点线面投影特点的运用

合集下载

点线面的投影工程图学

点线面的投影工程图学
措施二 b" ab : cd不等于a'b': c'd‘
d b
举例: 试作一直线MN与AB、CD两直线相交 , 且平行 EF 能否作?有几条?
e ’
(m ’)
(a’) b’
d

分析
作图环节
X
f ’
c n’ ’
ac f
(1)过m’作直线 O m’n’平行e’f’
, 且与c’d’交于 (2) n’由n’求得n
复杂--展为平面
1. 展开
V a

X
ax
a● H
Z
az
O
ay
Y
不动
W a

Y
ay
V a

X ax
向下翻
Z
向右翻
az
A

a● H
●a
O
W
ay
Y
2. 投影规律
Z
V
a

az
A
X ax

●a
W O
a●
ay
H Y
a ●
X ax
a●
Z az
a

O
Y
ay
ay
Y
从投影展开图能够看出: (1) aa⊥OX轴 aa⊥OZ轴
返回
§2.3 直线旳投影(续)
四、两直线旳相对位置
1. 两直线平行
b' d'
b
V
d
a
B
c
A
C
D
a' c'
a
c
c b
a
dH
d b
投影特征:

第3章 点线面的投影

第3章 点线面的投影

b a a b a
b
投影特性:
三个投影都为类似 形。即: 都不反映空间 线段的实长及与三个投 影面夹角的实大,且与 三根投影轴都倾斜。
三、直线上点的投影
直线上的点具有两个特性:
1 从属性 若点在直线上,则点的各个投影必在直线 的各同面投影上。 利用这一特性可以在直线上找点,或 判断已知点是否在直线上。
两直线相交吗? ★ 同名投影可能相交, 但 “交点”不符合空间 为什么? 一个点的投影规律。 ★ “交点”是两直线上 的一 对重影点的投影, 用其可帮助判断两直线 的空间位置。
投影特性:
例:判断两直线的相对位置
c
1 a d d 1
相交吗?
b
X
a
c 1d
b
1c
判断两直线重影点的可见性
a k● b a

k
b
a k●
b
因k 不在a b 上, 故点K不在AB上。
另一判断法 如何判断 ? ?
应用定比定理
例3 :已知点K在线段AB上,求点K正面投影。
解法一: (应用第三投影)
a k
b

解法二: (应用定比定理)
a
a k
● ●

k● b
怎么做?
b
b
k● a
求出侧面投影
⒉ 两直线相交
V a
A a c k b
注意:交点 为两直线共 有!
B c b k d
C
d K D d
k
a b
H
c
a c k
d
b
投影特性:
若空间两直线相交,则其同名投影必 相交,且交点的投影必符合空间一点的投 影规律。 (反之 用于判断) 。

土木工程制图讲义点线面投影篇1

土木工程制图讲义点线面投影篇1

二,点在两投影面体系中的投影
V
1 两投影面体系(two view system)的建立
X
ⅡⅠ Ⅲ
O
◆正面投影面(vertical projection plane) Ⅳ H
(简称正面或V面)
◆水平投影面(horizontal projection
plane) (简称水平面或H面)
两投影面体系
◆投影轴(projection axis)
b
YH
OZ轴相交于bz,延长后量
取b" bz=15,得点b"。
特殊位置点的投影
(1)在投影面上的点
1A. 点点在的一空个间坐向标后为移零动y,=0 2其. 点投的影该有面何投变影化与其?本身
重合 A a 3. 另两个a、a在投影轴上
V a当当●≡VVAAA面面点点上上移移YY动动==00到到
Z
a
如何根据点的二面投影求第三面投影
三.两点间的相对位置 四.重影点及可见性
作业
T3-1,2,3,4
a


X
Y
O
a●
A a ●
Y a Z

X
a


ax
°b' O
H
°b≡ B
X a●
O
(2)在投影轴上的点
1. 点的两坐标为零 y=0 ;z=0
a ●
●a
2. 两个投影与轴重合 A a a
3. 另一个投影 a 在原点上
a点向下移动到OX 轴上,反映点的空间
位置有何变化?
Z=0;Y=0;A点 在投影轴上。
Z
V
a'
az
b'

