煤灰分的测定

煤灰分的测定
煤灰分的测定

煤灰分的测定

一、目的

(1)掌握煤灰分的测定的原理及方法。

(2)了解煤的灰分与煤中矿物质的关系。

二、方法原理

将装有煤样的灰皿放在预先加热至的灰分快速测定仪的传送带上,煤样自动送入仪器内完全灰化,然后送出。以残留物的质量占煤样质量的质量分数作为煤样的灰分。

三、仪器和设备

(1)快速灰分测定仪:由马蹄形管式电炉、传送带和控制仪三部分组成。

①马蹄形管式电炉:炉膛长约700mm,底宽约75mm,高约45mm,两端敞口,轴向倾斜5o左右;恒温带要求:(850±10)℃部分长约140mm,750~825部分长270mm,出口端温度不高于100℃。

②链式自动传送装置(简称传送带):用耐高温金属制成,传送速度可调。在下不变形,不掉皮。

③控制仪:主要包括温度控制装置和传送带传送速度控制装置。温度控制装置能将炉温自动控制在(850±10)℃;传送带传送速度控制装置能将传送速度控制在(15~20)mm/min之间。

(2)灰皿:瓷制,长方形,底长45mm,底宽22mm,高14mm。

(3)干燥器:内装变色硅胶或粒状无水氯化钙。

(4)分析天平:感量。

(5)耐热瓷板或石棉板。

四、实验步骤

(1)将快速灰分测定仪预先加热至(815±10)℃;

(2)在预先灼烧至质量恒定的灰皿中,称取粒度小于0.2mm的空气干燥煤样(0.5±0.01)g(称准至0.0002g),均匀摊平在灰皿中,使其每平方厘米的质量不超过0.08g;

(3)将盛有煤样的灰皿放在干燥器中干燥10min后取出放入马弗炉中,在放的过程中要慢、柔,应当以每分钟2—3厘米的速度推入马弗炉中;

(4)当灰皿在炉内加热半小时后取出,放在耐热瓷板或石棉网上,在空气中冷却5min 左右,移入干燥器中冷却至室温(约 20min)后称量。

六.实验记录和结果计算

七.注意事项

(1)煤样在灰皿中要铺平,使其每平方厘米的质量不超过0.08g,以避免局部过厚,燃烧不完全;

(2)煤样在灰化前最好先做干燥处理,以免灰化时水分剧烈蒸发产生煤烟使实验作废,也可以使用测定过水分的煤样来测灰分;

(3)灰化过程中始终保持良好的通风状态,使硫氧化物一经生成就及时排除。

八、思考题

(1)中采用马蹄形管式炉快速灰化法为什么能有效避免煤中硫固定在煤灰?

答:管式炉快速灰化法中使用轴向倾斜度为5℃的马蹄形管式炉,炉中央段温度为815℃±10℃。两端有500℃温度区,煤样从高的一端至500℃温度区时,煤中的硫氧化后生成的硫氧化物由高端溢出,而不会与已到达815℃±10℃区的煤样中的碳酸钙分解生成CaO接触,从而可有效避免煤中硫被固定在煤灰中。

(2)水分含量高的煤样在灰化过程中会产生什么现象?应如何避免?

6煤灰熔融性的测定

煤灰熔融性的测定 (1)实验目的 1. 掌握煤灰熔融性的测定原理及操作方法; 2. 掌握煤灰熔融的特征温度判断方法。 (2)实验意义 煤灰熔融性习惯上称为煤灰熔点。煤灰熔融性是动力用煤的重要指标之一。煤燃烧后产生的灰分,在高温下的熔融性是锅炉用煤的重要特性。对于煤粉燃烧固态排渣的锅炉,它是判断炉膛结渣可能性的依据之一。为了减少结渣的危险,煤粉炉要求燃烧灰熔点较高的煤。对于层燃锅炉燃用灰熔点较低的煤可形成适当的融渣,起保护炉排的作用。对于液态排渣煤粉炉,较低的灰熔温度有利于排渣。 (3)实验原理 本实验采用角锥法测定煤灰熔融性。将煤灰制成一定形状和尺寸的三角锥体,放在其他介质中,以一定的升温速度加热,观察并记录其四个特征温度。 图1 灰锥熔融特征示意图 1.变形温度(DT ) 灰锥尖端开始变圆或弯曲时的温度。 2.软化温度(ST ) 灰锥弯曲至锥尖触及托板或灰锥变成球形时温度。 3.半球温度(HT ) 灰锥形变近似半球形,即高约等于底长的一半时的温度。 4.流动温度(FT ) 灰锥完全熔化或展开成高度1.5 mm以下的薄层时的温度。

煤灰的熔融性主要取决于它们的化学组成。由于煤灰中总含有一定量的铁,铁在不同的气体介质中将以不同的形态存在,在氧化性气体介质中以三价铁(Fe2O3)形态存在;在弱还原性气体介质中,它将转变成二价铁(FeO);而在强还原性气体介质中,它将转变成为金属铁(Fe)。三者的熔点以FeO为最低(1420 °C),Fe2O3为最高(1560 °C),Fe居中(1535 °C)。此外,FeO能与煤灰中的SiO2生成熔点更低的硅酸盐,所以煤灰在弱还原性气体介质中熔点最低。 在工业锅炉和气化炉中,成渣部位的气体介质大都呈弱还原性,因此煤灰熔融性的例常测定就在模拟工业条件的弱还原性气氛中进行。根据要求也可在强还原性气氛和氧化性气氛中进行。本实验出于操作上的考虑,在氧化性气氛下进行灰熔融性测定。 (4)实验仪器和试剂 1. 微机灰熔点测定仪:该仪器由灰熔点测定仪和计算机两部分组成。其中测定仪加热主体部分见图2。 2. 灰锥模子:试样用灰锥模子制成三角锥体,锥高为20mm,底为边长7mm的正三角形,锥体之一棱面垂直于底面。灰锥模子如图3所示,由对称的两个半块构成,用黄铜或不锈钢制成。

粉煤灰的主要特性(精)

