测定煤灰熔融性的重要性及其方法

合集下载

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素煤灰熔融性是指一定量的煤灰在一定温度下熔化的能力。

它是评价煤质的一项重要指标之一,因为它直接关系到煤的利用价值和燃烧过程中产生的废气、废渣的特性。

对于煤的应用领域,如发电、铁路、冶金等,测定煤灰熔融性可以从多个方面影响其使用效果。

首先,煤灰熔融性对燃烧过程中产生的废气的影响尤为重要。

煤中含有的各种元素在燃烧时会产生气体或者颗粒物,并且这些物质的比例和性质与煤的成分有关。

如果煤中的某些元素在燃烧过程中无法完全燃烧,会发生部分氧化或者分解反应,最终产生大量的有害气体,例如二氧化碳、硫化物、氧化物等。

此时,煤灰熔融性过高或过低都会加剧这种现象,进而增加环境的污染和健康的损害。

所以,减少燃烧过程中有害气体的生成是保障环境和健康的必要手段。

测定煤灰熔融性可以帮助煤的使用者选择更加适合的燃烧条件,从而减少有害气体的产生,保护环境和健康。

其次,煤灰熔融性还会对产生的废渣的性质产生影响。

烧煤时,生成的煤灰会在炉膛内逐渐积累,如果煤灰的熔融性太高,就会导致煤灰在炉内结块或者凝固成大块,降低炉子的效率,甚至会在废渣中形成一些酸性物质,对设备的损耗更大。

同时,过高的煤灰熔融性也会导致废渣的含水量降低,给处置废渣带来困难。

也就是说,测定煤灰熔融性可以帮助用户选择不同的设备、燃烧条件和处理方法,从而有效地减少废渣的产生和处理难度。

最后,煤灰熔融性的大小还会对煤的利用价值产生影响。

在某些领域,如冶金和耐火材料等,需要使用煤中的部分矿物质进行合成或者改性,而这些矿物质通常都集中在煤灰中。

如果煤灰的熔融性太高或太低,不仅会影响是否能有效地提取这些矿物质,还会影响合成或改性所需的温度和条件。

这也就意味着测定煤灰熔融性是保证煤的利用宽度和效率的一项重要工作。

总之,测定煤灰熔融性是一项对于维护环境、健康、设备、废渣处理和煤的利用价值等多个方面都有着重要意义的任务。

煤灰熔融性的影响因素主要包括煤的成分、燃烧过程中的温度和压力、反应性物质的存在和化学作用等等。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素煤灰是煤燃烧后生成的固体残留物,其成份和性质对于燃烧过程和环境污染有着极为重要的影响。

