煤灰熔融性的测定
测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素
煤灰熔融性是指煤中的无机部分在高温下熔化的能力。
测定煤灰熔融性的意义在于评估煤灰在燃烧过程中的行为,对于炉内温度的控制、炉渣排除、锅炉耐久性以及减少环境污染等具有重要意义。
煤灰熔融性的测定还可以为选煤和燃烧工艺的优化提供依据。
煤灰熔融性的影响因素主要包括以下几个方面:
1. 煤的化学性质: 煤的灰分含量和组成直接影响煤灰的熔融性。
灰分含量高的煤通常熔融性较差,而硫、铝和铁等元素的含量增加也会降低煤灰的熔融温度。
2. 煤的物理性质: 煤的粒度和煤的结构对煤灰熔融性具有影响。
粒度较细的煤,其煤灰在燃烧时会更容易熔融。
煤炭的煤层结构对煤灰的熔融性也有一定影响。
3. 燃烧条件: 燃烧温度、燃烧速率和氧化剂的种类和供应方式等都会影响煤灰的熔融性。
温度较高和氧化剂充分的情况下,煤灰的熔融性会更强。
4. 煤灰成分和形态: 煤灰中不同物质的含量和形态会影响煤灰熔融性。
当灰分中含有高熔点物质(如SiO2)时,煤灰的熔融温度会升高;如果煤灰中的金属氧化物形成液体相,也会影响煤灰的熔融性。
GBT219-2008解读

GB/T219-2008煤灰熔融性的测定方法课程学习目录• • • • • • • • • • 1、煤灰熔融性概述 2、术语和定义 3、方法提要 4、试剂和材料 5、高温炉 6、试验气氛 7、灰锥制备 8、在弱还原性气氛中测定 9、在氧化性气氛中测定 10、煤灰熔融性测定的精密度1 煤灰熔融性概述1煤灰的熔点 煤灰中含有很多元素,它不是纯化合物, 因而它没有固定的熔点,而是在一定温度范围 内熔融。
其熔融的高低,主要取决于煤灰的化 学组成及其结构,同时,还与测定时试样所处 的气氛条件有关。
煤灰在主要成分是:SiO2、AL2O3、Fe203、 CaO和MgO,这些主要成分在纯净的状态下,均 具有较高的熔点,在(1400-2800)℃之间,但 在混合状态下,其熔点较低一般在(1200-1400 )℃范围内,也有的高于1500℃的。
1 煤灰熔融性概述2煤灰熔融性测定的意义 (1)可提供锅炉设计选择炉膛出口烟温和锅 炉安全运行依据。
(2)为不同锅炉燃烧方式选择燃煤(一般都 以软化温度来选择合适的燃烧或气化设备,或 根据燃烧和气化设备类型来选择具有合适软化 温度的原料)。
课程学习目录• • • • • • • • • • 1、煤灰熔融性概述 2、术语和定义 3、方法提要 4、试剂和材料 5、高温炉 6、试验气氛 7、灰锥制备 8、在弱还原性气氛中测定 9、在氧化性气氛中测定 10、煤灰熔融性测定的精密度2 术语和定义煤灰熔融性:是指煤灰在高温下达到熔融状 态的温度范围,通常用变形温度DT、软化 温度ST、半球温度HT和流动温度FT表征。
2 术语和定义1.变形温度:指的是灰锥尖端开始变圆或弯曲时的温度, 值得注意的是灰锥尖保持原形的灰锥收缩和倾斜不能算变 形温度。
2.软化温度:指灰锥弯曲至锥尖触及托板或灰锥变成球形 或灰锥高等于底宽时的温度。
3.半球温度:指灰锥变形至近似半球形,即高约等于底长 的一半时的温度。
测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素煤灰是煤燃烧后生成的固体残留物,其成份和性质对于燃烧过程和环境污染有着极为重要的影响。
