣1)=0的解是()A.x=0B.x=1C.x=0或x=﹣1D.x=0或x=1【解答】解:方程x(x﹣1)=0,可得x=0或x﹣1=0,解得:x=0或x=1.故选:D.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:B.4.已知圆的半径是5cm,如果圆心到直线的距离是5cm,那么直线和圆的位置关系是()A.相交B.相切C.相离D.内含【解答】解:根据圆心到直线的距离等于圆的半径,则直线和圆相切.故选B.5.下列事件中,属于必然事件的是()A.抛掷一枚1元硬币落地后,有国徽的一面向上B.打开电视任选一频道,正在播放襄阳新闻C.到一条线段两端点距离相等的点在该线段的垂直平分线上D.某种彩票的中奖率是10%,则购买该种彩票100张一定中奖【解答】解:A、不一定发生,是随机事件,故选项错误,B、不一定发生,是随机事件,故选项错误,C、是必然事件,故正确,D、不一定发生,是随机事件,故选项错误,故选:C.6.在△ABC中,∠C=90°,AC=3cm,BC=4cm.若⊙A,⊙B的半径分别为1cm,4cm,则⊙A与⊙B的位置关系是()A.外切B.内切C.相交D.外离【解答】解:∵∠C=90°,AC=3cm,BC=4cm,∴AB==5cm,∵⊙A,⊙B的半径分别为1cm,4cm,又∵1+4=5,∴⊙A与⊙B的位置关系是外切.故选:A.7.关于x的方程x2+2kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【解答】解:△=4k2﹣4(k﹣1)=(2k﹣1)2+3,∵(2k﹣1)2≥0,∴(2k﹣1)2+3>0,即△>0,∴k为任何实数,方程都有两个不相等的实数根.故选:B.8.将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG【解答】解:由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE.故选:A.9.数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.﹣1B.1﹣C.2﹣D.﹣2【解答】解:∵数轴上表示1,的对应点分别为A,B,∴AB=﹣1,∵点B关于点A的对称点为C,∴AC=AB.∴点C的坐标为:1﹣(﹣1)=2﹣.故选:C.10.某市2010年平均房价为每平方米4000元.连续两年增长后,2012年平均房价达到每平方米5500元.设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是()A.5500(1+x)2=4000B.5500(1﹣x)2=4000C.4000(1﹣x)2=5500D.4000(1+x)2=5500【解答】解:设这两年平均房价年平均增长率为x,则2011年的房价为4000×(1+x),2012年的房价为4000×(1+x)(1+x)=4000×(1+x)2,即所列的方程为4000(1+x)2=5500,故选:D.11.如图,已知圆锥的底面半径为3,母线长为4,则它的侧面积是()A.24πB.12πC.6πD.12【解答】解:底面半径为3,则底面周长=6π,侧面积=×6π×4=12π.故选:B.12.如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A.B.C.D.【解答】解:因为⊙O的直径为分米,则半径为分米,⊙O的面积为π()2=平方分米;正方形的边长为=1分米,面积为1平方分米;因为豆子落在圆内每一个地方是均等的,所以P(豆子落在正方形ABCD内)==.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)13.使有意义的x的取值范围是x≥2.【解答】解:根据二次根式的意义,得x﹣2≥0,解得x≥2.14.方程x2﹣5x=0的解是x1=0,x2=5.【解答】解:直接因式分解得x(x﹣5)=0,解得x1=0,x2=5.15.一个扇形的圆心角为90°,半径为2,则这个扇形的弧长为π.(结果保留π)【解答】解:l===π.16.有两组扑克牌各三张,牌面数字分别都是1,2,3,随意从每组中个抽出一张.数字和是偶数的概率是.【解答】解:列表得:∴一共有9种情况,和为偶数的有5种情况;∴数字和是偶数的概率是.17.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形(即阴影部分)的面之和为cm2.(结果保留π).【解答】解:∵两等圆⊙A与⊙B外切,∴AD=BD=AB=2,∵∠C=120°∴∠CAB+∠CBA=60°设∠CAB=x°,∠CBA=y°则x+y=60∴图中两个扇形(即阴影部分)的面积之和为+===π,故答案为:π.18.如图,△ABC的3个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B顺时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则线段AB扫过的图形面积是平方单位(结果保留π).【解答】解:在Rt△ABC中,由勾股定理,得AB===,由图形可知,线段AB扫过的图形为扇形ABA′,旋转角为90°,∴线段AB扫过的图形面积===.故答案为:.三、解答题(共66分)解答应写出必要的文字说明、演算过程或推理步骤.19.计算:.【解答】解:原式=﹣=4﹣2=2.20.先化简,再求值,其中a=,b=.【解答】解:原式=÷=•=,当a=+1,b=﹣1时,原式==.21.用适当的方法解下列方程:(1)x2﹣6x﹣16=0(2)(3x﹣2)2=(x+4)2【解答】解:(1)x2﹣6x﹣16=0(x﹣8)(x+2)=0,∴x﹣8=0 或x+2=0,∴x1=8,x2=﹣2;(2)(3x﹣2)2=(x+4)2移项得:(3x﹣2)2﹣(x+4)2=0,(3x﹣2+x+4)(3x﹣2﹣x﹣4)=0,即(4x+2)(2x﹣6)=0,∴x1=﹣,x2=3.22.如图,点A、B、C、D都在⊙O上,OC⊥AB,∠ADC=30°.(1)求∠BOC的度数;(2)求证:四边形AOBC是菱形.【解答】(1)解:∵点A、B、C、D都在⊙O上,OC⊥AB,∴=,∵∠ADC=30°,∴∠AOC=∠BOC=2∠ADC=60°,∴∠BOC的度数为60°;(2)证明:∵=,∴AC=BC,AO=BO,∵∠BOC的度数为60°,BO=CO∴△BOC为等边三角形,∴BC=BO=CO,∴AO=BO=AC=BC,∴四边形AOBC是菱形.23.小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验.(1)他们在一次实验中共掷骰子60次,试验的结果如下:①填空:此次实验中“5点朝上”的频率为;②小红说:“根据实验,出现5点朝上的概率最大.”她的说法正确吗?为什么?(2)小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.【解答】解:(1)①20÷60=;②说法是错误的.在这次试验中,“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.因为当试验的次数较大时,频率稳定于概率,但并不完全等于概率.(2),由表格可以看出,总情况数有36种,之和为7的情况数最多,为6种,所以P(点数之和为7)==.24.如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得△A1BC1,使得C 点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.【解答】(1)解:∵∠ABC=120°,∴∠CBC1=180°﹣∠ABC=180°﹣120°=60°,∴旋转角为60°;(2)证明:由题意可知:△ABC≌△A1BC1,∴A1B=AB,∠C=∠C1,由(1)知,∠ABA1=60°,∴△A1AB是等边三角形,∴∠BAA1=60°,∴∠BAA1=∠CBC1,∴AA1∥BC(同位角相等,两直线平行),∴∠A1AC=∠C(两直线平行,内错角相等),∴∠A1AC=∠C1.25.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.26.已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.【解答】(1)证明:连接OE.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°;在△BOE中,OB=OE,∠B=60°,∴∠B=∠OEB=∠BOE=60°,∴∠BOE=∠A=60°,∴OE∥AC(同位角相等,两直线平行);∵EF⊥AC,∴OE⊥EF,即直线EF是⊙O的切线;(2)解:连接DF.∵DF与⊙O相切,∴∠ADF=90°.设⊙O的半径是r,则EB=r,EC=4﹣r,AD=4﹣2r.在Rt△ADF中,∠A=60°,∴AF=2AD=8﹣4r.∴FC=4r﹣4;在Rt△CEF中,∵∠C=60°,∴EC=2FC,∴4﹣r=2(4r﹣4),解得,r=;∴⊙O的半径是.。