粉煤灰的主要特性 一、粉煤灰的主要性状和技术特征 粉煤灰的性状是指粉煤灰颗粒和混合粉料的物理、化学性质以及形态、结构等的统称。粉煤灰性状除包括上述化学成分、矿物组分和颗粒组分外,一般还包括表观色泽、粒径、细度、级配、比表面积、密度、堆积密度、含水率、烧失量、需水量比、火山灰活性以及其他各种物理力学性质和化学性质,特别还应包括均匀性这个重要的信息。粉煤灰一般的性状,因为粉煤灰在水泥和混凝土的应用要比其他用途具有更高的性状要求,仍须摘要说明。 粉煤灰技术特征,这里主要是指粉煤灰用作水泥和混凝土的原材料时,与用途和质量有关的粉煤灰成分、结构和性能的技术信息,也是与粉煤灰混凝土技术相关的重要技术参量。粉煤灰特征化研究,是粉煤灰水泥混凝土技术中的基础研究,直到20世纪80年代,粉煤灰特征化研究随着现代科学测试手段和研究方法的进步,取得了较多的成绩。 (一)、粉煤灰的性状 1.表观色泽 由于成分和组分不同,粉煤灰表观色泽变化很大。低钙粉煤灰随着碳分含量从低到高,从乳白色变至灰黑色。在一般情况下,粗略地可从色泽的变化观察粉煤灰性质的变化。高钙粉煤灰一般呈浅黄色,可反映氧化钙含量。目前,最新的研究认为,粉煤灰色泽不可以反映其结构。 2.粒径和细度 所收集的统灰粒径变化为0.5~300μm,这一范围与水泥接近,但其中大部分的颗粒要比水泥细得多。国内沿用标准筛测定,现在的我国粉煤灰新标准把用于水泥和混凝土的粉煤灰的试验方法和筛余量指标从用80μm标准筛人工筛分法改为用气流筛测定45μm的筛余量。如JGJ28-1986规定,以80μm标准筛测定细度,其筛余量:I级灰不大于5%,II级灰不大于8%,III级不大于25%。因为45μm以下粉煤灰颗料对混凝土性质的贡献较大,GB1596-2005粉煤灰新标准中,采用45μm筛余量(%)为细度指标,规定I级灰不大于12%,II级灰不大于20%,III级灰不大于45%。细度是粉煤灰最重要的参量,有的专家认为可以用来作为评估用于混凝土中粉煤灰质量的基本参量。至于代替细集料或用以改善工作性的粉煤灰细度则不受上述规定的限制。 3.比表面积 因为粉煤灰中密实颗粒和内部表面积很大的多孔颗粒混在一起,用比表面积方法不易准确测定颗粒的粗细。沿用测定水泥比表面积法测定粉煤灰比表面积的变化范围一般为1500~5000cm2/g,仍可用作反映粉煤灰组合颗粒内外表面积的综合情况。 4.颗粒级配 颗粒级配大致可分三种形式: (1)细灰。颗粒级配细于水泥,主要用于钢筋混凝土中取代水泥或水泥混合材料。 (2)粗灰。包括统灰和分选后的粗灰,颗粒级配粗于水泥,主要用于素混凝土和砂浆中取代集料。(3)混灰。与炉底灰混合的粉煤灰,用作取代集料或用作水泥混合材料(尚须与熟料共同磨细或分别麿细),或者作填筑用粉煤灰。 5.密度 普通粉煤灰密度为1.8~2.3g/cm2,约等于硅酸盐水泥的2/3。粉煤灰堆积密度的变化范围为0.6~0.9g/cm3,振实后的堆积密度为1.0~1.3 g/cm3。高钙粉煤灰密度略大。 最近我国用于混凝土的粉煤灰特征化研究完全证实,密度是粉煤灰技术特征中一个很重要的参量,它可用于混凝土用粉煤灰的质量评定和质量控制,特别是能用于粉煤灰质量均匀性评定和控制。 6.需水量比 粉煤灰需水量比是按规定的水泥标准砂浆流动性试验方法,以30%的粉煤灰取代硅酸盐水

最新影响煤灰熔融性温度的控制因素

影响煤灰熔融性温度的控制因素 引言 煤灰熔融性是煤灰在高温下达到熔融状态的温度,主要包括4个温度值:变形温度(DT)、软化温度(ST)、半球温度(HT)和流动温度(FT),在锅炉设计中,大多采用ST作为灰熔融性温度。无论电厂锅炉,还是煤气化炉的设计工作,都必须认真研究灰熔融性温度,其值大小与炉膛结渣有密切关系,并且对用煤设备的燃烧方式及排渣方式的选取影响重大。对于干式排渣炉,通常需要燃用较高灰熔融性温度的煤以防止炉内结渣,如固态排渣的电站锅炉需要燃用高灰熔融性温度的煤;而液态排渣炉,要求燃用灰熔融性温度较低的煤,以保证灰渣能以熔融状排出,如在液排渣旋风燃烧技术的基础上,发展了一种适用于工业窑炉的煤粉低尘燃烧技术,应用前景广阔,然而受燃烧器材质和环保排放限制,目前还只能燃用低灰熔融性温度、低硫的烟煤。 煤灰的熔融特性不仅与灰的成分有关,还与燃烧过程中灰中各成分之间的相互作用有关。灰熔融性温度主要取决于煤中的矿物组成、其氧化物的成分和配比及燃烧气氛等。为了实现控制煤灰熔融性温度的目的,以适应不同排渣方式的燃烧、气化技术或扩大煤种的适用范围,对其进行深入研究显得尤为必要。 1 测试气氛性质的影响 煤灰熔融性温度测定主要有3种气氛:弱还原性气氛、强还原性气氛和氧化性气氛。不同气氛下的煤灰熔融性变化规律不同。 在弱还原性气氛下,测定DT、ST、FT均小于氧化性气氛下的测定值,

且随煤灰化学成分不同,二种气氛之间的特征温度差值也不同,大约在10℃~130℃。这是由于煤灰中的铁有3种价态,它们是Fe2O3(熔点为1560℃)、FeO(熔点为1420℃)和Fe(熔点为1535℃)。在氧化性气氛中以Fe2O3形式存在,在弱还原气氛中,以FeO的形态存在,与其他价态的铁相比,FeO具有最强的助熔效果。FeO能与SiO2、A12O3、3Al2O3?2SiO2(莫来石,熔点1 850℃)、CaO?A12O3?2SiO2(钙长石,熔点1553℃)等结合形成铁橄榄石(2FeO?SiO2,熔点1205℃)、铁尖晶石(FeO?A12O3,熔点1780℃)、铁铝榴石(3FeO?A12O3?3SiO2,熔点1240℃~1300℃)和斜铁辉石(FeO?SiO2),这些矿物质之间会产生低熔点的共熔物,因而使煤灰熔融性温度降低。当煤灰中Fe2O3含量较高时,会降低灰熔融性温度,且在弱还原性气氛下更为显著。弱还原气氛下的反应为: Fe2O3→FeO (1) 3A12O3?2SiO2+FeO→2FeO?SiO2+FeO?Al2O3(2) CaO?Al2O3?2SiO2+FeO→3 FeO?Al2O3?3SiO2+2FeO?SiO2+FeO?Al2O3(3) SiO2+FeO→FeO?SiO2(4) FeO?SiO2+FeO→2FeO?SiO2(5) 在强还原气氛下,煤灰在熔融过程中的氧元素被大量还原,所剩绝大部分是金属或非金属单质,其单质的熔融温度要高出其氧化物许多,这些在强还原气氛下被还原出来的金属单质导致了煤灰熔融性温度的升高。因此,强还原气氛下的煤灰熔融性温度均比氧化气氛下高,差值在50℃~200℃。

煤灰中化学成分对熔融和结渣特性影响的探讨(1)(1)

