热电阻及其常见类型

热电阻及其常见类型
热电阻及其常见类型

热电阻

热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

1、热电阻测温原理及材料

热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。

2、热电阻的类型

1)普通型热电阻

从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。

2)铠装热电阻

铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φm m。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。

3)端面热电阻

端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。

4)隔爆型热电阻

隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla--B3c 级区内具有爆炸危险场所的温度测量。

热电偶种类与区别

J型热电偶 J型热电偶)又称铁-康铜热电偶,也是一种价格低廉的廉金属的热电偶。 它的正极(JP)的名义化学成分为纯铁,负极(JN)为铜镍合金,常被含糊地称之为康铜,其名义化学成分为:55%的铜和45%的镍以及少量却十分重要的锰,钴,铁等元素,尽管它叫康铜,但不同于镍铬-康铜和铜-康铜的康铜,故不能用EN和TN来替换。铁-康铜热电偶的覆盖测量温区为-200~1200℃,但通常使用的温度范围为0~750℃ J型热电偶具有线性度好,热电动势较大,灵敏度较高,稳定性和均匀性较好,价格便宜等优点,广为用户所采用。 J型热电偶可用于真空,氧化,还原和惰性气氛中,但正极铁在高温下氧化较快,故使用温度受到限制,也不能直接无保护地在高温下用于硫化气氛中。 热电偶是由两种不同成分的导体两端接合成回路时,当两接合点温度不同时,就会在回路内产生热电流。如果热电偶的工作端与参比端存有温差时,显示仪表将会指示出热电偶产生的热电势所对应的温度值。 热电偶的热电动热将随着测量端温度升高而增长,它的大小只与热电偶材料和两端的温度有关,与热电极的长度、直径无关。 各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成。 主要技术特性 测量范围及基本误差限 注:t为感温元件实测温度值(℃) 热电偶时间常数

热电偶公称压力:一般是指在工作温度下保护管所能承受的静态外压而破裂。 热电偶最小插入深度:应不小于其保护套管外径的8-10倍(特列产品例外) 绝缘电阻:当周围空气温度为15-35℃,相对湿度<80%时绝缘电阻≥5兆欧(电压100V)。 具有防溅式接线盒的热电偶,当相对温度为93± 3℃时,绝缘电阻≥0.5兆欧(电压100V) 高温下的绝缘电阻:热电偶在高温下,其热电极(包括双支式)与保护管以及双支热电极 之间的绝缘电阻(按每米计)应大于下表规定的值。 K型热电偶 K型热电偶概述 K型热电偶作为一种温度传感器,K型热电偶通常和显示仪表,记录仪表和电子调节器配套使用。 K型热电偶可以直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。 K型热电偶通常由感温元件、安装固定装置和接线盒等主要部件组成。 镍铬-偶(K型热电偶是目前用量最大的廉金属热电偶,其用量为其他热电偶的总和。K型热电偶丝直径一般为1.2~4.0mm。 正极(KP)的名义化学成分为:Ni:Cr=92:12,负极(KN)的名义化学成分为:Ni:Si=99:3,其使用温度为-200~1300℃。 K型热电偶具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中广泛为用户所采用。 K型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛.

高温高压热电偶哪家好

被广泛应用于测温的元件,热电偶类型多样,我们可以根据环境条件来选择。在大部分工厂都比较恶劣环境条件下,普通的很容易在高温高压下损坏,造成严重后果。这时高温高压热电偶的出现就很重要了。接下来,我来为大家介绍下它的类型特点,以便以后我们更好的应用。 高温高压热电偶适合于石油、化工等生产过程中的高温高压场所的温度测量与控制。是炼油厂、高压聚乙烯等不可缺少的温度装置。 类型特点及用途 1、1Cr18Ni9Ti:具有高温耐蚀性,通常为一般耐热钢使用; 2、304:低碳含量,具有良好耐晶间腐蚀性,通常作为一般耐热钢使用; 3、316:低碳含量,具有良好耐晶间通常作为耐热钢使用;