2018-2019学年新疆九年级(上)期末数学试卷

2018-2019学年新疆九年级(上)期末数学试卷学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

一、选择题1、一元二次方程x2-4x+5=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根2、抛物线y=(x-1)2+2的顶点坐标是()A. (1,2)B. (1,-2)C. (-1,2)D. (-1,-2)3、下列图形:任取一个是中心对称图形的概率是()A. B.C. D. 14、若正六边形的半径长为4,则它的边长等于()A. 4B. 2C. 2D. 45、如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A. 40°B. 50°C. 80°D. 100°6、如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A. 50°B. 60°C. 70°D. 80°7、如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB=.将⊙P沿着与y轴平行的方向平移多少距离时⊙P与x轴相切()A. 1B. 2C. 3D. 1或38、在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是()A. B.C. D.二、填空题1、已知点P(a+1,1)关于原点的对称点在第四象限,则a的取值范围是______.2、已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是______.3、某文具店七月份销售铅笔200支,八,九两个月销售量连续增长,若月平均增长率为x,则该文具店九月份销售铅笔的支数是______(用含有x的代数式表达).4、一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,若干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,经过大量重复实验后,发现摸到绿球的频率稳定在0.2,则袋中约有绿球______个.5、如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是______.6、如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上,则剪下的扇形的弧长是______(结果保留x).7、已知二次函数y=3(x-1)2+k的图象上三点A(2,y1),B(3,y2),C(-4,y3),则y1、y2、y3的大小关系是______.8、如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为______.三、解答题1、一个圆形零件的部分碎片如图所示,请你利用尺规作图找到圆心O.(要求:不写作法,保留作图痕迹)______2、解下列方程(1)3x2+2x-5=0;(2)(1-2x)2=x2-6x+9.______3、已知关于x的一元二次方程x2+(2k+1)x+k2=0有两个不相等的实数根.(1)求k的取值范围;(2)设方程的两个实数根分别为x1,x2,当k=2时,求x12+x22的值.______4、一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.______四、计算题1、在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.______2、某商场购进一批单价为4元的日用品,若按每件5元的价格销售,每天能卖出300件,若按每件6元的价格销售,每天能卖出200件,假定每天销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)令每天的利润为W,求出W与x之间的函数关系式;当销售价格定为多少时,才能使每天的利润最大?每天最大利润是多少?______3、如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若AB=4+,BC=2,求⊙O的半径.______4、如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN 的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.______2018-2019学年新疆九年级(上)期末数学试卷参考答案一、选择题第1题参考答案: D解:∵a=1,b=-4,c=5,∴△=b2-4ac=(-4)2-4×1×5=-4<0,所以原方程没有实数根.故选:D.把a=1,b=-4,c=5代入△=b2-4ac进行计算,根据计算结果判断方程根的情况.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: A解:y=(x-1)2+2的顶点坐标为(1,2).故选:A.根据抛物线的顶点式解析式写出顶点坐标即可.本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: C解:∵共有4种等可能的结果,任取一个是中心对称图形的有3种情况,∴任取一个是中心对称图形的概率是:.故选:C.由共有4种等可能的结果,任取一个是中心对称图形的有3种情况,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: A解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的外接圆半径等于4,则正六边形的边长是4.故选:A.根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.此题主要考查了正多边形和圆,利用正六边形的外接圆半径和正六边形的边长将组成一个等边三角形得出是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: B解:由题意得∠A=∠BOC=×100°=50°.故选:B.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案.本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: C解:∵△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置∴∠BCB′=∠ACA′=20°∵AC⊥A′B′,∴∠BAC=∠A′=90°-20°=70°.故选:C.根据旋转的性质可知,∠BCB′=∠ACA′=20°,又因为AC⊥A′B′,则∠BAC的度数可求.本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: D解:连接PA,作PC⊥AB于点C,由垂径定理得:AC=AB=×2=,在直角△PAC中,由勾股定理得:PA2=PC2+AC2,即PA2=12+()2=4,∴PA=2,∴○P的半径是2.将○P向上平移,当○P与x轴相切时,平移的距离=1+2=3;将○P向下平移,当○P与x轴相切时,平移的距离=2-1=1.故选:D.作PC⊥AB于点C,由垂径定理即可求得AC的长,根据勾股定理即可求得PA的长,再分点P 向上平移与向下平移两种情况进行讨论即可.本题考查的是直线与圆的位置关系,通过垂径定理把求线段的长的问题转化为解直角三角形的问题是关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第8题参考答案: D解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,-m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,-m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,-m>0,正确,故选:D.本题可先由一次函数y=-mx+n2图象得到字母系数的正负,再与二次函数y=x2+m的图象相比较看是否一致.本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法,难度适中.二、填空题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: a<-1解:∵P(a+1,1)关于原点对称的点在第四象限,∴P点在第二象限,∴a+1<0,解得:a<-1,故答案为:a<-1.首先根据题意判断出P点在第二象限,再根据第二象限内点的坐标符号(-,+),可得到不等式a+1<0,然后解出a的范围即可.此题主要考查了关于原点对称的点的坐标特点,以及各象限内点的坐标符号,关键是判断出P点所在象限.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 3π解:∵圆锥的底面圆半径是1,∴圆锥的底面圆的周长=2π,则圆锥的侧面积=×2π×3=3π,故答案为:3π.求出圆锥的底面圆的周长,根据扇形的面积公式计算即可.本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: 200(1+x)2解:若月平均增长率为x,则该文具店九月份销售铅笔的支数是:200(1+x)2,故答案为:200(1+x)2.设出八、九月份的平均增长率,则八月份的销售量是200(1+x),九月份的销售量是200(1 +x)2,据此列方程即可.本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“-”.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: 3解:设绿球的个数为x,根据题意,得:=0.2,解得:x=3,经检验x=3是原分式方程的解,即袋中有绿球3个,故答案为:3直接利用绿球个数÷总数=0.2,进而得出答案.此题主要考查了利用频率估计概率,正确掌握频率求法是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: 6解:连接AO,∵半径是5,CD=1,∴OD=5-1=4,根据勾股定理,AD===3,∴AB=3×2=6,因此弦AB的长是6.连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: 6π解:如图,连接BC.∵∠BAC=90°,∴BC是直径,∵AB=AC,BC=24,∴AB=AC=12,∴的长==6π.故答案为6π圆的半径为12,求出AB的长度,用弧长公式可求得弧BC的长度.本题考查弧长公式,解题的关键是理解题意,灵活运用所学知识解决问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: y1<y2<y3解:∵y=3(x-1)2+k,∴图象的开口向上,对称轴是直线x=1,A(-4,y3)关于直线x=-2的对称点是(6,y3),∵2<3<6,∴y1<y2<y3,故答案为y1<y2<y3.根据二次函数的解析式得出图象的开口向上,对称轴是直线x=1,根据x>1时,y随x的增大而增大,即可得出答案.本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第8题参考答案: 10096解:由图象可知点B2019在x轴上,∵OA=,OB=4,∠AOB=90°,∴AB=,∴B2(10,4),B4(20,4),B6(30,4),…∴B2018(10090,4).∴点B2019横坐标为10090++=10096.故答案为:10096.由图象可知点B2019在第一象限,求出B2,B4,B6的坐标,探究规律后即可解决问题.本题考查坐标与图形的变化-旋转、勾股定理等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题,属于中考常考题型.三、解答题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 解:如图,点O即为所求.作弦AB,AC,再作出线段AB,AC的垂直平分线相交于点O,则O点即为所求.本题考查的是作图-应用与设计作图,熟知垂径定理是解答此题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 解:(1)(3x+5)(x-1)=0,3x+5=0或x-1=0,所以x1=-,x2=1;(2)(2x-1)2-(x-3)2=0,(2x-1+x-3)(2x-1-x+3)=0,2x-1+x-3=0或2x-1-x+3=0,所以x1=,x2=2.(1)利用因式分解法解方程;(2)先变形为(2x-1)2-(x-3)2=0,然后利用因式分解法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: 解:(1)∵方程有两个不相等的实数根,∴△>0,即(2k+1)2-4k2=4k+1>0,解得k>-;(2)当k=2时,方程为x2+5x+4=0,∵x1+x2=-5,x1x2=4,∴x12+x22=(x1+x2)2-2x1x2=25-8=17.(1)由方程根的判别式可得到关于k的不等式,则可求得k的取值范围;(2)由根与系数的关系,可求x1+x2=-5,x1x2=4,代入求值即可.本题主要考查根的判别式及根与系数的关系,熟练掌握根的判别式与根的个数之间的关系是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: 解:(1)根据题意可知,横彩条的宽度为xcm,∴,解得:0<x<8,y=20×x+2×12•x-2×x•x=-3x2+54x,即y与x之间的函数关系式为y=-3x2+54x(0<x<8);(2)根据题意,得:-3x2+54x=×20×12,整理,得:x2-18x+32=0,解得:x1=2,x2=16(舍),∴x=3,答:横彩条的宽度为3cm,竖彩条的宽度为2cm.(1)由横、竖彩条的宽度比为3:2知横彩条的宽度为xcm,根据:三条彩条面积=横彩条面积+2条竖彩条面积-横竖彩条重叠矩形的面积,可列函数关系式;(2)根据:三条彩条所占面积是图案面积的,可列出关于x的一元二次方程,整理后求解可得.本题主要考查根据实际问题列函数关系式及一元二次方程的实际应用能力,数形结合根据“三条彩条面积=横彩条面积+2条竖彩条面积-横竖彩条重叠矩形的面积”列出函数关系式是解题的关键.四、计算题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 解:(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,刚好是男生的概率==;(2)画树状图为:共有12种等可能的结果数,其中刚好是一男生一女生的结果数为6,所以刚好是一男生一女生的概率==.(1)直接根据概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 解:(1)由题意可设y=kx+b,依题意得:,解得:,∴y与x之间的关系式为:y=-100x+800;(2)设利润为W元,则W=(x-4)(-100x+800)=-100x2+1200x-3200=-100(x-6)2+400,∴当x=6时,W取得最大值,最大值为400元.答:当销售价格定为6元时,每天的利润最大,最大利润为400元.(1)设出解析式,把(5,300),(6,200)代入求出系数即可;(2)根据“总利润=单件利润×销售量”列出二次函数解析式,根据二次函数的性质求出最值即可.本题考查的是待定系数法求一次函数解析式和二次函数的应用,正确运用待定系数法、掌握二次函数的性质是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: (1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥PA,∴PA是⊙O的切线;(2)解:过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=2,∴BE=BC=,CE=3,∵AB=4+,∴AE=AB-BE=4,∴在Rt△ACE中,AC==5,∴AP=AC=5.∴在Rt△PAO中,OA=,∴⊙O的半径为.(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=A C得出∠P=30°,继而由∠OAP=∠AOC-∠P,可得出OA⊥PA,从而得出结论;(2)过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=2,于是得到BE=BC=,CE=3,根据勾股定理得到AC==5,于是得到AP=AC=5.解直角三角形即可得到结论.本题考查了切线的判定及圆周角定理,解答本题的关键是掌握切线的判定定理、圆周角定理及含30°直角三角形的性质.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: 解:(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:.故抛物线的解析式为y=x2-4x+3.(2)设点M的坐标为(m,m2-4m+3),设直线BC的解析式为y=kx+3,把点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=-1,∴直线BC的解析式为y=-x+3.∵MN∥y轴,∴点N的坐标为(m,-m+3).∵抛物线的解析式为y=x2-4x+3=(x-2)2-1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=-m+3-(m2-4m+3)=-m2+3m=-(m-)2+,∴当m=时,线段MN取最大值,最大值为.(3)存在.点F的坐标为(2,-1)或(0,3)或(4,3).当以AB为对角线,如图1,∵四边形AFBE为平行四边形,EA=EB,∴四边形AFBE为菱形,∴点F也在对称轴上,即F点为抛物线的顶点,∴F点坐标为(2,-1);当以AB为边时,如图2,∵四边形AFBE为平行四边形,∴EF=AB=2,即F2E=2,F1E=2,∴F1的横坐标为0,F2的横坐标为4,对于y=x2-4x+3,当x=0时,y=3;当x=4时,y=16-16+3=3,∴F点坐标为(0,3)或(4,3).综上所述,F点坐标为(2,-1)或(0,3)或(4,3).本题考查了待定系数法求函数解析式、二次函数图象上点的坐标特征、二次函数的性质、两点间的距离以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)利用二次函数的性质解决最值问题;(3)注意分类思想的运用.(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式;(2)设出点M的坐标以及直线BC的解析式,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,结合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度关于m 的函数关系式,再结合点M在x轴下方可找出m的取值范围,利用二次函数的性质即可解决最值问题;(3)讨论:当以AB为对角线,利用EA=EB和四边形AFBE为平行四边形得到四边形AFBE为菱形,则点F也在对称轴上,即F点为抛物线的顶点,所以F点坐标为(-1,-4);当以AB为边时,根据平行四边形的性质得到EF=AB=4,则可确定F的横坐标,然后代入抛物线解析式得到F点的纵坐标.。