其中,煤灰熔融性的测定是评价其性质和性能的重要指标。
本文将阐述测定煤灰熔融性的意义以及影响因素。
意义:1. 评价煤的质量:煤灰的熔融性是衡量煤的质量的重要指标之一。
高品质的煤燃烧后生成的煤灰熔融性较低,而低品质的煤则相反。
因此,测定煤灰熔融性可作为评价煤质的重要手段。
2. 优化燃烧工艺:煤灰熔融性是衡量燃烧过程中煤灰的结渣倾向和产生渣的特性的重要指标。
测定煤灰熔融性可以帮助煤电厂和工业企业优化燃烧工艺,降低结渣率,提高燃烧效率,减少污染排放。
3. 防止火灾和事故:在煤燃烧过程中,煤灰熔融性高的情况下,煤灰易于产生焦化,形成火灾和爆炸等事故。
测定煤灰熔融性可以及早预防事故发生。
4. 环境保护:煤燃烧产生的灰渣不仅含有大量的有害物质,而且这些灰渣中的一些物质还可能散发出臭味和毒气,对人体和环境造成威胁。
测定煤灰熔融性有助于找到煤灰中危害环境的物质,制定合理的治理方案,保护环境。
影响因素:1. 煤的品质:煤的质量是影响煤灰熔融性的最主要因素。
优质煤燃烧后生成的煤灰熔融性低,而低质煤则容易产生熔融渣。
2. 煤燃烧的温度:温度是影响煤灰熔融性的另一重要因素。
温度过高会导致煤灰产生熔融现象,产生粘渣等问题。
在高温下,煤灰中的铝、铁、钙等物质将发生化学反应,溶解和凝固成为固体,形成煤灰的渣。
在较低的温度下,煤灰往往只会结成1/2或2/3的球形颗粒,但不会结成胶状的粘渣。
3. 煤中灰分的含量及成分:煤灰熔融性除了受煤质和温度的影响外,还受煤中灰分的含量和成分的影响。
这对煤灰的结渣和腐蚀性有着重要的影响。
当煤中灰分的含量增加时,煤灰熔融性也会相应增大。
灰分中的物质成分不同,其熔融温度也不同,也会影响灰渣的结构和特性。
结论:测定煤灰熔融性是评价煤质和煤的燃烧特性的重要手段。
煤灰熔融性的大小受煤质、温度、灰分含量及成分等因素的影响。
煤灰熔融性的测定及其影响因素

浅析煤灰熔融性的测定及其影响因素摘要:分析和探讨了煤灰熔融性的测定方法要点以及煤灰制备、灰锥制作、温度控制、试验气氛的控制和检查验证等各个可能影响煤灰熔融性温度测定的因素,总结了测定过程中的注意点和难点并提出了相应的措施,以起到对实际工作的指导作用。
关键词:煤灰熔融性弱还原性气氛煤灰成分影响因素一、引言煤灰熔融性(俗称灰熔点)的测定是气化煤和动力煤特性的最重要组成部分之一,是直接关系到炉子是否结渣及其严重程度,对炉子的安全、经济运行关系极大,一般用四种温度表示:变形温℃(dt)、软化温℃(st)、半球温℃(ht)和流动温℃(ft)。
上海焦化有限公司texaco炉多年来用的气化煤主要是神府煤,随着公司2007年1#工程的顺利开车,气化煤的用量翻了一倍以上,由于煤炭市场紧张,公司为了不断拓展新的煤炭市场以及将本增效开展了多煤种试烧、替代工作,几年来在神府煤的基础上试验了神东煤、神宁1#、伊泰3#、印尼煤、外购1#、2#,神混1#、伊泰4#、韩家湾及准东煤等多种气化煤,有多种新煤种在试验成功的基础上投入到了正常的生产,不仅拓宽了煤炭的采购市场,更是降低了原料成本,随着煤种的多样化,公司在来煤的验收中也碰到了一些的问题,尤其是气化煤特性关键指标煤灰熔融性测定中碰到了问题,2010年上半年起我公司对某气化煤验收指标中灰熔融性温度ft的测定值与供应商报告存在一定的差异(我公司偏高80~100℃),由于国标规定该项目的再现性为80℃,起初并未引起我司的重视,但是由于遇到了临界点的判定(合格与否),导致供需双方存在异议,为此2010.10.18日,供应方及其委托商检的技术人员来我司进行了技术交流,通过试验现场查看,对我方的技术方法、仪器设备及人员操作等均无异议,原因不明。
