材料力学悬臂梁应力计算

合集下载

悬臂梁分析报告

悬臂梁分析报告

悬臂梁受力分析报告高一博2016.11.13西安理工大学机械与精密仪器工程学院摘要利用ANSYS对悬臂梁进行有限元静力学分析,得到悬臂梁的最大应力和挠度位移。

从而校验结构强度和尺寸定义,从而对结构进行最优化设计修正。

关键词:悬臂梁,变形分析,应力分析目录一.问题描述: (4)二.分析的目的和内容: (4)三.分析方案和有限元建模方法: (4)四.几何模型 (4)五.有限元模型 (4)六.计算结果: (5)七.结果合理性的讨论、分析 (8)八.结论 (8)参考文献 (8)一.问题描述:现有一悬臂梁,长500MM,一端固定,另外一端施加一个竖直向下的集中力200N。

其截面20MMX20MM的矩形,现在要分析该梁的在集中力作用下产生的位移,应力和局部应力。

二.分析的目的和内容:1.观察悬臂梁的变形情况;2.观察分析悬臂梁的应力变化;3.找出其最大变形和最大应力点,分析形成原因;三.分析方案和有限元建模方法:1.使用ANSYS-modeling-create-volumes-block建模,2.对梁进行材料定义,网格划分。

3.一端固定,另外一端施加一个向下的200N的力。

4.后处理中查看梁的应力和变形情况。

四.几何模型500X20X20的梁在在ANSYS中进行绘制.由于结构简单规则,无需简化。

五.有限元模型单元类型:solid brick8node45材料参数:弹性模量2e+11pa,泊松比0.3边界条件:一端固定,一端施加载荷载荷:F=200N划分网格后的悬臂梁模型六.计算结果:变形位移图等效应力图局部应力图七.结果合理性的讨论、分析1.位移分析:在变形位移图上,在约束端位移最小为零,受压端位移最大。

与实际结果一致。

2.应力分析:在应力图上,应力最大处在约束端,而最小的位于受压端,与变形图相对应。

通过材料力学计算可知约束端的所受弯矩最大。

两个结果印证无误。

3.局部应力分析:在局部应力图上,可以看出在固定端上表面存有较大的应力,且为拉应力,受压端直角尖处有最大应力,从形成原因上分析属于尖角处应力集中。

悬臂梁在均布载荷下的挠曲线方程

悬臂梁在均布载荷下的挠曲线方程

3.1解:(1)由材料力学中的悬臂梁在均布载荷下的挠曲线方程()224qx v x EI=-()2246x lx l -+ 得此题所求的悬臂梁的最大挠度为44()0.1258ql ql v l EI EI=-=- (2)常用的两个悬臂梁的许可位移函数(满足()BC u ):11,3,5,()(1cos)2m m m xv x c lπ==-∑∞…2342123()v x c x c x c x =+++…(3)基于Galerkin 加权残值法的求解位移边界条件0():|0x BC u v ==0'|0x v == 力边界条件():''|0x l BC p M EIv ==-="'|0x l Q EIv ==-=当选挠度v 为自变函数的试函数式,相应的加权残值法Galerkin 方程为()()()40001,2,l n EIvp dx n φ-==⎰…,N ①其中n φ为试函数()()1Nn nn v x c x φ==∑中的基底函数,()40EIv p -为控制方程。

从力边界条件BC(p)入手,寻找Galerken 加权残值法的试函数,设221sin 2d v x dx l π⎛⎫=- ⎪⎝⎭ ②它满足x l =处的弯矩和剪力为零的条件,即''|0,'''|0x l x l v v ====。

把②式积分两次,可得222()sin22x l x v x c Ax B l ππ⎡⎤⎛⎫=+++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦调整两个积分常数A 和B ,使它们满足0x =处的位移边界条件BC(u),有2/,0A l B π=-=,则得到Galerkin 加权残值法的试函数为()2222()sin 22x l l x v x c x c x l πφππ⎡⎤⎛⎫=-+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ③代入①,取N=1,有2220022sin sin 02222lx x l l x EIc p x dx l l l πππππ⎡⎤⎡⎤⎛⎫⎛⎫--+=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎰可解出2230011860.469342p l p l c EI EI πππ-+==-,代回③式得x l =处的最大挠度为4202124|0.1262x l p l v cl EI ππ=⎛⎫=-+= ⎪⎝⎭,它比用挠度方程大0.8%。