作者简介: 张堃(1981),男,浙江大学热能工程研究所在读硕士研究生,研读方向为锅炉结渣控制及结渣机理。 煤灰中化学成分 对熔融和结渣特性影响的探讨 张 堃,黄镇宇,修洪雨,杨卫娟,周俊虎,岑可法 (浙江大学,浙江杭州 310027) [摘 要] 煤灰中化学成分对煤灰的熔融和结渣特性的影响比较复杂。采用SiO 2、Al 2O 3、Fe 2O 3、CaCO 3、Na 2CO 3等化学品替代煤灰中的化学成分,通过人工控制灰样的成分和含量的变化,用XRD 等测试手段,结合渣样的抗剪切强度加以分析,探讨煤灰中化学成分对熔融行为和结渣特性的影响规律。[关键词] 煤灰;灰成分;剪切强度;熔融;结渣;化学成分 [中图分类号]TK16 [文献标识码]A [文章编号]10023364(2005)12002704 锅炉炉内结渣问题长期困扰电厂的运行,其中煤灰的熔融特性是影响炉内结渣的主要因素之一,而煤灰的熔融特性又受煤灰成分的影响,本文尝试用可控制成分和含量的人工灰样替代煤灰进行结渣研究。 1 试验依据和方法 1.1 试验依据 煤中矿物质主要有石英(SiO 2)、白云石(CaCO 3 Mg CO 3)、方解石(CaCO 3)、黄铁矿(FeS 2)以及高岭石(Al 2O 3 2SiO 2 2H 2O)等。试验表明[1] ,煤中矿物成分在800 之前主要发生的化学反应有: (1)白云石受热分解 CaCO 3 M gCO 3→Mg O+CaO+2CO 2(1)(2)方解石受热分解CaCO 3→CaO+CO 2 (2)(3)高岭石失水转变成为偏高岭石Al 2O 3 2SiO 2 2H 2O →A l 2O 3 2SiO 2+2H 2O (3) 矿物间的反应几乎没有。当温度高于900 后偏 高岭石还会分解为无定形的Al 2O 3和SiO 2 [2] 。同时, 众多结渣机理试验所用的高温灰化煤灰中,Fe 元素以Fe 2O 3形式存在,转化过程为:黄铁矿(FeS 2)→磁黄铁矿(Fe 1-x S,其中x =0~0.2)→磁铁矿(Fe 3O 4)→赤铁 矿(Fe 2O 3)[3]。因此,可用SiO 2、A l 2O 3、Fe 2O 3、Ca -CO 3、Na 2CO 3等人工样品替代煤灰成分进行熔融和结渣特性的研究。由于CaCO 3、N a 2CO 3平时性质稳定,在加热后极易自身分解或与其它物质反应释放出CO 2,故用来代替CaO 和Na 2O 。 因为人工灰样的配比可以调控,以此来简化试验 条件,排除杂质干扰。在改变人工灰样的成分、含量、加热气氛等条件下,通过熔点、生成物相以及抗剪切强度等特性的变化,找出熔融和结渣的规律,分析内在结渣机理。1.2 试验方法1.2.1 灰成分分析 依据GB/T 15741995,使用XJK12型陶瓷化学成分分析仪进行分析。1.2.2 人工灰配比 将煤灰成分中的K 2O 合并至Na 2O 中,并将T iO 2、M gO 等含量不高的杂质忽略,全部折合换算成SiO 2、Al 2O 3、Fe 2O 3、CaO 、N a 2O 的百分含量后,用等质量比的SiO 2、Al 2O 3、Fe 2O 3、CaCO 3、Na 2CO 3替代其中的化学成分进行人工灰配制。在研究其中一种成分的影响时,将这种成分的含量从0变化到高值,其余组分不变。这里高值根据国内众多煤种中此成分的高水 研究论文

煤灰成分分析方法

中华人民国能源部标准 SD323-89 煤灰成分分析方法 中华人民国能源部1989-3-27发布1989-10-01实施 1总则 1.1适用围煤灰、焦炭灰及煤矸石灰的分析方法。 1.2分析方法常量、半微量、容量和原子吸收法等,可根据实际情况选用。 1.3通则 1.3.1测定用水,系指蒸馏水或去离子水。试剂,仅列出测定中直接使用的试剂;其配制方法,仅列出配制比较复杂的试剂。凡未标明浓度的试剂,系指浓溶液(如硫酸指浓硫酸,氨水指浓氨水)或固体(如氯化钾指固体氯化钾)。 1.3.2溶液的百分浓度,液体试剂按体积比混合,固体试剂指100mL溶剂中所加溶质的克数。 1.3.3在测定过程中应同时作空白实验,并对测定值进行校正。 1.3.4对每一个项目均应进行两次平行测定,取两次测定值的算术平均值作为报告值。如两次平行测定值超过允许误差,则应进行第三次测定,取两次符合允许误差的测定值的算术平均值作为报告值。如第三次测定值与前两次测定值之差均在允许误差之,则取三次的算术平均值作为报告值。如三次测定值均超出允许误差,则结果全部作废,查找原因,重新测定。 1.3.5分析结果用灰样的百分数表示。除五氧化二磷保留两位有效数字外,其余各项均保留到小数点后第二位数字。 1.3.6允许误差均为绝对误差。 2煤灰灰样的制备 取5~10g分析煤样(按灰分多少选定)置于灰皿中进行灰化,其灰量不少于1.5~2g。而后将灰样置于玛瑙研钵中研细,使之全部通过孔径90μm筛子,然后放入灰皿,于815±10℃的高温炉中灼烧到恒重,装入磨口瓶中,并存放于干燥器。称样前,应在815±10℃的高温炉中灼烧30min。 3常量分析方法 3.1二氧化硅的测定(动物胶凝聚重量法) 3.1.1要点 灰样加氢氧化钠熔融,用沸水浸取,盐酸酸化,蒸发至干。在盐酸介质中用动物胶凝聚硅酸,沉淀过滤,灼烧,称重。 3.1.2试剂 3.1.2.1氢氧化钠(GB629—77)分析纯,粒状。 3.1.2.2盐酸(GB622—77)分析纯,配成1∶1和2%的水溶液。 3.1.2.31%动物胶水溶液称取动物胶1g溶于100mL70~80℃的水中,现用现配。 3.1.2.4硝酸银(GB670—77)分析纯,1%水溶液,加几滴硝酸(GB626—78),储于棕色瓶中。 3.1.2.595%乙醇(GB679—65)分析纯。 3.1.3测定步骤 3.1.3.1称取灰样0.50±0.02g(准确至0.0002g)于30mL银坩埚中,用几滴乙醇润湿,加氢氧化钠4g,盖上盖,放入箱形电炉中。由室温缓慢升温至650~700℃时,熔融15~20min,取出坩埚,稍冷,擦净坩埚外壁,平放于250mL烧杯中,加1mL乙醇及适量的沸水,盖上表面皿。待剧烈反应停止后,以少量1∶1盐酸和热水冲洗表面皿、坩埚及坩埚盖,再加盐酸20mL,搅匀。 3.1.3.2将烧杯置于电热板上,慢慢蒸干(带黄色盐粒),取下,稍冷,加盐酸20mL,盖上表面皿。热至约80℃,加1%动物胶溶液(70~80℃)10mL,剧烈搅拌1min,保温10min,取下,稍冷,加热水约50mL,搅拌,使盐类完全溶解。用中速定量滤纸过滤于250mL容量瓶中,将沉淀先用1∶3的盐酸洗涤7~8次,再用带橡皮头的玻璃棒以2%热盐酸擦净杯壁及玻璃棒,并洗涤沉淀3~5次,再用热水洗至无氯离子(用1%硝酸银溶液检验)。 3.1.3.3将滤纸和沉淀移于已恒重的瓷坩埚中,先在电炉上以低温烤干,再升高温度使滤纸充分灰化。然后于1000±20℃的