为了更好的弄清差异的原因,我司2010.10.27日安排了2名技术人员前往供方商检机构进行交流,并从煤灰制备、灰锥制作、温度控制、实验气氛的选择和控制及人的习惯性操作等可能产生影响灰熔融性温度准确性的各个因素进行一一排查,在此基础上于通过大量试验,最终解决了该问题。
煤灰熔融性的测定方法

煤灰熔融性的测定方法
煤灰熔融性的测定方法通常使用热试样法或显微镜观察法。
1. 热试样法:
a. 准备煤灰试样:将煤灰样品研磨成细粉,通常使用100-200目的筛网筛选样品。
b. 预热热试样仪器:根据仪器的操作说明将其预热至设定温度。
c. 放置试样:将煤灰样品均匀地放置在热试样仪器中,并记录试样的质量。
d. 测定熔融性:根据热试样仪器的操作说明,将温度逐渐升高,观察煤灰试样的熔融情况。
熔融开始和结束的温度可以记录下来。
2. 显微镜观察法:
a. 准备煤灰试样:将煤灰样品研磨成细粉,通常使用100-200目的筛网筛选样品。
b. 制备样品:将煤灰试样与适量的氢氧化钠溶液混合,形成煤灰胶体。
然后将煤灰胶体加入显微镜玻璃片上制成薄片。
c. 显微观察:使用显微镜观察煤灰薄片的熔融现象,包括颜色、结晶结构和熔融程度等。
d. 记录观察结果:根据观察结果记录煤灰薄片的熔融温度和熔融程度。
以上两种方法都能够较为准确地测定煤灰的熔融性,具体选择方法可根据实际情况和设备的可用性来决定。
测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素测定煤灰熔融性是指通过实验方法来确定煤灰在高温下的熔化性能。
煤灰熔融性的意义在于评估煤燃烧过程中产生的灰渣的熔化特性,从而影响炉内温度控制、灰渣排放和炉膛结渣情况。
测定煤灰的熔融性可以评估煤燃烧过程中的灰渣排放情况。
煤燃烧过程中产生的灰渣中含有大量的有害物质和微小颗粒。
灰渣的熔化特性将直接影响到其排放情况。
如果煤灰的熔点较高且熔化较完全,可以减少灰渣中的颗粒物质的排放,降低对空气质量的影响。
当灰渣的熔点较低时,熔渣的流动性会增加,灰渣会更容易粘附在锅炉管道上,导致管道堵塞,并且常常会产生比较有害的气态物质的排放。
测定煤灰的熔融性可以评估炉膛结渣情况。
煤燃烧过程中,煤灰的熔点会直接决定炉膛内的结渣情况。
如果煤灰的熔点较高且熔化完全,可以减少炉膛内的结渣情况,降低对锅炉的损坏和维护成本。
当煤灰的熔点较低时,熔渣容易粘附在炉膛内壁和燃烧器中,形成结渣并降低热交换效率,增加燃料消耗。
煤灰熔融性的影响因素主要包括煤的种类、矿物组成、挥发分含量、灰分含量以及燃烧条件等。
不同种类的煤矿中,煤灰的熔化性能会有很大的差异。
煤矿中含有的不同矿物质对煤灰的熔化特性有直接影响,高硅酸盐矿物和铝酸盐矿物会提高煤灰的熔化温度,而铁酸盐矿物和碱金属盐矿物会降低煤灰的熔化温度。
煤中的挥发分含量和灰分含量也会影响煤灰的熔点。
燃烧条件也会对煤灰的熔点产生影响,例如炉温、燃烧速率和氧化剂的氧化能力等都会影响煤灰的熔化性能。