其中,煤灰熔融性的测定是评价其性质和性能的重要指标。

本文将阐述测定煤灰熔融性的意义以及影响因素。

意义:1. 评价煤的质量:煤灰的熔融性是衡量煤的质量的重要指标之一。

高品质的煤燃烧后生成的煤灰熔融性较低,而低品质的煤则相反。

因此,测定煤灰熔融性可作为评价煤质的重要手段。

2. 优化燃烧工艺:煤灰熔融性是衡量燃烧过程中煤灰的结渣倾向和产生渣的特性的重要指标。

测定煤灰熔融性可以帮助煤电厂和工业企业优化燃烧工艺,降低结渣率,提高燃烧效率,减少污染排放。

3. 防止火灾和事故:在煤燃烧过程中,煤灰熔融性高的情况下,煤灰易于产生焦化,形成火灾和爆炸等事故。

测定煤灰熔融性可以及早预防事故发生。

4. 环境保护:煤燃烧产生的灰渣不仅含有大量的有害物质,而且这些灰渣中的一些物质还可能散发出臭味和毒气,对人体和环境造成威胁。

测定煤灰熔融性有助于找到煤灰中危害环境的物质,制定合理的治理方案,保护环境。

影响因素:1. 煤的品质:煤的质量是影响煤灰熔融性的最主要因素。

优质煤燃烧后生成的煤灰熔融性低,而低质煤则容易产生熔融渣。

2. 煤燃烧的温度:温度是影响煤灰熔融性的另一重要因素。

温度过高会导致煤灰产生熔融现象,产生粘渣等问题。

在高温下,煤灰中的铝、铁、钙等物质将发生化学反应,溶解和凝固成为固体,形成煤灰的渣。

在较低的温度下,煤灰往往只会结成1/2或2/3的球形颗粒,但不会结成胶状的粘渣。

3. 煤中灰分的含量及成分:煤灰熔融性除了受煤质和温度的影响外,还受煤中灰分的含量和成分的影响。

这对煤灰的结渣和腐蚀性有着重要的影响。

当煤中灰分的含量增加时,煤灰熔融性也会相应增大。

灰分中的物质成分不同,其熔融温度也不同,也会影响灰渣的结构和特性。

结论:测定煤灰熔融性是评价煤质和煤的燃烧特性的重要手段。

煤灰熔融性的大小受煤质、温度、灰分含量及成分等因素的影响。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素测定煤灰熔融性是指通过实验方法来确定煤灰在高温下的熔化性能。

煤灰熔融性的意义在于评估煤燃烧过程中产生的灰渣的熔化特性,从而影响炉内温度控制、灰渣排放和炉膛结渣情况。

测定煤灰的熔融性可以评估煤燃烧过程中的灰渣排放情况。

煤燃烧过程中产生的灰渣中含有大量的有害物质和微小颗粒。

灰渣的熔化特性将直接影响到其排放情况。

如果煤灰的熔点较高且熔化较完全,可以减少灰渣中的颗粒物质的排放,降低对空气质量的影响。

当灰渣的熔点较低时,熔渣的流动性会增加,灰渣会更容易粘附在锅炉管道上,导致管道堵塞,并且常常会产生比较有害的气态物质的排放。

测定煤灰的熔融性可以评估炉膛结渣情况。

煤燃烧过程中,煤灰的熔点会直接决定炉膛内的结渣情况。

如果煤灰的熔点较高且熔化完全,可以减少炉膛内的结渣情况,降低对锅炉的损坏和维护成本。

当煤灰的熔点较低时,熔渣容易粘附在炉膛内壁和燃烧器中,形成结渣并降低热交换效率,增加燃料消耗。

煤灰熔融性的影响因素主要包括煤的种类、矿物组成、挥发分含量、灰分含量以及燃烧条件等。

不同种类的煤矿中,煤灰的熔化性能会有很大的差异。

煤矿中含有的不同矿物质对煤灰的熔化特性有直接影响,高硅酸盐矿物和铝酸盐矿物会提高煤灰的熔化温度,而铁酸盐矿物和碱金属盐矿物会降低煤灰的熔化温度。

煤中的挥发分含量和灰分含量也会影响煤灰的熔点。

燃烧条件也会对煤灰的熔点产生影响,例如炉温、燃烧速率和氧化剂的氧化能力等都会影响煤灰的熔化性能。

测定煤灰的熔融性对于合理控制煤燃烧系统的温度、减少灰渣排放和结渣情况具有重要的意义。

合理选择煤种、调整煤质和优化燃烧条件等措施也可以有效降低煤灰的熔化温度,减少对环境和设备的危害。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素
煤灰熔融性是指煤在高温下产生的物质流动和化学反应,导致煤灰在一定温度下开始
熔化并流动。