《弹性力学》试题参考答案(参考题)

《弹性力学》试题参考答案(参考题)

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

材料力学 弯曲应力与强度条件

材料力学 弯曲应力与强度条件
F
150 50
A
l 2
B
l 2
96 .4 C 50
200
z
M max
FL 16kNm 4
y
max max
200 50 96.4 153.6mm 96.4mm

max
My max IZ My max IZ
24.09MPa 15.12MPa
max
例题
长为2.5m的工字钢外伸梁,如图示,其外伸部分为0.5m,梁上 承受均布荷载,q=30kN/m,试选择工字钢型号。已知工字钢抗弯 强度[σ]=215MPa。
q 30 kN m
A
0.5m
解:1、求支反力,画梁的弯矩图,确 定危险截面 FA 46.9KN , FB 28.1KN
E
y
X
A

0:
y
A
N dA E
A

dA
E

A
ydA 0
S Z ydA yc A 0(中性轴通过截面形心)
M
A
Z
0:
M Z ydA M
A
M yE dA
y
E


y 2 dA 令: y 2 dA I Z A



C截面
c
B
B截面
∴铸铁梁工作安全。如果T截面倒
例题
A
y 铸铁制作的悬臂梁,尺寸及受力如图示,图中F=20kN。梁 的截面为T字形,形心坐标yc=96.4mm。已知材料的拉伸许用应 150 力和压缩许用应力分别为[σ]+=40MPa, [σ]-=100MPa。试 校核梁的强度是否安全。 F 50 96 .4

材料力学第8章应力状态分析

材料力学第8章应力状态分析

点。设想以A点为中心,用相互垂直的6个截面截取一个边长无限小的立方
体,我们将这样的立方体称为单元体。取决于截取平面的倾角变化,围绕同 一个点,可以截取出无数个不同的单元体,
图8.1(b)为依附着杆件横截面所截取单元体(图8.1(c)为其平面图形式),而 图8.1(d)为依附着45°斜截面所截取的单元体。由于杆件轴向拉伸时,横 截面上只有正应力,且与杆件轴向平行的截面没有应力,因此,图8.1(b) 中的单元体只在左右两个面上有正应力作用。对于图8.1(d)中的单元体, 根据拉压杆斜截面应力分析(2.3节)可知,其4个面上既有正应力又有切应 力。
又有切应力。围绕A,B,C三点截取单元体如图8.2(d)所示,单元体的前后
两面为平行于轴线的纵向截面,在这些面上没有应力,左右两面为横截面的 一部分,根据切应力互等定理,单元体B和C的上下两面有与横截面数值相等
的切应力。至此,单元体各面上的应力均已确定。注意到图8.2(d)各单元
体前后面上均无应力,因此也可用其平面视图表示(见图8.2(e))。
图8.2
从受力构件中截取各面应力已知的单元体后,运用截面法和静力平衡条件, 可求出单元体任一斜截面上的应力,从而可以确定出极值应力。
围绕构件内一点若从不同方向取单元体,则各个截面的应力也各不相同。其
中切应力为零的截面具有特殊的意义,称为主平面;主平面上的正应力称为 主应力。一般情况下,过构件内任一点总能找到3个互相垂直的主平面,因
图8.3
运用截面法可以求出与 z 截面垂直的任意斜截面 ac 上的应力(见图 8.3
( a ))。设斜截面 ac 的外法线 n 与 x 轴的夹角为 α (斜截面 ac 称 为 α 截面),并规定从 x 轴正向逆时针转到斜截面外法线 n 时 α 角为正