测定煤灰的熔融性对于合理控制煤燃烧系统的温度、减少灰渣排放和结渣情况具有重要的意义。
合理选择煤种、调整煤质和优化燃烧条件等措施也可以有效降低煤灰的熔化温度,减少对环境和设备的危害。
测定煤灰熔融性的意义及影响因素
测定煤灰熔融性的意义及影响因素
煤灰熔融性是指煤在高温下产生的物质流动和化学反应,导致煤灰在一定温度下开始
熔化并流动。
测定煤灰熔融性的意义在于了解煤的燃烧特性和烟气的排放情况。
具体而言,煤灰熔融性的测定可以影响以下方面:
1. 燃烧效率和效果:煤灰是煤燃烧后剩余物质,其能够流动并聚集成块,堵塞烟道,导致热效率降低。
因此,对于煤的燃烧效率和效果的评估,煤灰熔融性的测定是必要的。
2. 烟气排放:煤的燃烧不仅会产生二氧化碳和水等普通物质,还会产生氮氧化物、
二氧化硫等污染物。
煤灰熔融性的测定可以预测出烟气中的污染物浓度,从而制定有效的
控制方案。
3. 热电工业:煤灰熔融性对热电工业的影响也很显著。
煤灰熔融性高的煤,其灰渣
流动性好,易于清除,减少电站的停机时间和维护成本。
除了以上三点,煤灰熔融性还会受到以下因素的影响:
1. 煤的成分:煤的成分是确定其灰渣熔融性的关键因素,碳含量升高,冷渣的熔融
性也会增强。
2. 温度:温度对煤灰熔融性有着巨大的影响,随着温度的升高,灰渣的熔融性也会
升高。
3. 矿物组成:煤中含有的矿物可能会影响灰渣的熔融性,其中高含量的镁铁质矿物(如辉石)会提高灰渣的熔点。
4. 物理形态:不同的形态(颗粒、粉末、块状等)的煤灰熔融性可能会不同。
常规
测试使用的灰粉末形态,对于评估煤的熔融性影响相对较小。
总之,煤灰熔融性的测定是一项十分重要的检测工作,可以为煤的燃烧和烟气排放控
制提供依据,也有利于煤电行业的发展和维护。
测定煤灰熔融性的意义及影响因素
测定煤灰熔融性的意义及影响因素煤炭作为世界上使用最为广泛的能源资源之一,其燃烧产生的灰烬是不可避免的。
煤灰中的矿物质成分和熔融性对环境和燃料的利用有着重要的影响。
对煤灰的熔融性进行测定,可以有效地评估煤炭的燃烧特性,预测灰渣对环境和设备的影响,为煤炭开发利用提供重要的技术支撑。
本文将从测定煤灰熔融性的意义和影响因素两个方面展开探讨。
一、测定煤灰熔融性的意义1. 评估煤炭的燃烧特性测定煤灰的熔融性可以反映出燃煤过程中煤灰的熔化特性和行为,这对于评估煤炭的燃烧特性具有重要意义。
煤灰在燃烧时会发生部分熔化,形成熔渣,如果煤灰的熔融性较好,熔渣生成时容易排出炉膛,有利于保护炉膛和延长设备的使用寿命;相反,如果煤灰的熔融性较差,熔渣生成时容易粘在炉膛内壁上,影响炉内的流动,增加了设备的维护成本。
测定煤灰的熔融性可以为燃煤工业提供有益的指导和依据。
2. 预测灰渣对环境的影响燃煤过程中产生的灰渣会对环境造成一定的影响,如粉尘排放、土壤污染等。
通过测定煤灰的熔融性,可以了解灰渣的物理和化学性质,从而预测其对环境的影响。
一般来说,煤灰的熔融性越高,生成的灰渣颗粒越大,密度越大,粘附力越强,对于环境的污染程度也越大。
测定煤灰熔融性对于环境保护具有一定的重要性。
3. 为煤炭利用提供技术支持测定煤灰的熔融性可以为煤炭的开发利用提供重要的技术支持。
通过研究煤灰的熔融性,可以为煤灰的资源化利用提供依据,如制备水泥、填料等材料,为煤炭的燃烧工艺提供技术指导,提高燃煤发电的效率,减少环境污染等。