新疆维吾尔自治区2018届九年级上学期期末考试数学试卷含答案

軒纒雄吾余负治区 軒疆生户建设兵团A. 摸出的是3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球2. 下列方程中,没有实数根的是 A.= 0C. - 2戈 + 1 = 0D. 摸出的是2个黑球、1个白球B. x 2 -2x -1 =0 D. *2 - 2太 + 2= 02017 -2018学年第一学期期末考试试卷九年级数学中一次摸出3个球,下列事件是不可能事件的是 3. 如图,00的直径仙垂直于弦⑶,垂足为= 15°,半径为2,则弦Ci >的长为 A.2 B.l C .^2D.44. 一元二次方程-2^-1 =0配方后所得的方程为A. (*-2)2=0B. (x - I)2= 2 C. (x - I)2= 1D. (x -2)2= 25. 关于抛物线y =x 2-2x + l ,下列说法错误的是A •开口向上 TB.与*轴有一个交点C.X#称轴是直线^ =1 D •当欠>1时,y 随*的增大而减小 6. 如图,将AABC 在平面内绕点A 逆时针旋转到AAB 'C '的位置,若= 55。

,则ZCW 的 度数为A.35°B.45°C.55°D.65°自治区、兵团2017-2018学年第一学期九年级数学期末考试试卷(人教版)第1页共6页从袋子A7. 某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形 绿地,两块绿地之间及周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的^•,设人行通道的宽度为x 千米,则下列方程正确的是 A. (2 -3*)(1 - 2x)= 1B. y(2 -3^)(1 -2x) = 1C.^(2 -3*)(1 -2x) = 1D. j(2 -3*)(1 -2x) =28.如图,是二次函数y = ax 2+ bx + c(a 0)的图象的一部分,给出下列命题:①<0; ②6 > 2a;③a + b + c = 0;@8a + c > 0;⑤a*2+ bx + c = 0的两根分别为一 3和1.其中正 确的命题有A.2个B.3个C.4个D.5个二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写 在题后的横线上) 9. 已知关于》的方程X 2+3x + a = 0有一个根为_ 2,则a = _______ .10. 对于下列图形:①等边三角形;②矩形;③平行四边形;④菱形;⑤正八边形;⑥圆.其中 既是轴对称图形,又是中心对称图形的是 ________ (填写图形的相应编号)11. 某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄 球、蓝球的频率为35%、25%和40%,估计口M 中黄色玻璃球有: '个.12. 抛物线y =-x 2+bx+c 的部分图象如图所示,则关于%的一元二次方程-x 2+b x + c=0 ’的解为________ _• 13. 60°的圆心角所对的弧长为2OTC IW ,则此弧所在圆的半径为 ____________ .14. 如.图,OO 是AABC 的外接圆,直径仙= 4,AABC = Z/MCJMC 长为 _______________ .(1)画出△ ABC关于原点0成中心对称的△ A, B, C,;(2)写出△A1B1C1的顶点坐标.(3)求出AA'/i的面积.三、解答题(本大题共8题,共50分.解答题应写出文字说明、演算步骤。

2018-2019学年浙江省湖州市南浔区九年级(上)期末数学试卷(解析版)