第二章投影的基本知识和点、线、面的投影

第二章投影的基本知识和点、线、面的投影

第二章投影的基本知识和点、线、面的投影基本要求:建立投影的概念,掌握正投影的基本性质;掌握点线面的投影特性;根据投影能判断出点、线、面的关系。

主要内容:1、投影的基本知识;2、点的投影;3、直线的投影;4、平面的投影。

2.1 投影的基本知识一、内容:1、投影的基本概念;2、投影的类型;3、工程中常用的投影图。

二、要求及重点:要求掌握投影的基本概念;了解投影的类型、用途。

三、教学方式:通过实物及日常生活中的现象,使学生掌握投影的基本概念;了解投影的类型、用途。

2.1 投影的基本知识一、投影的概念1、在日常生活中,经常看到空间一个物体在光线照射下在某一平面产生影子的现象,抽象后的“影子”称为投影。

2、产生投影的光源称为投影中心S,接受投影的面称为投影面,连接投影中心和形体上的点的直线称为投影线。

形成投影线的方法称为投影法(图2-1)。

(a) (b)图2-1 中心投影法图2-2 平行投影法二、投影的类型投影法分为中心投影法和平行投影法两大类。

1、中心投影法光线由光源点发出,投射线成束线状。

投影的影子(图形)随光源的方向和距形体的距离而变化。

光源距形体越近,形体投影越大,它不反映形体的真实大小。

2、平行投影法光源在无限远处,投射线相互平行,投影大小与形体到光源的距离无关,如图2-2所示。

平行投影法又可根据投射线(方向)与投影面的方向(角度)分为斜投影(a)和正投影(b)两种。

(1)斜投影法:投射线相互平行,但与投影面倾斜,如图2-2(a)所示。

(2)正投影法:投射线相互平行且与投影面垂直,如图2-2(b)所示。

用正投影法得到的投影叫正投影。

三、工程上常用的投影图1、透视图用中心投影法将空间形体投射到单一投影面上得到的图形称为透视图,如图2-3。

透视图与人的视觉习惯相符,能体现近大远小的效果,所以形象逼真,具有丰富的立体感,但作图比较麻烦,且度量性差,常用于绘制建筑效果图。

图2-3 透视图图2-4 轴测图2、轴测图将空间形体正放用斜投影法画出的图或将空间形体斜放用正投影法画出的图称为轴测图。

建筑工程制图 点线面 的投影直线

建筑工程制图   点线面 的投影直线

d
侧平线
侧垂线
正垂线
10
2.2
直线的投影
例2 试判断下列直线对投影面的相对位置。
a
X
c b
O X
d e
O
Z
e
a
b
c

f d
f
O
正平线
水平线
铅垂线
11
2.2
2.2.3 直线上的点
1. 从属性
直线的投影
若点在直线上,则点的投影在直线的同名投影上。 Z b b Z c b c B b a c a a O C YW X c
a
a c b b
18
本次作业:2-11 2-13 2-15 2-16 选做:2-25 2-26ZZ源自d γ c αXO
d c
YW X
e f e
e β α f
YW
c
d
YH
f
YH
正平线
侧平线
2、投影面的垂直线
垂直于一个投影面的直线为投影面的垂直线 (1). 铅垂线: z H: 铅垂线 V: 正垂线 W: 侧垂线 a b
O
a
a'
A
a" b"
b'
B
b x
YW
a(b)
a(b)
YH
2.2
直线的投影特性
直线的投影
1.直线平行于投影面,其投影反映实长。 2.直线垂直于投影面,其投影积聚成点。
3.直线倾斜于投影面,其投影长度缩短。
显实
积聚
类似
2
2.2
直线的投影图
b Z
直线的投影
b 作图: 1. 作出直线上两 点的投影 Y