二、影响煤灰熔融性的因素1. 煤质煤质是影响煤灰熔融性的重要因素之一。
不同种类、不同地区的煤炭其煤灰的熔融性也会有所差异。
一般来说,焦化煤的灰渣熔融性较好,烟煤的灰渣熔融性较差。
煤炭中的灰分含量、灰渣中的硅酸盐的含量等也会影响煤灰的熔融性。
2. 燃烧工艺燃烧工艺是影响煤灰熔融性的另一个重要因素。
不同的燃烧温度、气氛、时间等都会对煤灰的熔融性产生影响。
测定煤灰熔融性的意义及影响因素
测定煤灰熔融性的意义及影响因素1. 引言1.1 煤灰熔融性的定义煤灰熔融性是指煤灰在高温下熔化的性质。
煤在燃烧时会产生大量的煤灰,而煤灰的熔融性则决定了煤灰在燃烧过程中的行为。
煤灰的熔融性可以通过测定煤灰的软化温度来反映,即在一定条件下,煤灰开始软化并熔化的温度。
煤灰熔融性的好坏直接影响着煤电厂的烟气净化装置的运行效果,同时也会对锅炉和除渣器等设备的正常运行产生影响。
煤灰熔融性的差异会导致燃烧系统渣堆的形成,影响燃烧效率,同时也会对环境造成一定的污染。
煤灰熔融性的研究具有重要意义,可以为煤电厂提供科学依据,优化燃烧过程,提高能源利用效率,减少环境污染。
通过深入研究煤灰熔融性,可以为煤电厂的节能减排工作提供技术支持和指导。
1.2 煤灰熔融性的重要性煤灰熔融性是指煤灰在高温条件下熔化的特性,是煤燃烧过程中重要的燃烧特性之一。
煤灰熔融性的重要性主要体现在以下几个方面:1. 影响燃烧效率:煤灰在燃烧过程中的熔融特性直接影响燃烧过程中的煤灰融合温度和煤灰在锅炉内的分布情况。
煤灰熔融性好的煤可以有效降低燃烧过程中的温度和烟气中的固体颗粒物含量,提高燃烧效率。
2. 影响烟气处理:煤灰熔融性对烟气处理设备的运行稳定性和除尘效率有重要影响。
良好的煤灰熔融性可以减少烟气中的气溶胶含量,降低烟气对环境的污染程度,延长烟气处理设备的使用寿命。
3. 影响环境污染:燃煤烟气中的颗粒物和有害物质主要来自煤灰。
煤灰熔融性差会导致煤灰在燃烧过程中难以固化,易溢出炉外,造成大气污染,影响环境质量。
煤灰熔融性的研究和分析对指导煤燃烧过程、优化燃烧工艺、减少环境污染具有重要意义。
深入了解煤灰熔融性的影响因素以及如何优化煤灰熔融性,对于促进清洁能源的发展和环保工作具有重要意义。
2. 正文2.1 影响煤灰熔融性的因素1. 煤的成分:煤的不同成分会对煤灰熔融性产生影响,特别是灰分和挥发分的含量。
灰分的增加会使煤灰的熔点降低,而挥发分的增加会促使煤灰更快地熔化。
煤灰熔融性的测定
实验四煤灰熔融性的测定一、实验目的煤燃烧后产生的灰分,在高温下的熔融性是锅炉用煤的重要特性。
对于煤粉燃烧固态排渣的锅炉,它是判断炉膛结渣可能性的依据之一。
为了减少结渣的危险,煤粉炉要求燃烧灰熔点较高的煤。
对于层燃锅炉燃用灰熔点较低的煤可形成适当的融渣,起到保护炉排的作用。
对于液态排渣煤粉炉,较低的灰熔温度有利于排渣。
通过观察煤灰熔融过程,掌握煤灰熔融的四个特征温度:变形温度(DT)、软化温度(ST)、半球温度(HT)、流动温度(FT)的测定方法。
二、实验原理将灰样制成高20mm、底边长7mm的三角形灰锥,防于充满氧化性气氛或弱还原性气氛的电炉中加热。
随着温度上升,灰锥经历了四个阶段对应四个特征温度:⑴变形温度(DT):灰锥尖端或棱开始变圆或弯曲时的温度⑵软化温度(ST):灰锥弯曲至锥尖触及托板或灰锥变成球形时的温度⑶半球温度(HT):灰锥形变至近似半球形,即高约等于底长的一半时的温度⑷流动温度(FT):灰锥熔化展开成高度在1.5mm以下的薄层时的温度。