测定煤灰熔融性的意义在于了解煤的燃烧特性和烟气的排放情况。

具体而言,煤灰熔融性的测定可以影响以下方面:
1. 燃烧效率和效果:煤灰是煤燃烧后剩余物质,其能够流动并聚集成块,堵塞烟道,导致热效率降低。

因此,对于煤的燃烧效率和效果的评估,煤灰熔融性的测定是必要的。

2. 烟气排放:煤的燃烧不仅会产生二氧化碳和水等普通物质,还会产生氮氧化物、
二氧化硫等污染物。

煤灰熔融性的测定可以预测出烟气中的污染物浓度,从而制定有效的
控制方案。

3. 热电工业:煤灰熔融性对热电工业的影响也很显著。

煤灰熔融性高的煤,其灰渣
流动性好,易于清除,减少电站的停机时间和维护成本。

除了以上三点,煤灰熔融性还会受到以下因素的影响:
1. 煤的成分:煤的成分是确定其灰渣熔融性的关键因素,碳含量升高,冷渣的熔融
性也会增强。

2. 温度:温度对煤灰熔融性有着巨大的影响,随着温度的升高,灰渣的熔融性也会
升高。

3. 矿物组成:煤中含有的矿物可能会影响灰渣的熔融性,其中高含量的镁铁质矿物(如辉石)会提高灰渣的熔点。

4. 物理形态:不同的形态(颗粒、粉末、块状等)的煤灰熔融性可能会不同。

常规
测试使用的灰粉末形态,对于评估煤的熔融性影响相对较小。

总之,煤灰熔融性的测定是一项十分重要的检测工作,可以为煤的燃烧和烟气排放控
制提供依据,也有利于煤电行业的发展和维护。

炭灰熔点测定

炭灰熔点测定

煤炭灰熔点测定的重要性、方法及测定精度作者:admin 发表时间:2011-7-20 7:18:50 阅读:次煤炭灰熔点又称煤灰熔融性,其测定可提供锅炉设计有关数据、预测燃煤情况、锅炉燃烧方式选择、判断煤灰渣型。

掌握正确的煤炭灰熔点即煤灰熔融性测定技术,以及煤灰熔融性对锅炉结渣情况的影响,可为减轻或避免锅炉结渣提供有效的依据。

1 检测煤炭灰熔点的重要意义煤灰的熔融性是动力用煤高温特性的重要测定项目之一,是动力用煤的重要指标,它反映煤中矿物质在锅炉中的变化动态。

测定煤灰熔融性温度在工业上特别是火电厂中具有重要意义。

第一,可以提供锅炉设计选择炉膛出口烟温和锅炉安全运行的依据。

在设计锅炉时,炉膛出口烟温一般要求比煤灰的软化温度低50~100℃,在运行中也要控制在此温度范围内,否则,会引起锅炉出口过热器管束间灰渣的“搭桥”,严重时甚至发生堵塞,从而导致锅炉出口左右侧过热蒸汽温度不正常。

第二,可以预测燃煤的结渣。

因为煤灰熔融性温度与炉膛结渣有密切关系。

根据煤粉锅炉的运行经验,煤灰的软化温度小于1350℃就有可能造成炉膛结渣,妨碍锅炉的连续安全运行。

第三,可为不同锅炉燃烧方式选择燃煤。

不同锅炉的燃烧方式和排渣方式对煤灰的熔融性温度有不同的要求。

煤粉固态排渣锅炉要求煤灰熔融性温度高些,以防炉膛结渣;相反,对液态排渣锅炉,则要求煤灰熔融性温度低些,以避免排渣困难。

因为煤灰熔融性温度低的煤在相同温度下有较低的粘度,易于排渣。

第四,可判断煤灰的渣型。

根据软化区间温度(DT—ST)的大小,可粗略判断煤灰是属于长渣或短渣。

一般认为当(ST—DT)=200~400℃为长渣;(ST—DT)=100~200℃为短渣。

通常锅炉燃用长渣煤时运行较安全。

燃用短渣煤时,由于炉温增高,固态排渣炉可能在很短的时间内就出现大面积的严重结渣情况;燃用长渣煤时,DT、ST之间的温差虽超过200℃,但固态排渣炉的结渣相对进行得较为缓慢,一旦产生问题,也常常是局部性的。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素煤灰熔融性是指煤灰在高温条件下熔化的倾向和温度范围。