工程力学--材料力学(第五、六章)经典例题及讲解

工程力学--材料力学(第五、六章)经典例题及讲解

P
A
0.5 m
C D
0.4 m 1m
B
20
40
解:C点的应力 σ C = E ε = 200 × 10 3 × 6 × 10 − 4
= 120M Pa
C截面的弯矩
M C = σ C W z = 640 N ⋅ m
由 M C = 0.5 R A = 0.5 × 0.4 P = 0.2 P = 640 N ⋅ m 得 P = 3.2kN
度减小一半时,从正应力强度条件考虑, 该梁的承载能力将是原来的多少倍? 解: 由公式
σ max
M max M max = = 2 Wz bh 6
可以看出:该梁的承载能力将是原来的2 可以看出:该梁的承载能力将是原来的2倍。
例4:主梁AB,跨度为l,采用加副梁CD AB,跨度为l 采用加副梁CD
的方法提高承载能力, 的方法提高承载能力,若主梁和副梁材料 相同,截面尺寸相同, 相同,截面尺寸相同,则副梁的最佳长度 a为多少? 为多少?
2 2
2
bh b( d − b ) Wz = = 6 6
2 2 2
∂ Wz d 2 b 2 = − =0 ∂b 6 2
d 由此得 b = 3
d
2 2
h
h = d −b =
h = 2 ≈3:2 b
2 d 3
b
例12:跨长l =2m的铸铁梁受力如图示,已知材料许用拉、 12:跨长l =2m的铸铁梁受力如图示 已知材料许用拉、 的铸铁梁受力如图示,
10 kN / m
200 2m 4m 100
10 kN / m
200
2m
Fs( kN ) 25 Fs(
45 kN
4m
100

材料力学梁的应力解读

材料力学梁的应力解读

材料力学梁的应力解读
梁是结构分析中最基本的问题之一,也是材料力学中一个重要的概念。

梁的应力解读,就是对梁结构中的应力的分析。

一般来说,在材料力学中,梁的应力解读可以从下面几个方面来进行:
(1)弯曲应力:弯曲应力是指当梁在受到外力的作用下发生偏移或
沿着其中一轴线变形时,梁中钢材筋的纵向应力称为弯曲应力。

根据梁的
预定约束方式,可以分为受自重弯曲的应力和受外力弯曲的应力。

受自重
弯曲的应力大小由梁的自重和梁的几何形态所决定,一般情况下,斜梁的
自重弯曲应力会比悬臂梁的自重弯曲应力大。

受外力弯曲的应力大小取决
于受力梁的拉张性和刚度,以及施加外力的位置,大小和作用方向等因素,其中最重要的是材料的弹性模量。

(2)剪切应力:梁结构的剪切应力,是指梁受到外力作用时,对面
两侧的钢材筋之间的剪切应力。

由于受力面两端受非对称分布的外力作用,使得受力面的梁结构受到剪切应力的作用,一般情况下,受力面梁结构分
布的剪切应力会在受力面的两端有最大值,随着回头距离变小而逐渐减小。

(3)压应力:梁受外力所产生的压应力,是指受力面角支撑点处承
受拉力的钢材筋之间的应力,称为压应力。

悬臂梁的弯矩计算方法可参考材料力学

悬臂梁的弯矩计算方法可参考材料力学

悬臂梁的弯矩计算方法可参考材料力学。

你没有说清楚悬臂梁上作用的是什么样的荷载形式,所以没有办法直接给答案,给你下以几种,让你参考吧(一)、受端部集中荷载作用时其悬臂梁上的弯矩值是Px,其中P是端部集中力,x是从端部到另一端的距离。

(二)、受均布荷载作用时其悬臂梁上的弯矩值是qx2/2,其中q是均布线荷载,x是从端部到另一端的距离。

设为均布荷载下。

悬臂梁悬臂净长L。

计算悬臂梁自重及其担负楼板面积的自重计g KN/m;(包括上下粉刷重)计算悬臂梁担负楼板面积上的活荷载q KN/m;(楼面活荷载标准值查荷载规范GB50009-2001)承载能力极限计算的荷载基本组合值为1.2g+1.4q=Q1正常使用极限计算的荷载标准组合值为g+q=Q2支座截面的弯矩=1/2Q×L^2。