浅谈煤灰熔融性(知识产权归于作者所有,非上传者)

浅谈煤灰熔融性 2007-11-27 11:47:06国际煤炭网网友评论 煤灰的熔融性是指煤灰受热时由固态向液态逐渐转化的特性,煤灰的熔融性是动力用煤高温特性的重要测定项目之一。由于煤灰不是一个纯净物,它没有严格意义的熔点,衡量其熔融过程的温度变化,通常用三个特征温度:即变形温度(DT),软化温度(ST)、流动温度(FT)。这三个温度代表了煤灰在熔融过程中固相减少,液相渐多的三点,在工业上多用软化温度作为熔融性指标,称为灰熔点。 一、煤灰的熔融性对于煤粉固态排渣炉的炉膛结渣有密切关系: 如灰熔融性温度低,在炉膛高温下熔融粘在炉膛受热面上,冷却后形成结渣。根据运行经验,煤灰软化温度小于1350℃就有可能造成炉膛结渣。故煤粉固态排渣炉要求灰熔融性温度高。 煤灰熔融过程中DT-ST之间的温度为软化区间温度,根据其范围把灰分为长渣和短渣,一般认为软化区温度大于200℃为长渣,小于100℃为短渣。通常短渣的煤易于结焦,燃用长渣的煤较为安全。 二、影响煤灰熔融性的因素: 影响煤灰熔融性的因素主要是煤灰的化学组成和煤灰受热时所处的环境介质的性质: 一、煤灰的化学组成比较复杂,通常以各种氧化物的百分含量来表示。其组成百分含量可按下列顺序排列:SiO2,Al2O3,(Fe2O3+FeO),CaO,MgO,(Na2O+K2O)。这些氧化物在纯净状态时熔点大都较高(Na2O和K2O除外)。在高温下,由于各种氧化物相互作用,生成了有较低熔点的共熔体。熔化的共熔体还有溶解灰中其他高熔点矿物质的性能,从而改变共熔体的成分,使其熔化温度更低。上列氧化物分为三类,此三类氧化物对煤灰的熔融性的影响如下: Al2O3 能提高灰熔点,煤灰中三氧化二铝含量自15%开始,煤灰熔融性温度随其含量增加而有规律的增加,煤灰中Al2O3含量大于40%时,ST一般都超过1500℃;大于30%时,ST也多在1300℃以上。当三氧化二铝含量高于25%时,DT与ST 的温差,随其含量增加而变小。 SiO2 对灰熔点的影响较复杂,主要看它是否与Al2O3结合成2SiO2.Al2O3,如煤灰中SiO2和Al2O3的含量比为1.18(即2SiO2.Al2O3)时,灰熔点一般较高。随着该比值增加,灰熔点逐渐降低,这是由于灰中存在游离氧化硅。游离氧化硅在高温下可能与碱性氧化物结合成低熔点的共晶体,因而使灰熔点下降。游离氧化硅过剩较多时,却可以使灰熔点升高。由于大多数煤灰的SiO2和Al2O3的含量比值在1 4之间,所以煤灰中碱性氧化物的存在会降低灰熔点。 碱性氧化物(Fe2O3+CaO+MgO+KNaO)一般此类氧化物能降低灰熔点。其中Fe2O3的影响较复杂,灰渣所处的介质性质不同而有不同影响,但总的趋势是降低灰熔融性温度。CaO和MgO有减低灰熔点的助熔作用,且有利于形成短渣,但其含量超过一定值时(大约25% 30%),

测定煤灰熔融性的重要性及其方法

煤灰熔融性测定的重要性及方法 摘要煤灰熔融性测定可提供锅炉设计有关数据、预测燃煤情况、锅炉燃烧方式选择、判断煤灰渣型。掌握正确的煤灰熔融性测定技术,煤灰熔融性对锅炉结渣情况的影响,可为减轻或避免锅炉结渣提供有效的依据。 建议你看看GB/T219-1996,标准对这4个温度有解释的! 3.1 变形温度(DT) 尖锥尖端或棱开始变圆或弯曲时的温度(图1DT)。注:如灰锥尖保持原形,则锥体收缩和倾斜不算变形温度。 A. 软化温度(ST) 灰锥弯曲至锥尖触及托板或灰锥变成球形的温度(图1ST)。 B. 半球温度(HT) 灰锥形变至近似半球形,即高约等于底长的一半时的温度(图1HT)。 C. 流动温度(FT) 灰锥熔化展开成高度在1.5mm以下的薄层时的温度(图1FT)。 1 前言 煤灰的熔融性是动力用煤高温特性的重要测定项目之一,是动力用煤的重要指标,它反映煤中矿物质在锅炉中的变化动态。测定煤灰熔融性温度在工业上特别是火电厂中具有重要意义。 第一,可以提供锅炉设计选择炉膛出口烟温和锅炉安全运行的依据。在设计锅炉时,炉膛出口烟温一般要求比煤灰的软化温度低50~100℃,在运行中也要控制在此温度范围内,否则,会引起锅炉出口过热器管束间灰渣的“搭桥”,严重时甚至发生堵塞,从而导致锅炉出口左右侧过热蒸汽温度不正常。 第二,可以预测燃煤的结渣。因为煤灰熔融性温度与炉膛结渣有密切关系。根据煤粉锅炉的运行经验,煤灰的软化温度小于1350℃就有可能造成炉膛结渣,妨碍锅炉的连续安全运行。 第三,可为不同锅炉燃烧方式选择燃煤。不同锅炉的燃烧方式和排渣方式对煤灰的熔融性温度有不同的要求。煤粉固态排渣锅炉要求煤灰熔融性温度高些,以防炉膛结渣;相反,对液态排渣锅炉,则要求煤灰熔融性温度低些,以避免排渣困难。因为煤灰熔融性温度低的煤在相同温度下有较低的粘度,易于排渣。 第四,可判断煤灰的渣型。根据软化区间温度(DT—ST)的大小,可粗略判断煤灰是属于长渣或短渣。一般认为当(ST—DT)=200~400℃为长渣;(ST—DT)=100~200℃为短渣。通常锅炉燃用长渣煤时运行较安全。燃用短渣煤时,由于炉温增高,固态排渣炉可能在很短的时间内就出现大面积的严重结渣情况;燃用长渣煤时,DT、ST之间的温差虽超过200℃,但固态排渣炉的结渣相对进行得较为缓慢,一旦产生问题,也常常是局部性的。 综上所述,是煤灰熔融性测定的重要性,必须掌握煤灰熔融性的准确测定方法,以达到确保锅炉安全经济燃烧的目的。 2 测定煤灰熔融性设备的技术要求 按国家标准GB219—74规定要求,应用硅碳管高温炉应满足有足够大的恒温区,恒温区内温差应不大于5℃;能按照规定的温升速度升温至1500℃;炉内气氛能方便控制为弱还原性或氧化性;能在试验过程中随时观察试样的变化情况;电源要有足够容量,可连续调压。 铂铑—铂热电偶及高温计,测温范围为0~1600℃,最小分度为5K,经校正后(半年校正一次)使用,热电偶要用气密性刚玉管保护,防止热端材质变异。 灰锥模子,由对称的两半块构成的黄铜或不锈钢制品。 灰锥托板模,由模座、垫片和顶板三部分构成,用硬木或其他坚硬材料制做。 常量气体分析器,可测定一氧化碳、二氧化碳和氧气含量。 3 气氛条件的控制 煤灰熔融性温度测定的气氛一般有两种,一种是氧化性气氛,另一种是弱还原性气氛。常用的气氛是弱还原性气氛。这是因为在工业锅炉的燃烧中,一般都形成由CO、H2、CH4、CO2和O2为主要成分的弱还原性气氛,所以煤灰熔融性温度测定一般也在与之相似的弱还原性气氛中进行。所谓弱还原性气氛,是指在1000~1300℃范围内,还原性气体(CO、H2、CH4)总含量在10%~70%之间,同时在1100℃以下时,它们和CO2的体积比不大于1:1,含氧