测定煤灰熔融性对煤燃烧技术和环境保护具有重要意义,并且受到多种因素的影响。

本文将从煤灰熔融性的意义以及影响因素进行详细阐述。

一、测定煤灰熔融性的意义1. 了解煤灰在高温条件下的熔化温度和倾向,对煤燃烧技术具有重要意义。

燃料的燃烧过程中,煤灰在锅炉内会产生熔融现象,形成渣滓。

如果煤灰的熔融温度过高,会导致炉渣粘结在炉膛壁面,影响燃烧设备的正常运行。

煤灰的熔融温度与炉膛内温度直接相关,了解煤灰的熔融性能,有助于合理控制炉膛内温度,减少炉渣对设备的侵蚀。

2. 通过测定煤灰熔融性能,可以评估煤的燃烧特性。

不同煤种的煤灰熔融性能存在差异,通过研究不同煤种的煤灰熔融性能,可以为选择燃烧设备和优化燃烧工艺提供参考依据。

对于高熔点的煤灰,可以采用降低燃烧温度、增加炉膛出口气体的过冷度等措施来减少炉渣的产生。

3. 煤灰的成分和熔融性能与环境污染有关。

煤灰中的一些有害元素如砷、镉等在高温条件下易与熔融渣结合形成气、溶体及固相矿物,进而影响煤灰的处理方式和对环境的影响。

了解煤灰的熔融性能,可以为煤灰的资源化利用和环境保护提供科学依据。

二、影响煤灰熔融性的因素1. 煤种的性质。

不同种类的煤灰熔融性能存在差异,比如褐煤的熔融性能一般较差,石煤的熔融性能较好。

主要是由于不同的煤种在形成过程中受到地质条件、压力温度等因素的影响,导致其煤灰成分和物相的差异。

2. 煤中矿物组分的含量。

矿物组分是直接影响煤灰熔融性的因素之一。

硅酸盐矿物在煤灰中的含量越高,煤灰的熔融性能越好;反之,铁铝矿物的含量越高,煤灰的熔融性能越差。

3. 煤的燃烧温度和氧化条件。

煤的燃烧温度对煤灰的熔融性能有明显影响,一般情况下,煤的燃烧温度越高,煤灰的熔融温度越高,熔融性能越差。

氧化条件也会影响煤灰的熔融性能,充足的氧化条件有助于降低煤灰的熔融性能。

4. 煤灰中的碱性成分含量。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素煤炭作为世界上使用最为广泛的能源资源之一,其燃烧产生的灰烬是不可避免的。

煤灰中的矿物质成分和熔融性对环境和燃料的利用有着重要的影响。

对煤灰的熔融性进行测定,可以有效地评估煤炭的燃烧特性,预测灰渣对环境和设备的影响,为煤炭开发利用提供重要的技术支撑。

本文将从测定煤灰熔融性的意义和影响因素两个方面展开探讨。

一、测定煤灰熔融性的意义1. 评估煤炭的燃烧特性测定煤灰的熔融性可以反映出燃煤过程中煤灰的熔化特性和行为,这对于评估煤炭的燃烧特性具有重要意义。

煤灰在燃烧时会发生部分熔化,形成熔渣,如果煤灰的熔融性较好,熔渣生成时容易排出炉膛,有利于保护炉膛和延长设备的使用寿命;相反,如果煤灰的熔融性较差,熔渣生成时容易粘在炉膛内壁上,影响炉内的流动,增加了设备的维护成本。