2018-2019学年浙江省湖州市南浔区九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)下列事件属于必然事件的是()A.在一个装着白球和黑球的袋中摸球,摸出红球B.抛掷一枚硬币2次都是正面朝上C.在标准大气压下,气温为5℃时,冰能熔化为水D.从车间刚生产的产品中任意抽一个,是次品2.(3分)已知抛物线y=(x﹣1)2+2,下列说法错误的是()A.顶点坐标为(1,2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3.(3分)如图,已知在△ABC中,DE∥BC,=,DE=2,则BC的长是()A.3B.4C.5D.64.(3分)⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定5.(3分)如图,已知BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.20°B.25°C.30°D.40°6.(3分)在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cos B B.b=a•tan B C.b=c•sin B D.a=b•tan A 7.(3分)二次函数y=ax2+bx+c的部分对应值如下表利用二次函数的图象可知,当函数值y>0时,x的取值范围是()A.0<x<2B.x<0或x>2C.﹣1<x<3D.x<﹣1或x>3 8.(3分)《九章算术》是我国古代第一部自成体系的数学专著,书中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深两寸,锯道长八寸,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深2寸(ED=2寸),锯道长8寸”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算圆形木材的直径AC是()A.5寸B.8寸C.10寸D.12寸9.(3分)如图,已知在△ABC纸板中,AC=4,BC=8,AB=11,P是BC上一点,沿过点P的直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么CP 长的取值范围是()A.0<CP≤1B.0<CP≤2C.1≤CP<8D.2≤CP<810.(3分)如图,已知在平面直角坐标系xOy中,O为坐标原点,抛物线y=﹣x2+bx+c 经过原点,与x轴的另一个交点为A(﹣6,0),点C是抛物线的顶点,且⊙C与y轴相切,点P为⊙C上一动点.若点D为PA的中点,连结OD,则OD的最大值是()A.B.C.2D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)对一批防PM2.5口罩进行抽检,经统计合格口罩的概率是0.9,若这批口罩共有2000只,则其中合格的大约有只.12.(4分)b和2的比例中项是4,则b=.13.(4分)如果一个正多边形的每个外角都等于72°,那么它是正边形.14.(4分)如图,河坝横断面迎水坡AB的坡比为1:(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是m.15.(4分)如图,是由10个小正三角形构造成的网格图(每个小正三角形的边长均为1),则sin(α+β)=.16.(4分)如图,已知点D,E是半圆O上的三等分点,C是弧DE上的一个动点,连结AC和BC,点I是△ABC的内心,若⊙O的半径为3,当点C从点D运动到点E时,点I随之运动形成的路径长是.三、解答题(本题有8小题,共66分)17.(6分)计算:(1)已知=,求的值;(2)6cos245°﹣2tan30°•tan60°.18.(6分)甲、乙两人进行摸牌游戏现有三张除数字外都相同的牌,正面分别标有数字2,5,6.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为4的倍数,则甲获胜;若抽取的数字和为奇数,则乙获胜这游戏公平吗?请用概率的知识加以解释.19.(6分)如图,在由12个小正方形构造成的网格图(每个小正方形的边长均为1)中,点A,B,C(1)画出△ABC绕点B顺时针旋转90°后得到的△A1B1C1;(2)若点D,E也是网格中的格点,画出△BDE,使得△BDE与△ABC相似(不包括全等),并求相似比.20.(8分)超速行驶被称为“马路第一杀手”为了让驾驶员自觉遵守交通规则,湖浔大道公路检测中心在一事故多发地段安装了一个测速仪器,如图所示,已知检测点设在距离公路10米的A处,测得一辆汽车从B处行驶到C处所用时间为1.35秒.已知∠B=45°,∠C=30°.(1)求B,C之间的距离(结果保留根号);(2)如果此地限速为70km/h,那么这辆汽车是否超速?请说明理由.(参考数据;≈1.7,≈1.4)21.(8分)如图,已知在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AE=6,劣弧DE的长为π,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).22.(10分)“辑里湖丝”是世界闻名最好的蚕丝,是浙江省的传统丝织品,属于南浔特产,南浔某公司用辑丝为原料生产的新产品丝巾,其生产成本为20元/条.此产品在网上的月销售量y(万件)与售价x(元/件)之间的函数关系为y=﹣0.2x+10(由于受产能限制,月销售量无法超过4万件).(1)若该产品某月售价为30元/件时,则该月的利润为多少万元?(2)若该产品第一个月的利润为25万元,那么该产品第一个月的售价是多少?(3)第二个月,该公司将第一个月的利润25万元(25万元只计入第二个月成本)投入研发,使产品的生产成本降为18元/件.为保持市场占有率,公司规定第二个月产品售价不超过第一个月的售价.请计算该公司第二个月通过销售产品所获的利润w为多少万元?23.(10分)如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x﹣1)(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求点A与点B的坐标;(2)若a=,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.24.(12分)感知定义在一次数学活动课中,老师给出这样一个新定义:如果三角形的两个内角α与β满足α+2β=90°,那么我们称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=10,弦AD=6,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.2018-2019学年浙江省湖州市南浔区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)下列事件属于必然事件的是()A.在一个装着白球和黑球的袋中摸球,摸出红球B.抛掷一枚硬币2次都是正面朝上C.在标准大气压下,气温为5℃时,冰能熔化为水D.从车间刚生产的产品中任意抽一个,是次品【分析】根据事件的分类判断,必然事件就是一定发生的事件,根据定义即可解决.【解答】解:A、在一个装着白球和黑球的袋中摸球,摸出红球,是不可能事件;B、抛掷一枚硬币2次都是正面朝上是随机事件;C、在标准大气压下,气温为5℃时,冰能熔化为水是必然事件;D、从车间刚生产品中任意抽一个,是次品,是随机事件;故选:C.【点评】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.(3分)已知抛物线y=(x﹣1)2+2,下列说法错误的是()A.顶点坐标为(1,2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小【分析】已知抛物线解析式为顶点式,根据顶点式的特点判断顶点坐标,开口方向,最值及增减性.【解答】解:由抛物线y=(x﹣1)2+2可知,顶点坐标为(1,2),对称轴为直线x=1,抛物线开口向上,函数有最小值为2,x>1时y随x增大而增大,∴A、B、C判断正确,D错误.故选:D.【点评】本题考查了二次函数的性质.关键是熟练掌握顶点式与抛物线开口方向,增减性,顶点坐标及最大(小)值之间的联系.3.(3分)如图,已知在△ABC中,DE∥BC,=,DE=2,则BC的长是()A.3B.4C.5D.6【分析】由DE∥BC可证△ADE∽△ABC,得到,即可求BC的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴,∵,∴BC=6.故选:D.【点评】本题主要考查了相似三角形的判定与性质,熟练掌握定理是解题的关键.4.(3分)⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定【分析】圆心O到直线l的距离d=3,而⊙O的半径R=4.又因为d<R,则直线和圆相交.【解答】解:∵圆心O到直线l的距离d=3,⊙O的半径R=4,则d<R,∴直线和圆相交.故选A.【点评】考查直线与圆位置关系的判定.要掌握半径和圆心到直线的距离之间的数量关系.5.(3分)如图,已知BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.20°B.25°C.30°D.40°【分析】由BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC 的度数.【解答】解:∵=,∠AOB=60°,∴∠BDC=∠AOB=30°.故选:C.【点评】此题考查了圆周角定理.此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.6.(3分)在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cos B B.b=a•tan B C.b=c•sin B D.a=b•tan A【分析】本题可以利用锐角三角函数的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,则tan A=,tan B=,cos B=,tan B=;因而b=c•sin B=a•tan B,a=b•tan A,错误的是b=c•cos B.故选:A.【点评】利用锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.7.(3分)二次函数y=ax2+bx+c的部分对应值如下表利用二次函数的图象可知,当函数值y>0时,x的取值范围是()A.0<x<2B.x<0或x>2C.﹣1<x<3D.x<﹣1或x>3【分析】函数值y=0对应的自变量值是:﹣1、3,在它们之间的函数值都是正数.由此可得y>0时,x的取值范围.【解答】解:从表格可以看出,二次函数毒刺横轴为直线x=1,故当x=﹣1或3时,y =0;因此当﹣1<x<3时,y>0.故选:C.【点评】此题考查了二次函数与x轴的交点、二次函数的性质等知识,解题的关键是要认真观察,利用表格中的信息解决问题.8.(3分)《九章算术》是我国古代第一部自成体系的数学专著,书中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深两寸,锯道长八寸,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深2寸(ED=2寸),锯道长8寸”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算圆形木材的直径AC是()A.5寸B.8寸C.10寸D.12寸【分析】设⊙O的半径为r.在Rt△AEO中,AE=4,OE=r﹣2,OA=r,则有r2=42+(r﹣2)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△AEO中,AE=4,OE=r﹣2,OA=r,则有r2=42+(r﹣2)2,解得r=5,∴⊙O的直径为10寸,故选:C.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.9.(3分)如图,已知在△ABC纸板中,AC=4,BC=8,AB=11,P是BC上一点,沿过点P的直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么CP 长的取值范围是()A.0<CP≤1B.0<CP≤2C.1≤CP<8D.2≤CP<8【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【解答】解:如图所示,过P作PD∥AB交AC于D或PE∥AC交AB于E,则△PCD ∽△BCA或△BPE∽△BCA,此时0<PC<8;如图所示,过P作∠BPF=∠A交AB于F,则△BPF∽△BAC,此时0<PC<8;如图所示,过P作∠CPG=∠B交AC于G,则△CPG∽△CAB,此时,△CPG∽△CBA,当点G与点A重合时,CA2=CP×CB,即42=CP×8,∴CP=2,∴此时,0<CP≤2;综上所述,CP长的取值范围是0<CP≤2.故选:B.【点评】本题主要考查了相似三角形的性质,相似三角形的对应角相等,对应边的比相等.10.(3分)如图,已知在平面直角坐标系xOy中,O为坐标原点,抛物线y=﹣x2+bx+c 经过原点,与x轴的另一个交点为A(﹣6,0),点C是抛物线的顶点,且⊙C与y轴相切,点P为⊙C上一动点.若点D为PA的中点,连结OD,则OD的最大值是()A.B.C.2D.【分析】如图,取点H(6,0),连接PH,由待定系数法可求抛物线解析式,可得点C坐标,可得⊙C半径为4,由三角形中位线的定理可求OD=PH,当点C在PH上时,PH有最大值,即可求解.【解答】解:如图,取点H(6,0),连接PH,∵抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),∴解得:∴抛物线解析式为:y=﹣x2﹣x∴顶点C(﹣3,4),∴⊙C半径为3,∵AO=OH=6,AD=BD,∴OD=PH,∴PH最大时,OD有最大值,∴当点C在PH上时,PH有最大值,∴PH最大值为=3+=3+,∴OD的最大值为:,故选:B.【点评】本题考查了切线的性质,二次函数的性质,三角形中位线定理等知识,添加恰当辅助线是本题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)对一批防PM2.5口罩进行抽检,经统计合格口罩的概率是0.9,若这批口罩共有2000只,则其中合格的大约有1800只.