粉煤灰

粉煤灰简述
粉煤灰,是从煤燃烧后的烟气中收捕下来的细灰,粉煤灰是燃煤 电厂排出的主要固体废物。 我国火电厂粉煤灰的氧化物组成为: SiO2、 Al2O3 及少量的 FeO、Fe2O3、CaO、MgO、SO3、TiO2 等。其中 SiO2 和 Al2O3 含量可占总含量的 60%以上。 粉煤灰是我国当前排量较大的工业废渣之一, 随着电力工业的发 展,燃煤电厂的粉煤灰排放量逐年增加。大量的粉煤灰不加处理,就 会产生扬尘,污染大气;若排入水系会造成河流淤塞,而其中的有毒 化学物质还会对人体和生物造成危害。 另外粉煤灰可作为混凝土的掺 合料。 粉煤灰外观类似水泥,颜色在乳白色到灰黑色之间变化。粉煤灰 的颜色是一项重要的质量指标,可以反映含碳量的多少和差异。在一 定程度上也可以反映粉煤灰的细度,颜色越深粉煤灰粒度越细,含碳 量越高。粉煤灰就有低钙粉煤灰和高钙粉煤灰之分。通常高钙粉煤灰 的颜色偏黄,低钙粉煤灰的颜色偏灰。粉煤灰颗粒呈多孔型蜂窝状组 织, 比表面积较大, 具有较高的吸附活性, 颗粒的粒径范围为 0.5~300 μ m。并且珠壁具有多孔结构,孔隙率高达 50%—80%,有很强的吸水 性。 粉煤灰的主要来源是以煤粉为燃料的火电厂和城市集中供热锅炉, 其 中 90%以上为湿排灰,活性较干灰低,且费水费电,污染环境,也不 利于综合利用。为了更好地保护环境并有利于粉煤灰的综合利用,考

虑到除尘和干灰输送技术的成熟, 干灰收集已成为今后粉煤灰收集的 发展趋势。 形成 第一阶段 粉煤在开始燃烧时,其中气化温度低的会挥发,首先自矿物质与 固体碳连接的缝隙间不断逸出,使粉煤灰变成多孔型炭粒。此时的煤 灰,颗粒状态基本保持原煤粉的不规则碎屑状,但因多孔型性,使其 表面积更大。 第二阶段 伴随着多孔性炭粒中的有机质完全燃烧和温度的升高,其中的矿 物质也将脱水、分解、氧化变成无机氧化物,此时的煤灰颗粒变成多 孔玻璃体,尽管其形态大体上仍维持与多孔炭粒相同,但比表面积明 显地小于多孔炭粒。 第三阶段 随着燃烧的进行,多孔玻璃体逐渐融收缩而形成颗粒,其孔隙率 不断降低,圆度不断提高,粒径不断变小,最终由多孔玻璃转变为一 密度较高、粒径较小的密实球体,颗粒比表面积下降为最小。不同粒 度和密度的灰粒具有显著的化学和矿物学方面的特征差别, 小颗粒一 般比大颗粒更具玻璃性和化学活性。

灰熔点测定方法

灰熔点 煤灰是各种矿物质组成的混合物,没有一个固定的熔点,只有一个融化的范围,煤灰熔融性又称灰熔点。 灰熔点是固体燃料中的灰分,达到一定温度以后,发生变形,软化和熔融时的温度,它与原料中灰分组成有关,灰分中三氧化二铝、二氧化硅含量高,灰熔点高;三氧化二铁、氧化钙和氧化镁含量越高,灰熔点越低。 灰熔点计算公式如下: 灰熔点(软化) t ═ 19 (Al2O3) + 15 (SiO2+Fe2O3) + 10 (CaO+MgO) + 6 (Fe2O3+Na2O+K2O) 灰熔点可以实测,即将灰分制成三角锥形,置于高温炉内加热,并观察下列温度。 开始变形温度T1:锥顶尖端复圆或锥体开始倾斜。 开始软化温度T2:锥尖变曲接触到锥托或锥体变成 球形。 开始熔融温度T3:看不到明显形状,平铺于锥托之上。 原料灰熔点,是影响气化操作的主要因素。灰熔点低的原料,气化温度不能维持太高,否则,由于灰渣的熔融、结块,各处阻力不一,影响气流均匀分布,易结疤发亮,而且由于熔融结块,还减少气化剂接触面积,不利于气化,因此,灰熔点低的原料,只能在低温度下操作。煤灰熔融性是动力和气化用煤的重要指标。煤灰是由各种矿物质组成的混合物,没有一个固定的熔点,只有一个熔化温度的范围。煤灰熔融性又称灰熔点。煤的矿物质成分不同,煤的灰熔点比其某一单个成分灰熔点低。灰熔点的测定方法常用角锥法、见GB219-74。将煤灰与糊精混合塑成三角锥体,放在高温炉中加热,根据灰锥形态变化确定DT (变形温度)、ST (软化温度)和FT (熔化温度)。一般用ST 评定煤灰熔融性。 中华人民共和国国家标准 GB219—74 代替GB219—63煤灰熔融性的测定方法 中华人民共和国标准计量局发布1974 年1 1 月1 日实施中华人民共和国燃料化学工业部提出煤炭科学研究院北京煤炭研究所起草、管路敷设技术护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