测定煤灰的熔融性可以为燃煤工业提供有益的指导和依据。

2. 预测灰渣对环境的影响燃煤过程中产生的灰渣会对环境造成一定的影响,如粉尘排放、土壤污染等。

通过测定煤灰的熔融性,可以了解灰渣的物理和化学性质,从而预测其对环境的影响。

一般来说,煤灰的熔融性越高,生成的灰渣颗粒越大,密度越大,粘附力越强,对于环境的污染程度也越大。

测定煤灰熔融性对于环境保护具有一定的重要性。

3. 为煤炭利用提供技术支持测定煤灰的熔融性可以为煤炭的开发利用提供重要的技术支持。

通过研究煤灰的熔融性,可以为煤灰的资源化利用提供依据,如制备水泥、填料等材料,为煤炭的燃烧工艺提供技术指导,提高燃煤发电的效率,减少环境污染等。

二、影响煤灰熔融性的因素1. 煤质煤质是影响煤灰熔融性的重要因素之一。

不同种类、不同地区的煤炭其煤灰的熔融性也会有所差异。

一般来说,焦化煤的灰渣熔融性较好,烟煤的灰渣熔融性较差。

煤炭中的灰分含量、灰渣中的硅酸盐的含量等也会影响煤灰的熔融性。

2. 燃烧工艺燃烧工艺是影响煤灰熔融性的另一个重要因素。

不同的燃烧温度、气氛、时间等都会对煤灰的熔融性产生影响。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素煤灰是燃烧煤炭后残余下来的固体物质,其中的熔融特性是煤灰在锅炉中的燃烧性能和废弃物处理过程中的关键因素之一。

因此,测定煤灰熔融性对于煤炭工业的发展与应用具有重要的意义。

本文将介绍测定煤灰熔融性的意义及其影响因素。

一、意义1.指导煤炭选用与加工。

煤炭选择时,需要了解其煤灰的熔融性质,以便选用适合的燃烧设备及煤灰处理方案。

2.优化锅炉的设计与操作。

锅炉内的煤灰会影响其燃烧效率及排放物的质量。

测定煤灰的熔融性可以指导锅炉的设计和操作,使其达到最佳的燃烧效果。

3.指导废弃物处理。

在煤炭工业中,产生的废弃物中常常含有大量的煤灰,而煤灰的熔融特性会影响其处理方式。

因此,测定煤灰的熔融性可以帮助选择最适合的废弃物处理方案。

4.研究煤灰成分及煤的热解特性。

煤灰的成分及熔融性是确定煤的热解特性的关键因素之一。

因此,测定煤灰的熔融性可以为研究煤的热解提供重要的参考数据。

二、影响因素1.煤的类型和成分。

不同类型的煤炭在燃烧后留下的矿物成分不同,因此煤灰的熔融性也不同。

2.煤的热解特性。

煤炭的热解特性会影响煤灰中残留下来的矿物物质所处的形态及其熔融性。

3.燃烧条件。

煤的燃烧条件包括温度、压力、气氛等多种因素,这些因素会对煤灰的组成、形态和熔融性产生影响。

4.煤灰的成分及形态。

煤灰的成分、比表面积、孔隙度、磨损度等因素都会影响煤灰的熔融性。

5.试验方法。

测定煤灰熔融性的试验方法不同也会影响测试结果。

常用的试验方法包括热显微镜法、平衡试验法等。

综上所述,测定煤灰的熔融性对于煤的加工、燃烧及废弃物处理均具有重要意义。

影响其熔融性的因素较多,因此在进行试验前需对其相关影响因素进行分析,以期得到准确可靠的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤灰熔融性测定的重要性及方法摘要煤灰熔融性测定可提供锅炉设计有关数据、预测燃煤情况、锅炉燃烧方式选择、判断煤灰渣型。