4、316L:超低碳含量,具有良好耐晶间腐蚀性,通常作为耐热钢使用; 5、310S:具有高温抗氧化性,耐腐蚀性,通常作为耐热钢使用; 6、GH3030:镍基高温合金钢,具有优良抗氧化性,耐腐蚀性,通常作为耐热钢使用。 铂铑热电偶优点:在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长,测温上限高等优点。适用于氧化性和惰性气氛中,也可短期用于真空中,但不适用于还原性气氛或含有金属或非金属蒸气气氛中。B型热电偶一个明显的优点是不需用补偿导线进行补偿,因为在0~50℃范围内热电势小于3μV。缺点:铂铑热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。铂铑热电偶的工作原理是铂铑热电偶是由两种不同成分的导体两端接合成回路时,当两接合点温度不同时,就会在回路内产生热电流。如果热电偶的工作端与参比端存在有温差时,显示仪表将会批示出热电偶产生的热电势所对应的温度值。铂铑热电偶的选择:测量的温度正常在1000~1300℃时建议使用单铂铑热电偶(铂铑10-铂),测量的温度正常在1200~1600℃时建议使用双铂铑热电偶(铂铑30-铂铑6),这样在所使用的温度范围内才能保证铂铑热电偶的使用寿命。

热电阻热电偶基础知识资料

热电偶热电阻测温应用原理 1热电偶测温的应用原理 1.1热电偶测温基本原理 1.2热电偶的种类与结构形成 1.2.1热电偶的种类 1.2.2热电偶的结构形式 1.3热电偶冷端的温度补偿 1.4温度测量仪表的分类 2热电阻的应用原理 2.1热电阻测温原理与材料 2.2.1精通型热电阻 2.2.2铠装热电阻 2.2.3端面热电阻 2.2.4隔爆型热电阻 2.3热电阻测温系统的组成

热电偶热电阻测温应用原理 1热电偶测温的应用原理 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-501600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如

钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。1.1热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个接触点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一定大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 1.2热电偶的种类与结构形成 1.2.1热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不与标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

热电偶的分度号分类

热电偶的分度号有哪几种、有什么区别 热电偶的分度号有主要有S、R、B、N、K、E、J、T等几种。其中S、R、B属于贵金属热电偶,N、K、E、J、T属于廉金属热电偶。 t、S分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃,短期1600℃。 在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶; R分度号与S分度号相比除热电动势大15%左右,其它性能几乎完全相同; B分度号在室温下热电动势极小,故在测量时一般不用补偿导线。它的长期使用温度为1600℃,短期1800℃。可在氧化性或中性气氛中使用,也可在真空条件下短期使用。 N分度号的特点是1300℃下高温抗氧化能力强,热电动势的长期稳定性及短期热循环的复现性好,耐核辐照及耐低温性能也好,可以部分代替S分度号热电偶; K分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃,短期1200℃。在所有热电偶中使用最广泛; E分度号的特点是在常用热电偶中,其热电动势最大,即灵敏度最高。宜在氧化性、惰性气氛中连续使用,使用温度0-800℃; J分度号的特点是既可用于氧化性气氛(使用温度上限750℃),也可用于还原性气氛(使用温度上限950℃),并且耐H2及CO气体腐蚀,

多用于炼油及化工; T分度号的特点是在所有廉金属热电偶中精确度等级最高,通常用来测量300℃以下的温度 补偿导线工作原理: 在一定温度范围内,具有与其匹配的热电动势标称值相同的一对带绝缘包覆的导线叫补偿导线。用它们连接热电偶与测量装置,以补偿热电偶连接处的温度变化所产生的误差。 补偿导线特点: ①热电特性稳定,电绝缘性能好,使用寿命长。 ②柔软,弯曲性能能好,使用方便。 ③包覆层材料稳定可靠,具有一定的耐温性和耐寒性能。 铂铑热电偶 产品型号:WRP(WRR)--130 S型小铂铑热电偶为各类小型箱式电阻炉或井式炉使用,也可以用于同类产品上。WR系列工业用热电偶作为温度测量传感器 ,通常与温度变送器、调节器及显示仪表等配套使用,组成过程控制系统,用以

热电偶型号及不锈钢牌号

热电偶型号及不锈钢牌号

热电偶分度号 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC 国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 热电偶的分度号有主要有S、R、B、N、K、E、J、T等几种。其中S、R、B属于贵金属热电偶,N、K、E、J、T属于廉金属热电偶。 以下是对热电偶分度号的解释 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 (S型热电偶)铂铑10-铂热电偶 铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。 S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。 S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。 (R型热电偶)铂铑13-铂热电偶 铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。 R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R型热电偶的综合性能与S型热电偶相当,在我国一直难于推广,除在进口设备上的测温有所应用外,国内测温很少