煤灰熔融性及煤灰成分

煤灰熔融性及煤灰的成分分析 灰熔点是煤燃烧或气化时的一项重要指标。煤的灰渣是由多种金属和非金属氧化物组成,没有确定的熔点,工业上指的灰熔点,实际上是灰渣在高温下的三个变形特征温度。 DT1=变形温度; ST2=软化温度; FT3=流动温度。 影响煤灰熔融性的主要因素煤灰的熔融性主要取决于煤灰化学组成。煤灰中Al2O3含量高,其灰熔点就高。三氧化二铁含量高的煤灰,其灰熔点一般均较低。氧化钙、氧化镁、氧化钾、氧化钠等碱性氧化物均起降低煤灰熔融性温度的作用,含量越高,则灰熔点愈低。 煤灰的黏度是指煤灰在熔融状态下的内摩擦系数,表征煤灰在高温熔融状态下流动时的物理特性。煤灰的黏度大小主要取决于煤灰的组成及各成分间的相互作用。不同的煤灰其流动性不同。此外,煤灰的黏度大小和温度的高低有着极其密切的关系。煤灰的黏度对于液态排渣的气化炉来说是很重要的参数。根据煤灰黏度的大小以及煤灰的化学组成,就可以选择合适的煤源;或者采用添加助熔剂,甚至采用配煤的方法来改善煤灰的流动性,使其符合液态排渣炉的使用要求。煤灰的熔融性在一定程度上可以用以粗略地判断煤灰的流动性。对于大多数煤灰来说,熔融性温度高的煤灰,其流动性也差。在煤灰化学组分中,SiO2和A12O3能增大灰的黏度;Fe2O3、CaO、MgO等能降低煤灰黏度。但是若煤灰中Fe2O3含量较高而SiO2较少,在一定范围内SiO2含量增加反而能降低黏度。Na2O、K2O都只会降低黏度。利用煤灰渣的化学组分可以预测其流动性。 通过煤灰成分分析可了解灰中酸性氧化物与碱性氧化物的比值,对预测管道结垢和腐蚀有重要作用,还有助于判断和防止灰渣对锅炉设备的侵蚀,以及锅炉结渣和积灰。 公司现用褐煤作为气化用煤,煤的灰分含量在10~30%之间。在必须保证灰分波动在6%之间时,煤灰的流动温度(FT)大多在1200~1300℃之间,煤灰的硅:铝达到2.0以上,三氧化二铁含量远小于15%。从煤灰特性分析,非常适应气化炉的稳定操作。 煤灰熔融性的测定方法

灰熔点测定方法

灰熔点 煤灰是各种矿物质组成的混合物,没有一个固定的熔点,只有一个融化的范围,煤灰熔融性又称灰熔点。 灰熔点是固体燃料中的灰分,达到一定温度以后,发生变形,软化和熔融时的温度,它与原料中灰分组成有关,灰分中三氧化二铝、二氧化硅含量高,灰熔点高;三氧化二铁、氧化钙和氧化镁含量越高,灰熔点越低。 灰熔点计算公式如下: 灰熔点(软化) t ═ 19 (Al2O3) + 15 (SiO2+Fe2O3) + 10 (CaO+MgO) + 6 (Fe2O3+Na2O+K2O) 灰熔点可以实测,即将灰分制成三角锥形,置于高温炉内加热,并观察下列温度。 开始变形温度T1:锥顶尖端复圆或锥体开始倾斜。 开始软化温度T2:锥尖变曲接触到锥托或锥体变成球形。 开始熔融温度T3:看不到明显形状,平铺于锥托之上。 原料灰熔点,是影响气化操作的主要因素。灰熔点低的原料,气化温度不能维持太高,否则,由于灰渣的熔融、结块,各处阻力不一,影响气流均匀分布,易结疤发亮,而且由于熔融结块,还减少气化剂接触面积,不利于气化,因此,灰熔点低的原料,只能在低温度下操作。 煤灰熔融性是动力和气化用煤的重要指标。煤灰是由各种矿物质组成的混合物,没有一个固定的熔点,只有一个熔化温度的范围。煤灰熔融性又称灰熔点。煤的矿物质成分不同,煤的灰熔点比其某一单个成分灰熔点低。灰熔点的测定方法常用角锥法、见GB219-74。将煤灰与糊精混合塑成三角锥体,放在高温炉中加热,根据灰锥形态变化确定DT(变形温度)、ST (软化温度)和FT(熔化温度)。一般用ST评定煤灰熔融性。 中华人民共和国国家标准 GB219—74 代替GB219—63 煤灰熔融性的测定方法 中华人民共和国标准计量局发布1974 年1 1 月1 日实施中华人民共和国燃料化学工业部提出煤炭科学研究院北京煤炭研究所起草

灰熔融性试题

煤灰熔融性的测定 姓名:得分:一.填空题(每题5分) 1. 在进行灰融熔性的测定前首先将分析煤样完全灰化后,并用玛瑙研钵研细至粒度在以下。 2.煤灰熔融性的的四个特征温度是:。 3.煤灰熔融性测定中弱还原性气氛的控制方法有和. 4.影响其熔融性测定结果的主要因素是、其次是、温度测量、试样尺寸、托板材料以及观测者的主管因素。 5.灰熔融性测定时,灰锥试样为三角锥体,高,底为边长的正三角形。二.选择题(每题5分) 1.测定煤灰熔融性特征温度时通气法规定的弱还原性气氛的组成是() A.体积分数为(40±10)%的氢气和(60±10)%二氧化碳混合气体 B.体积分数为(50±10)%的氢气和(50±10)%二氧化碳混合气体 C.体积分数为(40±10)%的一氧化碳和(60±10)%二氧化碳混合气体 D.体积分数为(60±5)%的一氧化碳和(40±5)%二氧化碳混合气体 2.一般混煤的煤质特性指标不能按参与混配的各种煤的煤质特性指标加权平均计算。 A.灰分 B .挥发分 C.发热量 D.灰熔融性 3.一般来说,以下成分除了外在煤灰熔融中都起助熔作用。 A.SiO 2B.MgO C.Na 2 O D.Al 2 O 3 4.测定煤灰熔融性时,当温度达900℃后,升温速度应为℃/min。 A.7±1 B.5±1 C.10±1 D.15±1 5.对于某些灰熔融特征温度高的煤灰,在升温过程中会出现锥尖弯后变直,之后弯曲的现象,针对这种现象以下说法正确的是 A.第一次弯曲是由灰锥局部融化造成的;