煤灰熔融特性主要取决于它们的化学成分、组成的共晶体,同时气体介质的氧化性、还原性对煤灰熔融特性也有影响。
锅炉炉膛中多呈弱还原性气氛,而实验室在氧化性气氛中测定的煤灰熔融性特征温度略高于在弱还原性气氛中的测定值。
三、实验设备和材料1.高温炉(满足下列条件的高温炉均可使用)⑴能加热到1500℃⑵有足够的恒温带(各部分温差小于5℃)⑶能按规定的程序加热⑷炉内气氛可控制为弱还原性和氧化性⑸能在实验过程中观察试样形态变化。
2.烟气分析器一台(通常用奥氏烟气分析器,和一氧化碳检测管);‘3.碳物质:灰份≤15%,粒度≤1mm的无烟煤、石墨或其它碳物质。
4.糊精:化学纯,配成100g/L溶液;5.刚玉舟:放置灰锥托板,耐温1500℃以上6.其它:灰锥模具、瓷砖;手电筒、兰色目镜、标准筛、秒表、研钵、灰锥托板四、实验方法1.灰样制备取粒度小于0.2mm的空气干燥基煤样,按GB212-91规定将其完全灰化,然后用研钵研细至0.1mm以下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤灰熔融性的测定煤灰熔融性的测定方法(1)为国家标准推荐方法,方法(2)为质检中心推荐采用的分析方法。
1 高温法1.1 方法提要将煤灰制成一定尺寸的三角锥,在一定的气体介质中,以一定的升温速度加热,观察灰锥在受热过程中的形态变化,观测并记录它的四个特征熔融温度:变形温度、软化温度、半球温度和流动温度。
1.1.1变形温度(DT)灰锥尖端或棱开始变圆或弯曲时的温度。
1.1.2软化温度(ST)灰锥弯曲至锥尖触及托板或灰锥变成球形时的温度1.1.3半球温度(HT)灰锥形变至近似半球形,即高约等于低长的一半时的温度1.1.4流动温度(FT)灰锥融化展开成高度在1.5mm以下的薄层时的温度。
1.1.5灰锥熔融特征示意图如下图1.5所示。
图1.51.2 试剂和材料1.2.1 氧化镁(HG/T2573):工业品,研细至粒度小于0.1mm。
1.2.2 糊精:化学纯,配成100g/L溶液。
1.2.3 碳物质:灰分低于15%,粒度小于1mm的无烟煤、石墨或其他碳物质。
1.2.4 参比灰:含三氧化二铁20%~30%的煤灰,预先在强还原性(100%的氢气或一氧化碳或它们与惰性气体的混合物构成的气氛),弱还原性和氧化性气氛中分别测出其熔融特征温度(在强还原性和氧化性气氛中的软化温度、半球温度和流动温度约比还原性气氛者高100℃~300℃),在常规的测定中以它作为参比物来检定试验气氛性质。
1.2.5 二氧化碳1.2.6 氢气(GB/T3634)或一氧化碳。
1.2.7 刚玉舟(图1.6):耐温1500℃以上,能盛足够量的碳物质。
图1.6 灰锥模子1.2.8 灰锥托板:在1500℃下不变形,不与灰锥作用,不吸收灰样。
灰锥托板按下列方法制做:取适量氧化镁(2.1),用糊精溶液(2.2)润湿成可塑状。
将灰锥托板模的垫片放入模座,用小刀将镁砂铲入模中,用小锤轻轻锤打成型。
用顶板将成型托板轻轻顶出,先在空气中干燥,然后在高温炉中逐渐加热到1500℃。
除氧化镁外,也可用三氧化二铝或用等质量比的高岭土和氧化铝粉混合物制做托板。