掌握正确的煤灰熔融性测定技术,煤灰熔融性对锅炉结渣情况的影响,可为减轻或避免锅炉结渣提供有效的依据。

建议你看看GB/T219-1996,标准对这4个温度有解释的!3.1 变形温度(DT)尖锥尖端或棱开始变圆或弯曲时的温度(图1DT)。

注:如灰锥尖保持原形,则锥体收缩和倾斜不算变形温度。

A. 软化温度(ST)灰锥弯曲至锥尖触及托板或灰锥变成球形的温度(图1ST)。

B. 半球温度(HT)灰锥形变至近似半球形,即高约等于底长的一半时的温度(图1HT)。

C. 流动温度(FT)灰锥熔化展开成高度在1.5mm以下的薄层时的温度(图1FT)。

1 前言煤灰的熔融性是动力用煤高温特性的重要测定项目之一,是动力用煤的重要指标,它反映煤中矿物质在锅炉中的变化动态。

测定煤灰熔融性温度在工业上特别是火电厂中具有重要意义。

第一,可以提供锅炉设计选择炉膛出口烟温和锅炉安全运行的依据。

在设计锅炉时,炉膛出口烟温一般要求比煤灰的软化温度低50~100℃,在运行中也要控制在此温度范围内,否则,会引起锅炉出口过热器管束间灰渣的“搭桥”,严重时甚至发生堵塞,从而导致锅炉出口左右侧过热蒸汽温度不正常。

第二,可以预测燃煤的结渣。

因为煤灰熔融性温度与炉膛结渣有密切关系。

根据煤粉锅炉的运行经验,煤灰的软化温度小于1350℃就有可能造成炉膛结渣,妨碍锅炉的连续安全运行。

第三,可为不同锅炉燃烧方式选择燃煤。

不同锅炉的燃烧方式和排渣方式对煤灰的熔融性温度有不同的要求。

煤粉固态排渣锅炉要求煤灰熔融性温度高些,以防炉膛结渣;相反,对液态排渣锅炉,则要求煤灰熔融性温度低些,以避免排渣困难。

因为煤灰熔融性温度低的煤在相同温度下有较低的粘度,易于排渣。

第四,可判断煤灰的渣型。

根据软化区间温度(DT—ST)的大小,可粗略判断煤灰是属于长渣或短渣。

一般认为当(ST—DT)=200~400℃为长渣;(ST—DT)=100~200℃为短渣。

通常锅炉燃用长渣煤时运行较安全。

燃用短渣煤时,由于炉温增高,固态排渣炉可能在很短的时间内就出现大面积的严重结渣情况;燃用长渣煤时,DT、ST之间的温差虽超过200℃,但固态排渣炉的结渣相对进行得较为缓慢,一旦产生问题,也常常是局部性的。

综上所述,是煤灰熔融性测定的重要性,必须掌握煤灰熔融性的准确测定方法,以达到确保锅炉安全经济燃烧的目的。

2 测定煤灰熔融性设备的技术要求按国家标准GB219—74规定要求,应用硅碳管高温炉应满足有足够大的恒温区,恒温区内温差应不大于5℃;能按照规定的温升速度升温至1500℃;炉内气氛能方便控制为弱还原性或氧化性;能在试验过程中随时观察试样的变化情况;电源要有足够容量,可连续调压。

铂铑—铂热电偶及高温计,测温范围为0~1600℃,最小分度为5K,经校正后(半年校正一次)使用,热电偶要用气密性刚玉管保护,防止热端材质变异。

灰锥模子,由对称的两半块构成的黄铜或不锈钢制品。

灰锥托板模,由模座、垫片和顶板三部分构成,用硬木或其他坚硬材料制做。

常量气体分析器,可测定一氧化碳、二氧化碳和氧气含量。

3 气氛条件的控制煤灰熔融性温度测定的气氛一般有两种,一种是氧化性气氛,另一种是弱还原性气氛。

常用的气氛是弱还原性气氛。

这是因为在工业锅炉的燃烧中,一般都形成由CO、H2、CH4、CO2和O2为主要成分的弱还原性气氛,所以煤灰熔融性温度测定一般也在与之相似的弱还原性气氛中进行。

所谓弱还原性气氛,是指在1000~1300℃范围内,还原性气体(CO、H2、CH4)总含量在10%~70%之间,同时在1100℃以下时,它们和CO2的体积比不大于1:1,含氧量不大于0.5%。

对于弱还原性气氛的控制方法,一般有两种,一种是封碳法,它是将一定量的木碳、石墨、无烟煤等含碳物质封入炉中,这些物质在高温炉中燃烧时,产生还原气体(CO、H2、CH4),形成弱还原性气氛。