【分析】用这批口罩的只数×合格口罩的概率,列式计算即可得到合格的只数.【解答】解:2000×0.9=2000×0.9=1800(只).故答案为1800.【点评】考查了用样本估计总体,生产中遇到的估算产量问题,通常采用样本估计总体的方法.12.(4分)b和2的比例中项是4,则b=8.【分析】根据题意,b与2的比例中项为4,也就是b:4=4:2,然后再进一步解答即可.【解答】解:根据题意可得:b:4=4:2,解得b=8,故答案为8.【点评】本题考查了比例线段,解题的关键是理解两个数的比例中项,然后列出比例式进一步解答.13.(4分)如果一个正多边形的每个外角都等于72°,那么它是正5边形.【分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【解答】解:这个正多边形的边数:360°÷72°=5.故答案为:5【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.14.(4分)如图,河坝横断面迎水坡AB的坡比为1:(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是6m.【分析】在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.【解答】解:在Rt△ABC中,BC=5米,tan A=1:;∴AC=BC÷tan A=3米,∴AB==6米.故答案为:6.【点评】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.15.(4分)如图,是由10个小正三角形构造成的网格图(每个小正三角形的边长均为1),则sin(α+β)=.【分析】如图,连接BC,构造直角三角形ABC,由正三角形及菱形的对角线平分对角的性质,得出∠BCD=α=30°,∠ABC=90°,从而α+β=∠ACB,分别求出△ABC的边长,利用正弦函数的定义可得答案.【解答】解:如图,连接BC∵上图是由10个小正三角形构造成的网格图∴任意相邻两个小正三角形都组成一个菱形∴∠BCD=α=30°,∠ABC=90°,∴α+β=∠ACB∵每个小正三角形的边长均为1∴AB=2,在Rt△DBC中,==tan60°=∴BC=∴在Rt△ABC中,AC===∴sin(α+β)=sin∠ACB===故答案为:.【点评】本题考查了构造直角三角形求三角函数值,正确作出辅助线,明确正弦函数的定义,是解题的关键.16.(4分)如图,已知点D,E是半圆O上的三等分点,C是弧DE上的一个动点,连结AC和BC,点I是△ABC的内心,若⊙O的半径为3,当点C从点D运动到点E时,点I随之运动形成的路径长是π.【分析】如图,连接AI,BI,作OT⊥AB交⊙O于T,连接AT,TB,以T为圆心,TA 为半径作⊙T,在优弧AB上取一点G,连接AG,BG.证明∠AIB+∠G=180°,推出A,I,B,G四点共圆,退出点I的运动轨迹是即可解决问题.【解答】解:如图,连接AI,BI,作OT⊥AB交⊙O于T,连接AT,TB,以T为圆心,TA为半径作⊙T,在优弧AB上取一点G,连接AG,BG.∵AB是直径,∴∠ACB=90°,∵I是△ABC的内心,∴∠AIB=135°,∵OT⊥AB,OA=OB,∴TA=TB,∠ATB=90°,∴∠AGB=∠ATB=45°,∴∠AIB+∠G=180°,∴A,I,B,G四点共圆,∴点I的运动轨迹是,由题意==,∴∠MTM=30°,易知TA=TM=3,∴点I随之运动形成的路径长是=π,故答案为π.【点评】本题考查了轨迹,垂径定理、圆周角定理、三角形的内心和等边三角形的性质等知识,解题的关键是正确寻找点的运动轨迹,属于中考常考题型.三、解答题(本题有8小题,共66分)17.(6分)计算:(1)已知=,求的值;(2)6cos245°﹣2tan30°•tan60°.【分析】(1)先把化成+1,再代入计算即可;(2)根据特殊角的三角函数进行计算即可得出答案.【解答】解(1)∵=,∴=+1=+1=;(2)6cos245°﹣2tan30°•tan60°=6×()2﹣2××=6×﹣2=1.【点评】此题考查了比例的性质和特殊角的三角函数值,解答本题的关键是掌握比例的性质和几个特殊角的三角函数值.18.(6分)甲、乙两人进行摸牌游戏现有三张除数字外都相同的牌,正面分别标有数字2,5,6.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为4的倍数,则甲获胜;若抽取的数字和为奇数,则乙获胜这游戏公平吗?请用概率的知识加以解释.【分析】(1)根据题意画出树状图得出所有等情况数和两人抽取相同数字的情况数,然后根据概率公式即可得出答案;(2)根据概率公式求出两人抽取的数字和为4的倍数以及和为奇数的概率,然后进行比较即可得出答案.【解答】解:(1)根据题意画树状图如下:共有9种等情况数,其中两人抽取相同数字的有3种,则两人抽取相同数字的概率是=;(2)∵共有9种等情况数,其中两人抽取的数字和为4的倍数有4种,抽取的数字和为奇数的有4种,∴P (和为4的倍数)=,P (和为奇数)=,∴这个游戏公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)如图,在由12个小正方形构造成的网格图(每个小正方形的边长均为1)中,点A ,B ,C(1)画出△ABC 绕点B 顺时针旋转90°后得到的△A 1B 1C 1;(2)若点D ,E 也是网格中的格点,画出△BDE ,使得△BDE 与△ABC 相似(不包括全等),并求相似比.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)直接利用相似图形的性质得出符合题意的答案.【解答】解:(1)如图1所示:△A 1B 1C 1,即为所求;(2)如图2所示:△BDE ,即为所求,相似比为::2.【点评】此题主要考查了相似变换以及旋转变换,正确得出对应点位置是解题关键.20.(8分)超速行驶被称为“马路第一杀手”为了让驾驶员自觉遵守交通规则,湖浔大道公路检测中心在一事故多发地段安装了一个测速仪器,如图所示,已知检测点设在距离公路10米的A处,测得一辆汽车从B处行驶到C处所用时间为1.35秒.已知∠B=45°,∠C=30°.(1)求B,C之间的距离(结果保留根号);(2)如果此地限速为70km/h,那么这辆汽车是否超速?请说明理由.(参考数据;≈1.7,≈1.4)【分析】(1)如图作AD⊥BC于D.则AD=10m,求出CD、BD即可解决问题.(2)求出汽车的速度,即可解决问题,注意统一单位.【解答】解:(1)如图作AD⊥BC于D.则AD=10m,在Rt△ABD中,∵∠B=45°,∴BD=AD=10m,在Rt△ACD中,∵∠C=30°,∴tan30°=,∴CD=AD=10m,∴BC=BD+DC=(10+10)m.(2)结论:这辆汽车超速.理由:∵BC=10+10≈27m,∴汽车速度==20m/s=72km/h,∵72km/h>70km/h,∴这辆汽车超速.【点评】本题考查解直角三角形的应用,锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21.(8分)如图,已知在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AE=6,劣弧DE的长为π,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).【分析】(1)根据切线的判定定理即可证明;(2)根据三角形的面积与扇形面积的差即可求解.【解答】解:(1)直线BC与⊙O相切.理由如下:连接OD.∵AD是∠BAC的平分线,∴∠DAC=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠DAC=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,∴OD⊥BC,∴直线BC与⊙O相切.(2)∵l=,AE=6,劣弧DE的长为π,∴∠DOE=60°.∵∠ODB=90°,∴BD=OD=3,=BD•OD=.∴S△BODS==.扇形DOE答:BE与劣弧DE所围成的部分的面积为﹣.【点评】本题考查了直线与圆的位置关系、弧长计算、扇形面积的计算,解决本题的关键是综合运用相关知识.22.(10分)“辑里湖丝”是世界闻名最好的蚕丝,是浙江省的传统丝织品,属于南浔特产,南浔某公司用辑丝为原料生产的新产品丝巾,其生产成本为20元/条.此产品在网上的月销售量y(万件)与售价x(元/件)之间的函数关系为y=﹣0.2x+10(由于受产能限制,月销售量无法超过4万件).(1)若该产品某月售价为30元/件时,则该月的利润为多少万元?(2)若该产品第一个月的利润为25万元,那么该产品第一个月的售价是多少?(3)第二个月,该公司将第一个月的利润25万元(25万元只计入第二个月成本)投入研发,使产品的生产成本降为18元/件.为保持市场占有率,公司规定第二个月产品售价不超过第一个月的售价.请计算该公司第二个月通过销售产品所获的利润w为多少万元?【分析】(1)根据题意销售量与售价的关系式代入值即可求解;(2)根据月利润等于销售量乘以单件利润即可求解;(3)根据根据(2)中的关系利用二次函数的性质即可求解.【解答】解:(1)根据题意,得当x=30时,y=﹣0.2×30+10=4,4×10=40答:该月的利润为40万元.(2)25=(x﹣20)(﹣0.2x+10),解得x1=45,x2=25(月销售量无法超过4万件,舍去).答:该产品第一个月的售价是45元.(3)∵由于受产能限制,月销售量无法超过4万件,且公司规定第二个月产品售价不超过第一个月的售价.∴30≤x≤45,w=y(x﹣18)﹣25=(﹣0.2x+10)(x﹣18)﹣25=﹣0.2x2+13.6x﹣205=﹣0.2(x﹣34)2+26.2.当30≤x≤45时,2≤w≤26.2.当x取45时,w有最小值是2.答:该公司第二个月通过销售产品所获的利润w至少为2万元,最多获利润26.2万元..【点评】本题考查了二次函数的应用,解决本题的关键是掌握销售问题各个量之间的关系并熟练运用二次函数.23.(10分)如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x﹣1)(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求点A与点B的坐标;(2)若a=,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【分析】(1)y=a(x+3)(x﹣1),令y=0,则x=1或﹣3,即可求解;(2)分∠MAO=45°、∠M′AO=45°两种情况,分别求解即可;(3)分当BD是矩形的边、BD是矩形的边两种情况,分别求解即可.【解答】解:(1)y=a(x+3)(x﹣1),令y=0,则x=1或﹣3,故点A、B的坐标分别为:(﹣3,0)、(1,0);(2)抛物线的表达式为:y=(x+3)(x﹣1)…①,当∠MAO=45°时,如图所示,则直线AM的表达式为:y=x…②,联立①②并解得:m=x=4或﹣3(舍去﹣3),故点M(4,7);②∠M′AO=45°时同理可得:点M(﹣2,﹣1);故:﹣2≤m≤4;(3)①当BD是矩形的对角线时,如图2所示,过点Q作x轴的平行线EF,过点B作BE⊥EF,过点D作DF⊥EF,抛物线的表达式为:y=ax2+2ax﹣3a,函数的对称轴为:x=﹣1,抛物线点A、B的坐标分别为:(﹣3,0)、(1,0),则点P的横坐标为:﹣1,OB =1,而CD=4BC,则点D的横坐标为:﹣4,故点D(﹣4,5a),即HD=5a,线段BD的中点K的横坐标为:=﹣,则点Q的横坐标为:﹣2,则点Q(﹣2,﹣3a),则HF=BE=3a,∵∠DQF+∠BQE=90°,∠BQE+∠QBE=90°,∴∠QBE=∠DQF,∴△DFQ∽△QEB,则,,解得:a=(舍去负值),同理△PGB≌△DFQ(AAS),∴PG=DF=8a=4,故点P(﹣1,4);②如图3,当BD是矩形的边时,作DI⊥x轴,QN⊥x轴,过点P作PL⊥DI于点L,同理△PLD≌△BNQ(AAS),∴BN=PL=3,∴点Q的横坐标为4,则点Q(4,21a),则QN=DL=21a,同理△PLD∽△DIB,∴,即,解得:a=(舍去负值),LI=26a=,故点P(﹣1,),;综上,点P的坐标为:P(﹣1,4)或(﹣1,).【点评】本题考查的是二次函数综合运用,涉及到矩形的性质、图形的全等和相似等,其中(2)、(3),要注意分类求解,避免遗漏.24.(12分)感知定义在一次数学活动课中,老师给出这样一个新定义:如果三角形的两个内角α与β满足α+2β=90°,那么我们称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=10,弦AD=6,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.【分析】(1)①证明∠A+2∠ABD=90°即可解决问题.②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”.证明△ABC∽△BEC,可得=,由此构建方程即可解决问题.(2)分两种情形:①如图2中,当∠ABC+2∠C=90°时,作点D关于直线AB的对称点F,连接FA,FB.则点F在⊙O上,且∠DBF=∠DOA.②如图3中,由①可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分∠FBC,可证∠C+2∠ABC=90°,利用相似三角形的性质构建方程即可解决问题.【解答】(1)①证明:如图1中,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD,∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+2∠ABD=90°,∴△ABD为“类直角三角形”.②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”.在Rt△ABC中,∵AB=5,BC=3,∴AC===4,∵∠AEB=∠C+∠EBC>90°,∴∠ABE+2∠A=90°,∵∠ABE+∠A+∠CBE=90°∴∠A=∠CBE,∴△ABC∽△BEC,∴=,∴CE==,(2)∵AB是直径,∴∠ADB=90°,∵AD=6,AB=10,∴BD===8,①如图2中,当∠ABC+2∠C=90°时,作点D关于直线AB的对称点F,连接FA,FB.则点F在⊙O上,且∠DBF=∠DOA,∵∠DBF+∠DAF=180°,且∠CAD=∠AOD,∴∠CAD+∠DAF=180°,∴C,A,F共线,∵∠C+∠ABC+∠ABF=90°∴∠C=∠ABF,∴△FAB∽△FBC,。