1.3 仪器和设备1.3.1 高温炉:凡满足下列条件的高温炉都可使用:(1)能加热到l500℃以上;(2)有足够的恒温带(各部位温差小于5℃);(3)能按规定的程序加热;(4)炉内气氛可控制为弱还原性和氧化性;(5)能在试验过程中观察试样形态变化。
1.3.2 铂锗-铂热电偶及高温计:测量范围0℃~1500℃,最小分度5K,加气密刚玉保护管使用。
1.3.3 灰锥模子(图1.7):由对称的两个半块构成的黄铜或不锈钢制品。
图1.7 刚玉舟1.3.5 灰锥托板模(图1.8):由模座、垫片和顶板三部分构成,用硬木或其他坚硬材料制做。
图1.8 灰锥托板模子1.3.6 常量气体分析器:可测定一氧化碳,二氧化碳和氧气含量。
1.4 操作步骤1.4.1 灰的制备取粒度小于0.2mm的空气干燥煤样,按GB212—91规定将其完全灰化,然后用玛瑙研钵研细至0.1 mm以下。
1.4.2 灰锥的制做取1g~2g煤灰放在瓷板或玻璃板上,用数滴糊精溶液润湿并调成可塑状,然后用小尖刀铲入灰锥模中挤压成型。
用小尖刀将模内灰锥小心地推至瓷板或玻璃板上,于空气中风干或于60℃下干燥备用。
注:除糊精溶液外,可视煤灰的可塑性用水或100g/L的可溶性淀粉溶液。
1.4.3 测定手续(1)在弱还原性气氛中测定用糊精水溶液将少量氧化镁调成糊状,用它将灰锥固定在灰锥托板的三角坑内,并使灰锥垂直于底面的侧面与托板表面垂直。
将带灰锥的托板置于刚玉舟上。
如用封碳法来产生弱还原性气氛,则预先在舟内放置足够量的碳物质。
打开高温炉炉盖,将刚玉舟徐徐推入炉内、至灰锥位于高温带并紧邻电偶热端(相距2mm左右)。
关上炉盖,开始加热并控制升温速度为:900℃以下,15℃/min~20℃/min;900℃以上,(5土1)℃/min。
如用通气法产生弱还原性气氛,则从600℃开始通入氢气或一氧化碳和二氧化碳混合气体,通气速度以能避免空气渗入为准。
随时观察灰锥的形态变化(高温下观察时,需戴上墨镜),记录灰锥的四个熔融特征温度—变形温度、软化温度、半球温度和流动温度。
待全部灰锥都达到流动温度或炉温升至1500℃时断电、结束试验。
待炉子冷却后,取出刚玉舟、拿下托板,仔细检查其表面,如发现试样与托板作用,则另换一种托板重新试验。
一般在刚玉舟中央放置石墨粉15g~20g两端放置无烟煤40 g~50g(对气疏高刚玉管炉膛)或在刚玉舟中央放置石墨粉5g~6g(对气密刚玉管炉膛)。
(2)在氧化性气氛下测定测定步骤同1.4.3(1)相同,但刚玉舟内不放任何含碳物质,并使空气在炉内自由流通。
1.5 试验记录和报告1.5.1 记录灰锥的四个熔融特征温度:DT、ST、HT、和FT,计算重复测定值的平均值并化整到10℃报出。
1.5.2 记录试验气氛性质及控制方法。
1.5.3 记录托板材料及试验后和表面状况。
1.5.4 记录试验过程中产生的烧结,收缩、膨胀和鼓泡等现象及其相应温度。
2 仪器分析法(MP-HR型灰熔融性测试仪)2.1 原理利用微机对灰溶融性测定过程进行自动控制,灰锥图像直接在微机上显示,并可将灰锥结果图像及相应温度值自动打印,实验过程中图像及温度自动存入硬盘存储器。
升温特性符合国标GB219-96。
2.2 测定步骤2.2.1 准确称取一定量在高温炉815℃下完全灰化的煤试样。
2.2.2 将灰化后的煤试样冷却后并研磨至粒度≤0.1mm以下。
2.2.3 用糊精溶液调灰化后的的煤试样,然后用灰锥模板制灰锥并晾干以备测定。