(计算两种极限状态的弯矩分别代入Q1或Q2值)同问已知弯矩、板混凝土强度、钢筋型号,如何求板配筋??例如弯矩21.1KN/m,H=150mm,C25混凝土,二级钢求As2011-11-01 11:18 提问者:影子伯爵之羽|浏览次数:808次我来帮他解答您还可以输入9999 个字推荐答案2011-11-01 14:02二、设计依据《混凝土结构设计规范》GB50010-2002三、计算信息1. 几何参数截面类型: 矩形截面宽度: b=1000mm截面高度: h=150mm2. 材料信息混凝土等级: C25 fc=11.9N/mm2 ft=1.27N/mm2钢筋种类: HRB335 f y=300N/mm2最小配筋率: ρmin=0.200%纵筋合力点至近边距离: as=15mm3. 受力信息M=21.100kN*m我来帮他解答您还可以输入9999 个字网友推荐答案2009-07-07 15:18hfhdpc|五级弯矩使杆件受拉侧为正,受压侧为负。

剪力使杆截面顺时针转动为正,逆时针转动为负。

12|评论(1)按默认排序|按时间排序其他回答共4条2010-11-06 04:06lc47670416|五级剪力:以所取的截面为中心,作用力对截面有顺时针方向转动的趋势则剪力为正,反之为负。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学悬臂梁应力计算
材料力学是一门研究材料在力学作用下的力学性能的学科。

悬臂梁是材料力学中一个重要的力学结构,其应力计算是材料力学研究的重点内容之一
悬臂梁是一根一端固定,另一端自由悬挂的梁,在实际工程中广泛应用于建筑、桥梁、汽车和航空等领域。

悬臂梁的应力计算是设计和分析该结构强度和稳定性的关键步骤。

为了进行悬臂梁的应力计算,首先需要了解材料的力学性质。

材料力学性质包括弹性模量、屈服强度、断裂韧度等。

这些性质描述了材料在力学作用下的变形、强度和断裂性能。

悬臂梁的应力计算可以分为静力学分析和弹性力学分析两个步骤。

在静力学分析中,根据悬臂梁的受力情况,可以得到悬臂梁上的切线力和弯矩。

在弹性力学分析中,可以根据悬臂梁的几何形状和材料性质计算出悬臂梁上的应力。

常见的应力计算公式包括悬臂梁的弯曲应力公式和剪切应力公式。

对于悬臂梁的弯曲应力计算,可以使用悬臂梁的弯曲方程进行计算。

弯曲方程描述了悬臂梁上的弯曲曲线和应力分布,可以根据悬臂梁的载荷和几何形状计算出悬臂梁上的最大应力。

悬臂梁的弯曲方程可以通过一些经典方法求解,例如Euler-Bernoulli悬臂梁理论和Timoshenko悬臂梁理论。

对于悬臂梁的剪切应力计算,可以使用剪切力的变化率进行计算。

剪切力是悬臂梁上的横向力,可以通过静力学分析得到。

剪切应力是悬臂梁
上截面上垂直剪切力作用下的应力,可以通过剪切力和悬臂梁的截面面积计算得到。

除了弯曲应力和剪切应力,还需要考虑其他引起应力的因素,例如温度变化和预应力等。

温度变化会引起悬臂梁的热应力,而预应力可能会改变悬臂梁的应力分布。

总结起来,悬臂梁的应力计算是材料力学中一个重要的研究内容。

它可以通过静力学分析和弹性力学分析来计算悬臂梁上的应力。

悬臂梁的应力计算不仅可以用于设计和分析悬臂梁的结构强度和稳定性,还可以用于预测悬臂梁在使用过程中的变形和破坏情况。

因此,悬臂梁的应力计算对于材料力学的研究和实际工程应用有着重要的意义。

相关文档
最新文档