封碳法简单易行,在国内普遍采用。

另一种是通气法,在测定煤灰熔融性温度的炉内通入40%±5%的一氧化碳和60%±5%的二氧化碳混合气或50%±10%的二氧化碳和50%±10%的氢气混合气。

通气法容易调节并能获得规定的气体组成。

对于氧化性气氛的控制,是煤灰熔融性温度测定炉内不放置任何含碳物质,并使空气在炉内自由的流通,这一方法更为简单,也被许多电厂采用。

4 测定步骤4.1 灰的制备取粒度小于0.2mm的分析煤样,按照测定灰分的方法,将煤样置于瓷方皿内,放入箱形电炉中,使温度在30min内逐渐升到500℃,在此温度下保持30min,然后升至815±10℃,关闭炉门灼烧1h,使煤样全部灰化,之后取出方皿冷却至室温,再将煤灰样用玛瑙钵研细,使之粒度全部达到0.1mm以下。

4.2 灰锥的制做取1~2g煤灰样放在瓷板或玻璃板上,用数克糊精水溶液湿润并调成可塑状,然后用小尖刀铲入不锈钢灰锥模中挤压成高为20mm,底边长7mm的正三角形锥体,锥体的一个棱面垂直于底面。

用小尖刀将模内灰锥小心地推至瓷板或玻璃板上,放在空气中干燥或放入60℃恒温箱内干燥后备用。

4.3 在弱还原性气氛中测定用10%糊精水溶液将少量氧化镁调成糊状,用它将灰锥固定在灰锥托板的三角坑内,并使灰锥的垂直棱面垂直于托板表面。

将带灰锥的托板置于刚玉舟的凹槽内,如用封碳法来产生弱还原性气氛,预先在舟内放置足够量的碳物质。

打开高温炉炉盖,将刚玉舟徐徐推入炉内,使灰锥位置恰好处于高温恒温区的中央,将热电偶插入炉内,使其顶端处于灰锥正上方5mm处,关上炉盖,开始加热并控制升温速度为:900℃以下时,(15~20℃/min),900℃以上时(5±1℃/min)。

如用通气法产生弱还原性气氛,应通入1:1的氢气和二氧化碳混合气体,当炉内温度为600℃时开始通入二氧化碳,以排除炉内的空气,700℃时开始通入混合气体。

气密性较好的炉膛,每分钟通入100ml,以不漏入空气为准。

每20min记录一次电压、电流和温度。

随时观察灰锥的形态变化(高温下观察时,需戴上墨镜),记录灰锥的四个熔融特征温度:变形温度DT,软化温度ST,半球温度HT,流动温度FT。

待全部灰锥都达到流动温度或炉温升至1500℃时断电,结束试验,待炉子冷却后,取出刚玉舟,拿下托板,仔细检查其表面,如发现试样与托板作用,则需另换一种托板重新试验。

5 测定结果的判断在测定过程中,灰锥尖端开始变圆或弯曲时温度为变形温度DT,如有的灰锥在弯曲后又恢复原形,而温度继续上升,灰锥又一次弯曲变形,这时应以第二次变形的温度为真正的变形温度DT。

当灰锥弯曲至锥尖触及托板或锥体变成球形或高度不大于底长的半球形时的温度为软化温度ST。

当灰锥变形至近似半球形即高等于底长的一半时的温度为半球温度HT。

当灰锥熔化成液体或展开成高度在1.5mm以下的薄层或锥体逐渐缩小,最后接近消失时的温度为流动温度FT。

某些灰锥可能达不到上述特征温度,如有的灰锥明显缩小或缩小而实际不熔,仍维持一定轮廓;有的灰锥由于表面挥发而锥体缩小,但却保持原来形状;某些煤灰中SiO2含量较高,灰锥易产生膨胀或鼓泡,而鼓泡一破即消失等,这些情况均应在测定结果中加以特殊说明。