第三讲点线面的投影

第三讲点线面的投影

第三讲点、线、面的投影(6学时)主要内容: 1.点的投影;(2学时)2.直线的投影;(3学时)(1)直线对投影面的相对位置及投影特性;(2)直角三角形法求一般位置线的实长及对投影面倾角;(3)直线上的点/点分割线段成定比;(4)两直线的相对位置,直角投影定理。

3.平面的投影;(1学时)(1)平面的表示法与投影特性(2)平面上的点和线教学目的: 1.掌握点线面在三面投影体系中的正投影规律;2.掌握点直面在第一角投影中各种位置的投影特性和作图方法;3.掌握直线对投影面的倾角、线段实长和平面图形实形的求法。

学时分配: 6学时(理论学时)教学方式:多媒体教学与普通教学结合。

第一节点的投影(2学时)一.点的二面投影1.二面投影体系的建立及点的二面投影点是形体最基本的元素。

在几何学中无大小、薄厚、宽窄,只占有位置。

空间点用大写字母表示,投影点用小写字母表示。

如图3-1所示,设立一个投影面P,则A1、 A2、 A3点在投影面P上的正投影是唯一的。

但反过来,若知道了点的一个投影,却不能确定点的空间位置(缺少一个坐标)。

因此要确定一个点的空间位置,只有一个投影是不够的。

如图3-2所示,设立两个互相垂直的投影面正立投影面V (也称正面或V 面)、水平投影面H (也称水平面或H 面),从而构成二投影面体系。

V 面和H 面的交线OX 称为投影轴。

A 点的在V 面上的投影称为A 点的正面投影或A 点的正投影、A 点的V 投影,用a’表示。

A 点的在H 面上的投影称为A 点的水平投影或A 点的H 投影,用a 表示。

我们需要把这种空间关系在一种图纸上(一个平面上)表达出来。

保持V 面不动,H 面绕OX 轴向下旋转90º直至与V 面重合,从而得到点的二面投影图。

为简便起见,投影图中投影面的边框不必画出,如图3-3所示。

在点的二面投影体系中,X 、Y 、Z 三个坐标均能体现,故点的二面投影就唯一确立了点在空间的相对位置(相对二面投影体系)。

第四章点线面的投影 (1)

第四章点线面的投影 (1)
b′
Δy
ΔΖ
β
Δy α 实长
例2 已知直线AB的H投影及a′,其α为30°,求AB的 V投影。
b'
△Z
△Z
α
例3 已知ab,b′,β=30°,求a′b′。 a′
b′
a′b′
b
60°
a
例4 已知AB实长40㎜,点A距V面30㎜,求ab, 问有几解?
例5 已知AB=40㎜,α=30°,β=45°,求AB的两投影。
用定比关系,如图中的(2)。
三、交叉两直线—既不平行又不相交的两条 直线
( 1)
( 2)
( 3)
投影特性:交叉两直线的投影可能表现为相互平
行,但不可能所有同面投影均平行,如上图中 (1);交叉两直线的投影也可能表现为相交,但 同面投影的交点不是真正交点的投影,不满足投影 规律,如上图示(2)、(3)。
例3
求AB、CD的公垂线(或距离)。 a' n' b' n a(b)
距离
c' m'
d'
c
m d
作业:
P21-28。
§4-6 平面的投影
平面的表示方法 平面的分类及其投影特性
一、平面的表示方法
b' a' b a c c' a' b b' c'
a
不在一条直线 上的三个点
c
直线及直线 外一点
a′ b′
a〞 b〞
a b
若zA > zB ,表示A在B之上。
右图中,A在B的左后上方。
重影点及其可见性判定:
如果空间两点恰好位于某一投影面的一条垂 线上,该两点在该投影面上的投影重合为一点, 则称这两点为对该投影面的重影点。

《机械制图》教案——第二章-2 点线面的投影

《机械制图》教案——第二章-2 点线面的投影

点、直线和平面的投影教学目的要求:1.点的投影及作图.2.各种位置直线的投影,及两直线的相对位置.3.直角三角形法求直线的实长和倾角,直角定理.4.各种位置平面的投影,平面上取点取线的作图.教学重点难点:1.各种位置直线的投影.2.各种位置平面的投影.3.平面上取点取线的作图.学时: 3§ 1点的投影1.1点的三面投影本节教学目标:点在第一分角中各种位置的投影特性和作图方法。