2018-2019学年浙江省台州市临海市九年级(上)期末数学试卷(解析版)

2018-2019学年浙江省台州市临海市九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项不选、多选、错选,均不给分)1.(4分)下列图形是中心对称图形的是()A.B.C.D.2.(4分)反比例函数y=的图象位于()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限3.(4分)方程x2﹣4x=0的解为()A.2B.4C.0或4D.±24.(4分)盒中有4枚黑棋和2枚白棋,这些棋除颜色外无其他差别,在看不到盒中棋子颜色的前提下,从盒中随机摸出3枚棋,下列事件是不可能事件的是()A.摸出的3枚棋中至少有1枚黑棋B.摸出的3枚棋中有2枚白棋C.摸出的3枚棋都是黑棋D.摸出的3枚棋都是白棋5.(4分)已知点A(3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,那么()A.y2<y1<y3B.y3<y1<y2C.y1<y3<y2D.y2<y3<y1 6.(4分)如图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=()A.25°B.40°C.50°D.65°7.(4分)已知二次函数y=ax2+bx+c的部分图象如图所示,下列关于此函数图象的描述中,错误的是()A.对称轴是直线x=1B.当x<0时,函数y随x增大而增大C.图象的顶点坐标是(1,4)D.图象与x轴的另一个交点是(4,0)8.(4分)如图,某农场拟建一间面积为200平方米的长方形种牛饲养室,饲养室一面靠墙(假设墙足够长),另三面用总长58米的建筑材料围成.若设该长方形垂直于墙的一边长为x米,则下列方程正确的为()A.x(58﹣x)=200B.x(29﹣x)=200C.x(29﹣2x)=200D.x(58﹣2x)=2009.(4分)如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕AB上的点O 顺时针旋转90°,得到△A'B'C',连结BC'.若BC'∥A'B',则OB的值为()A.B.5C.D.10.(4分)汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=﹣6t2+bt(b为常数).已知t=时,s=6,则汽车刹车后行驶的最大距离为()A.米B.8米C.米D.10米二、填空题(本题共6小题,每小题5分,共30分)11.(5分)做重复试验,抛掷一枚啤酒瓶盖1000次,经过统计发现“凸面向上”的次数为420次,则由此可以估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率为.12.(5分)将二次函数y=x2的图象向右平移2个单位,得到的图象所对应的函数解析式是.13.(5分)关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.请你写出一个满足条件的m值:m=.14.(5分)如图,把△ABC绕点A时针旋转20°得到△AB'C',若B'C'经过点C,则∠C'的度数为.15.(5分)如图,y=x+b(b为常数)的图象与x轴,y轴分别交于点A,B与反比例函数y=(x>0)的图象交于点C.若AC•BC=4,则k的值为.16.(5分)如图,在正方形ABCD和正方形AEFG中,边AE在边AB上,AB=,AE =1.将正方形AEFG绕点A逆时针旋转,设BE的延长线交直线DG于点P,当点P,G第一次重合时停止旋转.在这个过程中:(1)∠BPD=度;(2)点P所经过的路径长为.三、解答题(本题共8小题,第17-20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)如图,在平面直角坐标系中,已知线段OA,点A(3,4).(1)将线段OA绕点O逆时针旋转90°得到OA',画出线段OA'.(2)直接写出点A'的坐标.18.(8分)不透明的袋中装有红球、白球、黑球各1个,这些球除颜色外都相同,将其搅匀.(1)从中摸出一个球,摸到红球的概率等于.(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)19.(8分)某镇为打造“绿色小镇”,投入资金进行河道治污.已知2016年投入资金1000万元,2018年投入资金1210万元.(1)求该镇投入资金从2016年至2018年的年平均增长率;(2)若2019年投入资金保持前两年的年平均增长率不变,求该镇2019年预计投入资金多少万元?20.(8分)如图,一次函数y=﹣2x+8与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.(1)求反比例函数的解析式;(2)根据图象直接写出关于x的不等式﹣2x+8﹣>0的解集.21.(10分)如图,在Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB上,连接AD.(1)若BC=8,AC=6,求△ABD的面积;(2)设∠BDA=x°,求∠BAC的度数(用含x的式子表示).22.(12分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE于点D,AC平分∠DAB.(1)求证:直线CE是⊙O的切线;(2)若AB=10,CD=4,求BC的长.23.(12分)涌泉镇是中国无核蜜桔之乡,已知某蜜桔种植大户冯大爷的蜜桔成本为2元/千克,如果在未来90天蜜桔的销售单价p (元/千克)与时间t (天)之间的函数关系式为p =,且蜜桔的日销量y (千克)与时间t (天)满足一次函数关系,其部分数据如下表所示:(1)求y 与t 之间的函数表达式;(2)在未来90天的销售中,预测哪一天的日销售利润最大?最大日销售利润为多少元? (3)在实际销售的后50天中,冯大爷决定每销售1千克蜜桔就捐赠n 元利润(n <5)给留守儿童作为助学金,销售过程中冯大爷发现,恰好从第51天开始,和前一天相比,扣除捐赠后的日销售利润逐日减少,请求出n 的取值范围.24.(14分)如图,△ABC 是⊙O 的内接正三角形,点P 在劣弧BC 上(不与点B ,C 重合). (1)如图1,若PA 是⊙O 的直径,则PA PB +PC (请填“>”,“=”或“<”) (2)如图2,若PA 不是⊙O 的直径,那么(1)中的结论是否仍成立?如果不成立,请说明理由:如果成立,请给出证明. (3)如图3,若四边形ACPB 的面积是16.①求PA 的长;②设y =S △PCB +S △PCA ,求当PC 为何值时,y 的值最大?并直接写出此时⊙O 的半径.2018-2019学年浙江省台州市临海市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项不选、多选、错选,均不给分)1.(4分)下列图形是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.2.(4分)反比例函数y=的图象位于()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【分析】先根据反比例函数的比例系数k的值为3得到k>0,再根据反比例函数的性质进行解答即可.【解答】解:∵反比例函数y=中,k=3>0,∴反比例函数y=的图象在一、三象限.故选:B.【点评】本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线;当k>0时,双曲线的两支分别位于第一、第三象限.3.(4分)方程x2﹣4x=0的解为()A.2B.4C.0或4D.±2【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:∵x2﹣4x=0,∴x(x﹣4)=0,则x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.4.(4分)盒中有4枚黑棋和2枚白棋,这些棋除颜色外无其他差别,在看不到盒中棋子颜色的前提下,从盒中随机摸出3枚棋,下列事件是不可能事件的是()A.摸出的3枚棋中至少有1枚黑棋B.摸出的3枚棋中有2枚白棋C.摸出的3枚棋都是黑棋D.摸出的3枚棋都是白棋【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:盒中有4枚黑棋和2枚白棋,A、摸出的3枚棋中至少有1枚黑棋是必然事件,错误;B、摸出的3枚棋中有2枚白棋是随机事件,错误;C、摸出的3枚棋都是黑棋是随机事件,错误;D、摸出的3枚棋都是白棋是不可能事件,正确;故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)已知点A(3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,那么()A.y2<y1<y3B.y3<y1<y2C.y1<y3<y2D.y2<y3<y1【分析】将点A,点B,点C坐标代入解析式求出对应的函数值,即可求解.【解答】解:∵点A(3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,∴y1=2,y2=﹣3,y3=6,∴y2<y1<y3,故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,将点A,点B,点C坐标代入解析式求出对应的函数值是本题的关键.6.(4分)如图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=()A.25°B.40°C.50°D.65°【分析】连接OC.在Rt△ODC中,求出∠DOC即可解决问题.【解答】解:连接OC.∵OC=OA,∴∠OCA=∠A=25°,∴∠DOC=∠A+∠OCA=50°,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠DOC=40°,故选:B.【点评】本题考查切线的性质,等腰三角形的性质,三角形内角和定理等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.7.(4分)已知二次函数y=ax2+bx+c的部分图象如图所示,下列关于此函数图象的描述中,错误的是()A.对称轴是直线x=1B.当x<0时,函数y随x增大而增大C.图象的顶点坐标是(1,4)D.图象与x轴的另一个交点是(4,0)【分析】利用抛物线的顶点的横坐标为1可对A进行判断;根据二次函数的性质对B进行判断;利用对称性得到抛物线与x轴的另一个交点坐标为(3,0),则可对D进行判断;利用交点式求出抛物线解析式,然后配成顶点式后可对C进行判断.【解答】解:抛物线的对称轴为直线x=1,所以A选项的说法正确;当x<1时,函数y随x增大而增大,所以B选项的说法正确;点(﹣1,0)关于直线x=1的对称点为(3,0),则抛物线与x轴的另一个交点坐标为(3,0),所以D选项错误;设抛物线解析式为y=a(x+1)(x﹣3),把(0,3)代入得a×1×(﹣3)=3,解得a =﹣1,所以抛物线解析式为y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3,因为y=(x﹣1)2+4,所以抛物线的顶点坐标为(1,4),所以C选项的说法正确.故选:D.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.8.(4分)如图,某农场拟建一间面积为200平方米的长方形种牛饲养室,饲养室一面靠墙(假设墙足够长),另三面用总长58米的建筑材料围成.若设该长方形垂直于墙的一边长为x米,则下列方程正确的为()A.x(58﹣x)=200B.x(29﹣x)=200C.x(29﹣2x)=200D.x(58﹣2x)=200【分析】由建筑材料的长度结合垂直于墙的边长为xm,即可表示出平行于墙的一边的长度,然后根据长方形的面积公式结合牛饲养室的面积为200m2,即可得出关于x的一元二次方程.【解答】解:∵垂直于墙的边长为xm,∴平行于墙的一边为(58﹣2x)m.根据题意得:x(58﹣2x)=200,故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,解题的关键是:(1)根据建筑材料的长度用含x的代数式表示出平行于墙的一边的长度;(2)根据长方形的面积公式列出一元二次方程.9.(4分)如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕AB上的点O 顺时针旋转90°,得到△A'B'C',连结BC'.若BC'∥A'B',则OB的值为()A.B.5C.D.【分析】连接OC,OC′,作CH⊥AB于H.首先利用面积法求出CH,再利用全等三角形的性质证明OB=CH即可解决问题;【解答】解:连接OC,OC′,作CH⊥AB于H.在Rt△ACB中,∵AC=12,BC=5,∴AB==13,∵•AB•CH=•AC•BC,∵CH=.∵△ABC绕AB上的点O顺时针旋转90°,得到△A'B'C',∴OC=OC′,∠COC′=∠BOB′=90°,∵BC′∥A′B′,∴BC′⊥AB,∴∠CHO=∠OBC′=90°,∵∠COH+∠BOC′=90°,∠COH+∠OCH=90°,∴∠OCH=∠BOC′,∴△CHO≌△OBC′(AAS),∴CH=OB=,故选:A.【点评】本题考查旋转的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.10.(4分)汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=﹣6t2+bt(b为常数).已知t=时,s=6,则汽车刹车后行驶的最大距离为()A.米B.8米C.米D.10米【分析】根据t=时,s=6和函数中的解析式,可以求得b的值,然后将函数解析式化为顶点式即可解答本题.【解答】解:把t=,s=6代入s=﹣6t2+bt得,6=﹣6×+b×,解得,b=15∴函数解析式为s=﹣6t2+15t=﹣6(t﹣)2+,∴当t=时,s取得最大值,此时s=,故选:C.【点评】本题考查了二次函数的应用,解答本题的关键是明确题意,利用二次函数的顶点式解答.二、填空题(本题共6小题,每小题5分,共30分)11.(5分)做重复试验,抛掷一枚啤酒瓶盖1000次,经过统计发现“凸面向上”的次数为420次,则由此可以估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率为0.42.【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【解答】解:∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为=0.42,故答案为:0.42.【点评】本题主要考查概率的意义等可能事件的概率,大量重复试验事件发生的频率约等于概率.12.(5分)将二次函数y=x2的图象向右平移2个单位,得到的图象所对应的函数解析式是y=(x﹣2)2.