2.2.4 将电脑和灰熔点仪插上电源。
2.2.5 打开电脑,双击电脑桌面“灰熔点”图标进入测试程序。
2.2.6 准确称取6g石墨平铺放在刚玉舟中间。
2.2.7 把预先做好并晾干,形状完好的灰锥放在灰锥托板上,再把灰锥托板放在刚玉管中间的凹口中间。
2.2.8 将仪器高温炉中间的刚玉管按顺时针方向旋转1/4圈,放入刚玉舟盖上盖子。
2.2.9 将控制箱摄像头对准刚玉管。
2.2.10 点击软件上“开始”按钮,实验开始后,打开控制箱面板电源。
2.2.11 打开控制箱的边盖,在炉温800℃下观察计算机上的图象,调节摄像头的光圈,使图象亮度可辨,调节聚焦使图象清晰无虚影。
调节控制箱的底脚使图象位于图象监视窗的中央。
2.2.12升温结束后,人工选择相应的图像。
2.2.13 通过单击“试样N”可在四个试样的结果中翻页。
2.2.14 存盘并打印。
2.2.15 实验完毕,关闭电源。
2.3 注意事项2.3.1灰熔融性控制箱的电源应在开始实验时再打开,做完实验后应及时关闭,以免对炉体加热元件造成损坏。
2.3.2 计算机的显示分辨率应设置为800×600。
2.3.3 计算机禁止使用屏幕保护程序。
2.3.4 计算机的显示器电源管理应关闭。
2.3.5 仪器须有良好接地。
2.3.6 在安装或拆卸炉子时应小心,勿损伤硅碳管,勿使炉体受强烈振动。
2.3.7 最大使用电流勿超过30A。
2.3.8 仪器应放在干燥、通风的地方,不能在炉内处理水分较高的物质。
2.3.9 炉内严禁通入氯气,在用无烟煤控制气体成分时勿用硫分高者。
2.3.10在安装炉子时注意使硅碳管与刚玉内、外套管之间有一定的空隙。
因为在煤灰熔融性测定中,炉内有CO生成,同时碳化硅在氧气不足时会按2 SiC+302= 2SiO2+2CO发生反应而生成CO,这些CO在氧气不足时会发生:2CO = CO2 + C反应而析出碳,析出之碳如沉积在硅碳管之螺纹带缝隙处会形成短路而烧坏控制器,所以在硅碳管和刚玉内、外套管之间应留适当的空隙使硅碳管周围保持少量的空气,将析出之碳烧掉并防止局部过热。
2.3.11 仪器背面有裸露高压线,请勿触摸。
仪器移动时,须先将电源切断。
2.3.12 刚玉舟放置位置应使灰锥顶部在热电偶测温点的下部2mm~3 mm左右为宜。
2.3.13 仪器上请勿遮盖,以防起火。
2.3.14 每次使用时,刚玉管应按顺时针转1/4圈。
2.4 系统故障提示2.4.1 “系统发现故障!”,主要提示在升温过程中出现升温异常。
一旦出现该信息,系统将自动停机。
其原因可能是:(1)升温炉未加电或电路不同。
(2)高温炉加热元件硅碳管已损坏或与之相连的接线端子接触不良(或已熔断或老化脱落)。
(3)控制电路不畅或断路。
如通讯电缆接头接触不良、可控硅控制线接触不良。
(4)热电偶开路。
(5)热电偶极性接反或短接,使采温系统失调,调整极性或排除短接后再试验。
2.4.2 “没有温升!异常否?”,此信息主要发生在升温过程中出现短暂升温缓慢或不升温的情况。
2.4.3 控温器升温控制指示为闪烁信号。
即在升温过程中,该指示灯时熄时亮,伴加电而亮,不加电而熄。
若出现常亮或一直不亮均为故障状态(除非该指示灯损害为不亮),原因可能是微机对控制器失去控制或是控制器出现死机,发现该指示灯一直亮时请立即关闭控制器电源,排除故障后再行开机试验。