重点:点在两投影面体系及三投影面体系中的投影,两点的相对位置及重影点的投影。

难点:重影点的投影。

引入:点是最基本的几何元素,以此来分析点在空间中的位置关系及规律。

1.1.1三面投影的规律点的三面投影:水平投影 a → H正面投影 a´→ V侧面投影 a″→ W点的三面投影规律:a′a ⊥ oxa′a″⊥ oza aх =a″az1.1.2点的投影与坐标的关系一、三投影面体系中点的投影A a = a′ax = a″ay = 高标(Z标)A a′= a ax = a″az = 纵标(Y标)A a″= a′az = aay = 横标(X标)V、H 投影反映XV、W 投影反映ZH、W 投影反映Y1.点在三投影面体系中的投影空间点 A的位置确定后,那么它的三面投影( a、a′、 a″)投影就确定了,反之如果空间一点的三面投影确定,则空间点的位置也就确定。

2.术语及规定习惯上我们将空间点用大写的字母表示,其投影用相应的小写字母表示。

3.投影性质点的两投影的连线垂直于相应的投影轴;点的投影到投影轴的距离反映空间点到投影面的距离。

二、特殊位置点的投影1.其他分角内的点两投影面体系——四分角;三投影面体系——八分角。

2.其他情况投影面上的点的投影关系;投影轴上的点的投影关系1.2两点的相对位置和重影点1.2.1两点的相对位置根据两点相对于投影面的坐标不同,即可确定两点的相对位置。

XA<XB B点在A左方 YA>YB B点在A点后方 ZA>ZB B点在A点下方例:比较三棱锥四个顶点S、A、B、C的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点线面投影特点的运用
点线面投影法是一种平面投影方法,它允许模型在平面上以可视化的形式展示,从而更加清楚地理解和描述物体的形状和结构。

点线面投影共分为视投影和设计投影,它们在绘制图形时有着不同的特点。

视投影是一种投影方法,它通过使物体变得更加真实来模拟物体外部形状,以获得更完整的图像。

视投影的原理是采用线条来表示物体的轮廓,使用晕染来强调其特征,以获得更完整的图像。

视投影可以分为剖切投影、斜剖切投影、透视投影、等角投影等不同类型,其中等角投影是最常见的,它可以保持物体外部形状的正确比例和结构。

使用视投影最大的优点在于能够清晰地表现和传达物体的结构信息,而不会由于对物体的视角和视觉深度的刻板印象造成图像模糊。

设计投影则是通过解剖物体的结构来描绘的,它的原理是传达物体内部的结构特征,而不是外部的形状特征。

设计投影的优点在于能够模拟出物体内部的结构,从而更加清楚地理解它们。

与视投影相比,设计投影能够更形象地表现物体的内部结构,比如通过投影得到的弹簧、螺旋形等图形,而且可以揭示物体内部活动状态,比如活塞、连杆等结构。

综上所述,点线面投影法是一种广泛使用的投影方法,它主要用于表现和传达物体的外部和内部结构信息,对于制图和设计均非常有用。

可以认为,它是理解物体的一种重要工具,其主要优势在于能够揭示物体的整体特征,以及深入了解物体的内部结构。

在实际应用中,点线面投影法可以用于不同领域,比如建筑设计、
工业技术、绘画等。

例如,在建筑设计中,点线面投影可以用来展示建筑物的外形和内部结构,从而更加完善地解决设计问题。

此外,在工业技术中,点线面投影也是一种常用的投影方法,可以用来显示机械零件的形状和尺寸比例,从而保证机器的正常使用和保养。

另外,点线面投影还可以用来表现和传达画作中物体的空间结构和形式特征,使其具有更强的表现力和感染力。

因此,点线面投影法是一种重要的投影方法,从它的特点和应用可以看出,它对于制图、设计和绘画都有着重要的作用,且可以用于许多不同领域,是理解物体的重要工具。

相关文档
最新文档