【分析】根据“上加下减,左加右减”的原则进行解答即可.【解答】解:将二次函数y=x2的图象向右平移2个单位,得到的图象所对应的函数解析式是:y=(x﹣2)2.故答案是:y=(x﹣2)2.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.13.(5分)关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.请你写出一个满足条件的m值:m=0.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围.【解答】解:∵方程有两个不相等的实数根,a=1,b=﹣2,c=m,∴△=b2﹣4ac=(﹣2)2﹣4×1×m>0,解得m<1,故答案是:0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.(5分)如图,把△ABC绕点A时针旋转20°得到△AB'C',若B'C'经过点C,则∠C'的度数为80°.【分析】由旋转的性质可得∠CAC'=20°,AC=C'A,根据等腰三角形的性质可得∠C'的度数.【解答】解:∵把△ABC绕点A时针旋转20°得到△AB'C',∴∠CAC'=20°,AC=C'A,∴∠C'=80°,故答案为:80°【点评】本题考查了旋转的性质以及等腰三角形的性质,灵活运用旋转的性质是本题的关键.15.(5分)如图,y=x+b(b为常数)的图象与x轴,y轴分别交于点A,B与反比例函数y=(x>0)的图象交于点C.若AC•BC=4,则k的值为2.【分析】作CD⊥x轴于D,则OB∥CD,得出=,进一步得出=,由勾股定理得出AC2=AD2+CD2=2(x+b)2,整理得出,即可得出k=x(x+b)=2.【解答】解:作CD⊥x轴于D,则OB∥CD,∴=,∵y=x+b(b为常数)的图象与x轴,y轴分别交于点A,B,∴A(﹣b,0),B(0,b),∴OA=OB=b,∵△AOB是等腰直角三角形,∴△ADC也是等腰直角三角形,∴AD=CD,∴C(x,x+b),∴k=x(x+b),∴=,∵AC•BC=4,∴BC=,∴=,∴=,∵AC2=AD2+CD2=2(x+b)2,∴=,即,∴x(x+b)=2,∴k=2.故答案为2.【点评】本题属于反比例函数与一次函数的交点问题,涉及的知识有:平行线分线段成比例定理,勾股定理的应用,熟练掌握图象上点的坐标特征是解本题的关键.16.(5分)如图,在正方形ABCD和正方形AEFG中,边AE在边AB上,AB=,AE =1.将正方形AEFG绕点A逆时针旋转,设BE的延长线交直线DG于点P,当点P,G第一次重合时停止旋转.在这个过程中:(1)∠BPD=90度;(2)点P所经过的路径长为.【分析】(1)如图1中,设AD交PB于点O.只要证明△EAB≌△GAD(SAS),即可解决问题.(2)如图2中,当P、G重合时,作AH⊥BG于H.因为∠BPD=90°,可得点P的有的关键是图中弧AG.利用弧长公式计算即可.【解答】解:(1)如图1中,设AD交PB于点O.∵四边形ABCD,四边形AEFG都是正方形,∴AB=AD,AE=AG,∠DAB=∠GAE,∴∠EAB=∠GAD,∴△EAB≌△GAD(SAS),∴∠ABE=∠ADG,∵∠ABE+∠AOB=90°,∠AOB=∠DOP,∴∠DOP+∠ADG=90°,∴∠BPD=90°.故答案为90.(2)如图2中,当P、G重合时,作AH⊥BG于H.∵∠BPD=90°,∴点P的有的关键是图中弧AG.∵AE=AG=1,∠EAG=90°,∴EG=,∵AH⊥EG,∴HG=HE,∴AH=,∴sin∠ABH==,∴∠ABH=30°,∴∠AOG=2∠ABG=60°,∴的长==.故答案为.【点评】本题考查轨迹,正方形的性质,全等三角形的判定和性质,弧长公式,解直角三角形等知识,解题的关键是正确寻找点的运动轨迹,属于中考常考题型.三、解答题(本题共8小题,第17-20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)如图,在平面直角坐标系中,已知线段OA,点A(3,4).(1)将线段OA绕点O逆时针旋转90°得到OA',画出线段OA'.(2)直接写出点A'的坐标.【分析】(1)利用网格特点和旋转的性质作出点A的对应点A′即可得到线段OA′;(2)利用所画图形写出A′点坐标.【解答】解:(1)如图,线段OA'为所作;′(2)点A'的坐标为(﹣4,3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.18.(8分)不透明的袋中装有红球、白球、黑球各1个,这些球除颜色外都相同,将其搅匀.(1)从中摸出一个球,摸到红球的概率等于.(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)【分析】(1)直接利用概率公式求解可得;(2)画树状图得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.【解答】解:(1)从中摸出一个球,摸到红球的概率等于,故答案为:.(2)画树状图如下:由树状图知,共有6种等可能结果,其中摸到红球的有4种结果,∴摸到红球的概率是=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.(8分)某镇为打造“绿色小镇”,投入资金进行河道治污.已知2016年投入资金1000万元,2018年投入资金1210万元.(1)求该镇投入资金从2016年至2018年的年平均增长率;(2)若2019年投入资金保持前两年的年平均增长率不变,求该镇2019年预计投入资金多少万元?【分析】(1)设该镇投入资金从2016年至2018年的年平均增长率为x,根据该镇2016年及2018年投入的资金金额,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据2019年投入资金金额=2018年投入资金金额×(1+增长率),即可求出结论.【解答】解:(1)设该镇投入资金从2016年至2018年的年平均增长率为x,根据题意得:1000(1+x)2=1210,解得:x1=0.1=10%,x2=﹣2.1(舍去).答:该镇投入资金从2016年至2018年的年平均增长率为10%.(2)1210×(1+10%)=1331(万元).答:该镇2019年预计投入资金1331万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.20.(8分)如图,一次函数y=﹣2x+8与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.(1)求反比例函数的解析式;(2)根据图象直接写出关于x的不等式﹣2x+8﹣>0的解集.【分析】(1)将点A,点B坐标代入可求m,n,k的值,即可求反比例函数的解析式;(2)根据图象性质可求解.【解答】解:(1)∵一次函数y=﹣2x+8与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.∴6=﹣2m+8,n=﹣2×3+8,k=6m,∴m=1,n=2,k=6∴点A(1,6),点B(3,2)反比例函数解析式为:y=(2)由图象可得当1<x<3时,一次函数图象在反比例函数图象的上方.即不等式﹣2x+8﹣>0的解集为:1<x<3【点评】本题考查了反比例函数与一次函数的交点问题,函数图象的性质,熟练掌握函数图象上的点满足函数解析式是本题的关键.21.(10分)如图,在Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB上,连接AD.(1)若BC=8,AC=6,求△ABD的面积;(2)设∠BDA=x°,求∠BAC的度数(用含x的式子表示).【分析】(1)根据勾股定理可求AB的长,由旋转的性质可得DE=AC=6,根据三角形面积公式可求△ABD的面积;(2)由旋转的性质可得∠DBA=∠ABC,DB=AB,根据等腰三角形的性质和三角形内角和定理可求∠ABD=180°﹣2x°=∠ABC,即可求∠BAC的度数.【解答】解:(1)∵∠C=90°,BC=8,AC=6,∴AB==10,∵把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,∴DE=AC=6,=AB×DE=×6×10=30∴S△ABD(2)∵把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,∴∠DBA=∠ABC,DB=AB,∴∠BDA=∠BAD=x°,∵∠ABD=180°﹣∠BDA﹣∠BAD,∴∠ABD=180°﹣2x°=∠ABC,∵∠BAC=90°﹣∠ABC,∴∠BAC=90°﹣(180°﹣2x°)=(2x﹣90)°【点评】本题考查了旋转的性质,勾股定理,等腰三角形的性质,灵活运用旋转的性质是本题的关键.22.(12分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE于点D,AC平分∠DAB.(1)求证:直线CE是⊙O的切线;(2)若AB=10,CD=4,求BC的长.【分析】(1)连接OC.只要证明OC⊥DE即可解决问题;(2)利用相似三角形的性质构建方程组即可解决问题;【解答】(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)解:∵AB是直径,∴∠ACB=90°,∵AD⊥CD,∴∠ADC =∠ACB =90°, ∵∠DAC =∠CAB , ∴△DAC ∽△CAB , ∴=,∴BC •AC =40, ∵BC 2+AC 2=100, ∴BC +AC =6,AC ﹣BC =2或BC ﹣AC =2,∴BC =2或4.【点评】本题考查切线的判定和性质,相似三角形的判定和性质,勾股定理,平行线的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型. 23.(12分)涌泉镇是中国无核蜜桔之乡,已知某蜜桔种植大户冯大爷的蜜桔成本为2元/千克,如果在未来90天蜜桔的销售单价p (元/千克)与时间t (天)之间的函数关系式为p =,且蜜桔的日销量y (千克)与时间t (天)满足一次函数关系,其部分数据如下表所示:(1)求y 与t 之间的函数表达式;(2)在未来90天的销售中,预测哪一天的日销售利润最大?最大日销售利润为多少元? (3)在实际销售的后50天中,冯大爷决定每销售1千克蜜桔就捐赠n 元利润(n <5)给留守儿童作为助学金,销售过程中冯大爷发现,恰好从第51天开始,和前一天相比,扣除捐赠后的日销售利润逐日减少,请求出n 的取值范围. 【分析】(1)设y =kt +b ,利用待定系数法即可解决问题.(2)日利润=日销售量×每公斤利润,据此分别表示前40天和后50天的日利润,根据函数性质求最大值后比较得结论.(3)列式表示后50天中每天扣除捐赠后的日销售利润,根据函数性质求n 的取值范围. 【解答】解:(1)设y =kt +b ,把t =1,y =105;t =10,y =150代入得到:,解得:,∴y=5t+100;(2)设第x天的销售利润为w元.当1≤t≤40时,由题意w=(12﹣2)(5t+100)=50t+1000;当t=40时w最大值为3000元;当41≤t≤90时,w=(5t+100)(﹣t+16﹣2)=﹣t2+60t+1400,∵对称轴t=60,a=﹣<0,∴在对称轴左侧w随x增大而增大,∴t=60时,w最大值=3200,综上所述前60天利润最大,最大利润为3200元.(3)设每天扣除捐赠后的日销售利润为m元.由题意m=(5t+100)(﹣t+16﹣2)﹣(5t+100)n=﹣t2+(60﹣5n)t+1400﹣100n,∵在后50天中,每天扣除捐赠后的日销售利润随时间t的增大而减少,∴49.5≤60﹣5n<50.5,∴1.9<n≤2.1.又∵n<5,∴n的取值范围为1.9<n≤2.1.【点评】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.24.(14分)如图,△ABC是⊙O的内接正三角形,点P在劣弧BC上(不与点B,C重合).(1)如图1,若PA是⊙O的直径,则PA=PB+PC(请填“>”,“=”或“<”)(2)如图2,若PA不是⊙O的直径,那么(1)中的结论是否仍成立?如果不成立,请说明理由:如果成立,请给出证明.(3)如图3,若四边形ACPB的面积是16.①求PA的长;②设y =S △PCB +S △PCA ,求当PC 为何值时,y 的值最大?并直接写出此时⊙O 的半径.【分析】(1)结论:PA =PB +PC .证明∠PAC =∠PAB =×60°=30°,推出PC =PA ,PB =PA 即可解决问题;(2)结论仍然成立.如图2中,在PA 上取一点E ,使得PE =PB .只要证明△CBE ≌△ABE (SAS )即可解决问题;(3)①如图3中,作CM ⊥PA 于M ,BN ⊥PA 于N .想办法构建方程即可解决问题; ②设PC =x ,则PB =8﹣x ,构建二次函数即可解决问题; 【解答】解:(1)如图1中,∵△ABC 是等边三角形,⊙O 是△ABC 的外接圆,PA 是直径, ∴PA 平分∠BAC ,∠ACP =∠ABP =90°,∴∠PAC =∠PAB =×60°=30°,∴PC =PA ,PB =PA , ∴PA =PB +PC . 故答案为=.(2)结论仍然成立.理由:如图2中,在PA 上取一点E ,使得PE =PB .∵△ABC是等边三角形,∴∠ACB=∠ABC=60°,∴∠APB=∠ACB=60°,∵PE=PB,∴△PBE是等边三角形,∴∠PBE=∠ABC=60°,∴∠ABE=∠CBP,∵BC=BA,BP=BE,∴△CBE≌△ABE(SAS),∴PC=AE,∴PA=PE+AE=PB+PC.(3)①如图3中,作CM⊥PA于M,BN⊥PA于N.∵S四边形ACPB =S△PAC+S△PAB,∴16=PA•CM+•PA•BN,∵∠APC=∠ABC=60°,∠APB=∠ACB=60°,∴CM=PC•sin60°,BN=PC•sin60°,∴16=•PA •(PB +PC ),∵PB +PC =PA , ∴PA 2=64, ∵PA >0, ∴PA =8.②设PC =x ,则PB =8﹣x ,∵y =S △PCB +S △PCA =•PC •PB •sin60°+•8•PC •sin60°,∴y =x (8﹣x )+x =﹣x 2+x =﹣(x ﹣5)2+,∵﹣<0,∴x =5时,y 有最大值,∴PC =5,CM =,PM =,AM =,在Rt △ACM 中,AC ===7,∴△ABC 的外接圆的半径为=.【点评】本题属于圆综合题,考查了圆周角定理,等边三角形的性质,解直角三角形,全等三角形的判定和性质,二次函数的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建二次函数解决最值问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省徐州市2018届九年级数学上学期期末模拟试题
一、选择题(本大题共6小题,每小题3分,共24分.)
1.关于x的方程ax2﹣3x+1=0是一元二次方程,则( )
A.a>0 B.a≥0 C.a≠0 D.a=1