B.第一次弯曲是由灰分失去结晶水造成的; C.第一次弯曲时的温度应记为DT; D.第二次弯曲时的温度应记为ST。 6.影响灰熔融性的因素是()。 A.煤的化学组成和所处环境介质的性质 B.灰分和水分的大小 C.热值的大小 D.煤的元素分析成分的构成比例 7.煤灰熔融性在何种气氛中所测结果最低() A.强还原性气氛; B.强氧化性气氛; C.弱还原性气氛; D.弱氧化性气氛 8.灰熔融温度中,最具特征的温度是()。 A.变形温度 B.流动温度 C.软化温度 D.半球温度 三.判断题(每题5分) 1.测定煤灰熔融性时,要控制升温速度,在900℃以前为(15~20)℃/min,900℃以后为(5±1)℃/min,若升温太快,会造成结果偏高。() 2.在氧化性气氛条件下,煤灰熔融性特征温度比在弱还原气氛条件下测定的相应的特征温度高。() 3.煤灰熔融性特征温度只与煤灰成分有关。() 4.在煤灰熔融性的测定方法中,灰的制备是取粒度小于0.2mm的空气干燥样。() 5.按GB/T212规定将其完全灰化,然后用玛瑙研钵研细致0.1mm以下。()四.简答题(每题10分) 1.测定煤灰熔融性的意义是什么?

煤灰和生物质灰性质概述文献综述-5页文档资料

文献综述 综述名称:煤灰和生物质灰性质概述 1绪论 中药材渣是一种理想的可再生生物质能源,具有可再生性和低污染性特点。我国是中医药大国,每年中药厂使用大量中药材原料,因而在中药的加工过程中,会产生很多中药材废渣。目前,国内的大多数中药材厂对中药材废渣的处理主要是填埋和作为固体废物任意排放。但因中药材废渣量大、填埋堆放孔隙率高造成大片耕地损失和能源浪费,任意堆填排放不仅造成严重的环境污染,而且还造成不必要的能源浪费。如能变废为宝,既解决了浪费和污染,也可带来意想不到的经济效益。 中药材废渣可以利用于发电行业,这其中燃烧规模巨大,相应也产生了大量的灰,因此,对于灰的环保利用便有了大量的来源。但在其被利用前,应充分的了解灰的化学特性。所以研究不同类型的生物质灰中矿物分布特征及其灰特征和用途,对于灰能源的利用有很大的贡献。 2生物质灰化学特性的研究 2.1煤灰特性的研究 2.1.1煤灰熔融性研究 目前约有80%左右的煤炭用于燃烧与气化,煤灰熔融性是评价气化用煤和动力用煤的重要指标之一。对液态排渣气化工艺(如德士古和液态排渣鲁奇炉等)要求煤灰熔融温度低,以有利于降低气化温度;而固态排渣气化工艺则要求煤灰熔融温度高,以提高气化温度。为了解决煤灰在燃烧和气化过程中的结渣问题,国内外许多学者对煤灰熔融性做了大量研究工作,提出了许多表征煤灰熔融温度的参数和计算公式。在氧化性和弱还原性等气氛下测定了17种煤灰样品和3个人工配制灰样的熔融性,发现不同气氛下、不同煤灰化学成分对其熔融性的影响不同,煤灰熔融温度的高低不仅与煤灰中Fe2O3和CaO的总含量有关,而且与其CaO/Fe2O3摩尔比有关。

煤灰成分分析的重要意义

一、灰成分分析意义 煤炭完全燃烧后,煤中的可燃部分燃烧释放热量,煤中水分蒸发,剩余部分为煤的矿物质中金属与非金属的氧化物与盐类形成的残渣,这些就是灰分。 煤灰成分复杂,主要由硅、铝、铁、钛、钙、镁、硫、钾、钠等元素的氧化物与盐类组成。分析结果以氧化物质量百分含量形式报出。 根据煤灰组成,可以大致判断出煤的矿物成分。 因为同一煤层的煤灰成分变化较小,而不同成煤时代的煤灰成分往往变化较大,因此在地质勘探过程中,可以用煤灰成分作为煤层对比的参考依据之一。 煤灰成分可以为灰渣的综合利用提供基础技术资料。 根据煤灰成分还可初步判断煤灰的熔融温度,根据煤灰中钾、钠和钙等碱性氧化无成分的高低,大致判断煤在燃烧时对锅炉的腐蚀情况。 二、煤灰成分分析项目与分析方法 煤灰成分分析项目一般有:SiO2、Fe2O3、Al2O3、TiO2、CaO、MgO、SO3、K2O和Na2O,有时也测定Mn3O4和P2O5。 国家标准中规定的分析方法有三种常量法、半微量法和原子吸收分光光度法。 1常量法 1.1常量法流程 1.2仪器 1)分析天平 2)马弗炉 3)分光光度计波长范围200-1000nm,精度±2nm 4)原子吸收分光光度计 5)火焰光度计 6)库仑定硫仪 7)银坩埚 8)铂坩埚 1.2检验步骤与注意事项 1)样品灰化 规定煤样厚度<0.15g/cm2,采用缓慢灰化法的步骤,在815℃灼烧2h,研细至0.1mm,再灼烧30min,直至恒重,放入干燥器。 当灰量厚度不超过时,其三氧化硫值变化不大。此外不同硫分的煤样不应在同一炉内烧灰。 2)熔样 称取0.5±0.02g灰样,在银坩埚中,用几滴乙醇润湿,加粒状NaOH 4g,盖盖,放入马弗炉中,在1-1.5h内将炉温从室温缓慢升至650-700℃,熔融15-20分钟。 在银坩埚中熔融灰样,因为银的熔点960.5℃,所以熔融温度不能过高,熔融时间不能过长,规定650-700℃熔融15-20min即可熔融完全,否则银熔下太多,当用盐酸酸化时,将形成氯化银沉淀,影响二氧化硅测定。 灰样熔融时用氢氧化钠而非氢氧化钾做熔剂,原因,氢氧化钾吸水性和挥发性较强,熔融温度较高时容易逸出,而且熔融后酸解过程溶液会浑浊。

煤灰熔融性那些事儿

煤灰熔融性那些事儿 煤灰熔融性的测定过程不正经的讲,就是烧灰→和泥做锥→放炉子里烧。 因此,想要做好煤灰熔融性,首先您得烧得一手好灰,活得一手好泥,然后嘛,交给炉子烧去呗! 正经的讲呢,煤灰熔融性就是在规定条件下得到的随加热温度而变的煤灰变形、软化、半球和流动特征的物理状态。 煤灰是一种由硅、铝、铁、钙和镁等多种元素的氧化物及它们之间的化合物构成的复杂混合物,它没有固定的熔点,当其

加热到一定温度时就开始局部熔化,然后随着温度升高,熔化部分增加,到某一温度时全部熔化。这种逐渐熔化作用,使煤灰试样产生变形、软化、半球和流动等特征物理状态。人们就以这四种状态相应的温度来表征煤灰的熔融性。 测定煤灰熔融性有啥用呢? 煤灰熔融性是动力用煤高温特性的重要测定项目之一,是动力用煤的一个重要的质量指标。反应煤中矿物质在锅炉中的动态,根据它可以预测锅炉中的结渣和沾污作用。