6 测定结果的表达将记录灰锥的四个熔融特征温度(DT、ST、HT、FT)的重复测定值的平均值化整到10℃报出。

当炉内的温度达到1500℃时,灰锥尚未达到变形温度,则该灰样的测定结果以DT、ST、HT、FT均高于1500℃报出。

由于煤灰熔融性是在一定气氛条件下测定的,测定结果应标明其测定时的气氛性质及控制方法。

标明托板材料及试验后的表面状况,及试验过程中产生的烧结、收缩、膨胀和鼓泡等现象及其产生时的相应温度。

根据灰熔融性温度的高低,通常把煤灰分成易熔、中等熔融、难熔和不熔四种,其熔融温度范围大致为:易熔灰ST值在1160℃以下;中等熔融灰ST值在1160~1350℃之间;难熔灰ST值在1350~1500℃之间;不熔灰ST值则高于1500℃。

一般把ST值为1350℃作为锅炉是否易于结渣的分界线,灰熔融性温度越高,锅炉越不易结渣;反之,结渣严重。

7 煤灰熔融性测定的精密度煤灰熔融性测定的精密度值见表1。

8 影响煤灰熔融性温度的因素8.1 粒度大小煤灰粒度小,比表面积大,颗粒之间接触的机率也高,同时,还具有较高的表面活化能,因此,同一种煤灰,粒度小的比粒度大的熔融性温度低。

例如某种煤的煤灰的软化温度在粒度小于600μm 时为1175℃;粒度小于250μm时为1165℃;粒度小于75μm时为1140℃。

8.2升温速度若在软化温前200℃左右,急剧升温比缓慢升温所测出的软化温度高。

当升温速度缓慢时,煤灰中化学成分间相对有时间进行固相反应,因此,软化温度点相对在较低温度出现。

8.3 气氛性质煤灰的熔融性温度受气氛性质的影响最为显著,特别是含铁量大的煤灰更为明显。

这主要是由于煤灰中铁在不同性质气氛中有不同形态,并进一步产生低熔融性的共熔体所致。

因此要定期检查炉内气氛的性质,才能保证测定结果的可靠性,通常检查炉内气氛性质的方法有下列两种。

参比灰锥法:此法简单易行,效果较好,被广泛采用。

先选取具有氧化和弱还原性两种气氛下的煤灰熔融性温度的标准煤灰,制成灰角锥,而后置于炉中,按正常操作测定其四个特征温度,即变形温度(DT),软化温度(ST),半球温度(HT),流动温度(FT)。

? 当实测的软化温度(ST),半球温度(HT),流动温度(FT)与弱还原性气氛下的标准值相差不超过50℃时,则认为炉内气氛为弱还原性。

如果超过50℃,则要根据实测值与氧化气氛或弱还原性气氛下的相应标准值的接近程度及封碳物质的氧化情况判断炉内气氛性质。

气体分析法:用一根内径为3~5mm气密的刚玉管直接插入炉内高温带,分别在1000~1300℃和1100℃下抽取炉内气体,抽样速度以不大于6~7ml/min抽出气体。

若用气体全分析仪分析气体成分时,可直接用该仪器的平衡瓶(内装水)抽取气体较为方便;若采用气相色谱分析仪时,则可用100ml 注射器抽取气体样品,取样结束后立即送实验室分析。

在1000~1300℃范围内还原气体(CO、H2、CH4)体积百分量为10%~70%,同时在1100℃以下它们的总体积和二氧化碳的体积比不大于1:1,O2的体积百分比<0.5%,则炉内气氛是弱还原性。

8.4 角锥托板的材质耐火材料有酸性和碱性之分,它们在高温下,同一般酸碱溶液一样也会发生化学反应,因此,在测定煤灰熔融性温度时,要注意托板的选择,否则,会使测定结果偏低。

多数煤灰中酸性物(Al2O3+SiO2+TiO2)大于碱性物(Fe2O3+MgO+CaO+K2O+Na2O),可采用刚玉(Al2O3)或氧化铝与高岭土混合制成的托板。

相关文档
最新文档