2.如图在Rt△ABC中,∠C=90°,AC=12,BC=5,则sinA的值是( )

A. B. C. D.
3.若二次函数y=(a+1)x2+3x+a2﹣1的图象经过原点,则a的值必为( )
A.1或﹣1 B.1 C.﹣1 D.0

4.已知圆锥的底面的半径为3cm,高为4cm,则它的侧面积为( )
A.15πcm2 B.16πcm2 C.19πcm2 D.24πcm2

5.下列语句中正确的是( )
A.长度相等的两条弧是等弧
B.平分弦的直径垂直于弦
C.相等的圆心角所对的弧相等
D.经过圆心的每一条直线都是圆的对称轴

6.如图,点E在▱ABCD的边BC延长线上,连AE,交边CD于点F.在不添加辅助线的情况
下,图中相似三角形有( )

A.1对 B.2对 C.3对 D.4对
二、填空题(本大题共10小题,每空2分,共18分.)
7.若一组数据1、﹣2、3、0,则这组数据的极差为__________.

8.二次函数y=x2﹣2x+6的顶点坐标是__________.
9.在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且
摸出红球的概率为,那么袋中的球共有__________个.
10.已知一组数据1,2,x,5的平均数是4,则x是__________.这组数据的方差是__________.
11.如图,⊙O是△ABC的外接圆,已知∠OAB=40°,则∠ACB为__________.
12.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是
__________.

13.圆弧的半径为3,弧所对的圆心角为60°,则该弧的长度为__________.

14.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果=,那么=__________.

15.若A(﹣4,y1),B(﹣1,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则
y1,y2,y3的大小关系是__________.

16.如图,已知边长为a的正方形ABCD内有一边长为b的内接正方形EFGH,则△EBF的内
切圆半径是__________.

三、解答题(本大题共9小题,共78分.)
17.解方程:
(1)x2=2x
(2)2x2﹣4x﹣1=0.
18.如图,在由边长为1的小正方形组成的网格图中有△ABC,建立平面直角坐标系后,点
O的坐标是(0,0).
(1)以O为位似中心,作△A′B′C′∽△ABC,相似比为1:2,且保证△A′B′C′在第
三象限;
(2)点B′的坐标为(__________,__________);
(3)若线段BC上有一点D,它的坐标为(a,b),那么它的对应点D′的坐标为(__________,
__________).

19.已知关于x的一元二次方程(a+1)x2﹣x+a2﹣3a﹣3=0有一根是1.
(1)求a的值;
(2)求方程的另一根.

20.桌面上放有4张卡片,正面分别标有数字1,2,3,4.这些卡片除数字外完全相同,
把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面
朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加.
(1)请用列表或画树状图的方法求两数之和为5的概率;
(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;当两数之和不为5时,则乙
胜.若甲胜一次得12分,谁先达到120分为胜.那么乙胜一次得多少分,这个游戏对双方
公平?

21.某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工
的零件进行检测,统计出他们各自加工的合格品数是1﹣8这8个整数,现提供统计图的部
分信息如图,请解答下列问题:

(1)根据统计图,求这50名工人加工出的合格品数的中位数;
(2)写出这50名工人加工出的合格品数的众数的可能取值;
(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接
受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.

相关文档
最新文档