煤灰熔融性是指导锅炉设计和运行的一个重要参数。可为不同锅炉燃烧方式选择燃煤。不同锅炉的燃烧方式和排渣方式对煤灰的熔融性温度有不同的要求。固态排渣煤粉锅炉要求灰熔融性温度高些,以防炉膛结渣;液态排渣锅炉则要求煤灰熔融性温度越低越好,其FT的最高值也不宜超过1250度,以免排渣困难。 好吧,我懂了,接下来。。。 首先,测定煤灰熔融性需要准备以下试剂和材料: ①糊精,化学纯,配成100g/L溶液。 ②高碳物质,灰分低于15%,粒度小于Imm的石墨、无烟煤或其他高碳物质。 ③标准灰,在例常测定中以它作为参比物来检定试验气氛性质,标准灰可外购。 ④刚玉舟,耐热1500℃以上,能盛足够量的高碳物质。 ⑤灰锥托板,在1500℃下不变形,不与灰锥作用,不吸收灰样。灰锥托板可购置。或按国家标准(GB/T 219)规定的方法制作灰锥托板。 当然,你还得准备要测定的煤和炉子,不然你玩啥呢?

煤灰成分分析方法及其影响因素

龙源期刊网 https://www.360docs.net/doc/d11956344.html, 煤灰成分分析方法及其影响因素 作者:武旭星 来源:《环球市场信息导报》2016年第14期 针对国标GB/T1574-2007煤灰成分分析方法进行了详细的解释。指出了易对测定结果准确性产生影响的因素并对其产生原因进行了分析,提出了一些解决方法。针对日常实验的操作提出了建议,可提高日常实验效率,快速准确的得到实验结果,从而减轻实验人员的实验强度。 煤灰是煤完全燃烧后产生的一种混合物,主要是由煤中各种矿物质燃烧后生成的金属及非金属氧化物及硫酸盐、硅酸盐等物质混合而成 煤灰中的主要成分包括:Si、Fe、Mg、P、K、Al、Ca、Na、Ti、S等元素的氧化物及其盐类。煤灰成分分析是通过化学分析方法,利用各组分不同的化学性质,将各种组分分离开进行测定。测定结果以各元素氧化物占煤灰的百分含量的形式报出。 煤灰成分分析方法 煤灰成分是依据国标GB/T1574-2007来进行分析,国标中规定的分析方法主要有3种:半微量分析法、常量分析法、原子吸收分光光度法。 煤灰成分分析国标中规定了11种元素的分析方法,由于MnO2含量很低,分析数据准确性较低故一般只进行其余十种元素的分析。在日常实验中一般选用常量分析法进行分析。 煤样前处理 煤样灰化。煤样灰化时一般使用取少量煤样缓慢灰化的方法。 具体方法是:称取少量粒度 熔融灰样。烧好的煤灰应用玛瑙研钵研细至0.1mm。再置于灰皿中于(815±10)℃下灼烧30min,直至质量恒定。取出在空气中放置5min后放到干燥器中冷却至室温;称取处理好的灰样0.48~0.52g(称准至0.0002g)于银坩埚中。加入几滴乙醇润湿灰样,再加入4g固体氢氧 化钠,盖上坩埚盖,并保留一定的缝隙;将准备好的银坩埚放入马弗炉中,从室温缓慢升温至650℃~700℃灼烧15~20min。 样品浸出。取出坩埚,用冷水激冷后擦尽坩埚外壁,放于250ml烧杯中,向坩埚中加入 1ml无水乙醇和适量沸水。立即盖上表面皿。等剧烈反应停止后,用1+1的盐酸和热水交替洗净银坩埚和坩埚盖;向烧杯中加入20ml浓盐酸,搅匀,于电热板上缓慢蒸干至带黄色盐粒。取下、稍冷加入浓盐酸20ml,盖上表面皿,加热至80℃左右,向溶液中加入70~80℃的动物胶溶液10ml,剧烈搅拌1min,保温10min。取下,稍冷后加入热水50ml搅拌,使盐类完全溶

煤灰熔融性

1.煤灰熔融性(煤的灰熔点)-- 煤灰的熔融性是指煤灰受热时由固态向液态逐渐转化的特性,煤的灰熔融性是动力用煤高温特性的重要测定项目之一。由于煤灰不是一个纯净物,它没有严格意义的熔点,衡量其熔融过程的温度变化,通常用三个特征温度:即变形温度(DT),软化温度(ST)、流动温度(FT)。这三个温度代表了煤灰在熔融过程中固相减少,液相渐多的三点,在工业上多用软化温度作为熔融性指标,称为灰熔点。因此煤灰熔融性和煤灰粘度是动力用煤的重重要指标,煤灰熔融性习惯上称作煤灰熔点,但严格来讲,这是不确切的。因为煤灰是多种矿物质组成的混合物,这种混合物并没有一个固定的溶点,而仅有一个熔化温度的范围。开始熔化的温度远比其中任一组分纯净矿物质熔点为低。这些组分在一定温度下还会形成一种共熔体,这种共熔体在熔化状态时,有熔解煤灰中其他高熔点物质的性能,从而改变了熔体的成及其熔化温度。煤灰的熔融性和煤灰的利用取决于煤灰的组成。煤灰成分十分复杂,主要有: SiO2,A12O3,Fe2,CaO,MgO,SO3等,如下表所示: 我国煤灰成分的分析 灰分成分含量(%) SiO2 15-60 Al2O3 15-40 Fe2O3 1-35 CaO 1-20 MgO 1-5 K20+Na20 1-5 煤灰成分及其含量与层聚积环境有关。我国很多煤层的矿物质以粘土为主,煤灰成分则为SiO2,Al2O3为主,两者总和一般可达50─80%。在滨海沼泽中形成的煤层,如华北晚石纪煤层黄铁矿含量高,煤灰中Fe2O3及SO3含量亦较高;在内陆湖盆地中形成的某些第三纪褐煤的煤灰中CaO含量较高。大量试验资料表明,SiO2含量在45─60%时,煤质灰熔点随SiO2含量增加而降低;SiO2在其含量〈45%或〉60%时,与灰熔点的关系不够明显。Al2O3在煤灰中始终起增高灰熔点的作用。煤灰中Al2O3的含量超过期30%时,灰熔点1500灰成分中 Fe2O3,CaO,MaO均为较易熔组分,这些组分含量越高,煤炭灰熔点就越低。灰熔点也可根据其组成用经验公式进行计 算。也可用我公司生产的灰熔点测定仪来测定。 2、煤灰的熔融性对于煤粉固态排渣炉的炉膛结渣有密切关系: 如灰熔融性温度低,在炉膛高温下熔融粘在炉膛受热面上,冷却后形成结渣。根据运行经验,煤灰软化温度小于1350℃就有可能造成炉膛结渣。故煤粉固态

相关文档
最新文档