热电阻,热敏电阻及热电偶有哪些区别

热电阻,热敏电阻及热电偶有哪些区别? 热电阻、热电偶都是常见的温度传感器https://www.360docs.net/doc/d1845292.html,/类型,都用于测量物体温度,但热电阻和热电偶也是存在一些区别的。下面我们主要讲讲热电阻和热电偶有哪些区别? 热电阻被广泛应用于工业领域,它可以将电信号运输较远距离,且具有稳定性好,精确度高,灵敏性好等特点,热电阻需要电源激励,不能测量温度变化的瞬时值,热电阻测温范围不是很大,工业上应用的热电阻主要有:Pt100,Pt10,Cu50,Cu100。热电阻不需要补偿导线,价格比热电偶要便宜。有些人容易将热敏电阻和热电阻混淆,其实热敏电阻和热电阻是完全2个不一样的概念,热电阻主要用于加热使用,如电热毯等等里面用的电热丝;热敏电阻,是根据温度的不同,自身的电阻值发生变化,主要用在温度传感器上面,如ntc热敏电阻https://www.360docs.net/doc/d1845292.html,/,即负温度系数热敏电阻。 相对于热电阻,热电偶测温范围更广,动态响应好,结构也不复杂,稳定性能好,能够很好地进行自动集中控制。是应用最广泛的温度传感器,热电偶的测温原理是基于热电效应,又称为塞贝克效应。普通型和铠装型是热电偶的2种不同结构。热电偶需要补偿导线来传递电信号。 目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。 热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测吻范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成;温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子

热电偶基础知识及选型

热电偶基础知识及选型 一、热电偶基础 1. 热电效应:将两根不同的导体连接在一起,当导体的两端温度不一致时,导体构成的回路中就有电流产生,这种现象叫物质的热电效应(塞贝克效应)。热电特性是物质普遍具有的一种物理特性。 2. 热电偶:以测量热电动势的方法来测量温度的一对金属导体。注意是两根不同的均质导体,且只有热电特性曲线线性好、稳定性好、热电势率较大、耐蚀性好的一对金属导体才可用于热电偶。 3. 热电极:构成热电偶的两根金属导体叫热电极,其中一根叫正极,另一根叫负极。 4. 测量端与参比端:热电偶的焊接端叫测量端,也叫热端,另一端用于连接显示仪叫参比端,也叫冷端。 5. 热电动势:热电偶回路中由于测量端和参比端温度不一致时所产生的电动势,叫热电动势,包括温差电势和接触电势两部份。当参比端温度恒定时,热电偶的热电动势大小与测量端温度一一对应。 6. 热电势率:指温度每变化1℃引起热电偶的热电动势的变化值,又称“塞贝克系数”,单位为μV/℃。温度需换算成热电动势才能进行运算。 7. 热电偶的基本定律:均质导体定律、中间导体定律、中间温度定律、连接导体定律、参考电极定律。

8. 热电偶起源:基于1821年塞贝克发现的热电效应,1826年贝克雷尔首先根据热电效应来测量温度。 9. 分度号:对热电特性在一定范围内一致的一个类别的热电偶的命名符号。热电极化学成分相同的两支热电偶,其分度号相同。 10. 分度表:每类分度号的热电偶在每摄氏度对应的热电动势的数据表,叫热电偶分度表。 11. 热电偶的结构:两端五部,热电偶三要素 12. 装配热电偶:热电偶偶丝、绝缘材料、保护套管经过装配而成,并可拆卸的热电偶。 13. 铠装热电偶:热电偶偶丝采用氧化镁粉绝缘,将偶丝、绝缘材料、保护套管组装在一起,反复拉拔缩径,加工成一体化的细长的不可拆卸的热电偶电缆,再分剪成需要的长度,制作测量端和接线端,即成为铠装热电偶。 三、热电偶选型基础

常见热电偶类型及特点

常见热电偶类型及特点 1、K 型热电偶镍铬(镍硅(镍铝)热电偶) K型热电偶是抗氧化性较强的贱金属热电偶,可测量0~1300 ℃的介质温度,适宜在氧化性及惰性气体中连续使用,短期使用温度为1200 ℃,长期使用温度为1000 ℃,其热电势与温度的关系近似线性,是目前用量最大的热电偶。然而, 它不适宜在真空、含硫、含碳气氛及氧化还原交替的气氛下裸丝使用;当氧分压较低时,镍铬极中的铬将择优氧化,使热电势发生很大变化,但金属气体对其影响较小,因此,多采用金属制保护管。 K型热电偶缺点: (1))热电势的高温稳定性较N型热电偶及贵重金属热电偶差,在较高温度下(例如超过1000 ℃)往往因氧化而损坏; (2))在250 ~500 ℃范围内短期热循环稳定性不好,即在同一温度点,在升温 降温过程中,其热电势示值不一样,其差值可达2~3℃; (3))其负极在150 ~200 ℃范围内要发生磁性转变,致使在室温至230 ℃范围内分度值往往偏离分度表,尤其是在磁场中使用时往往出现与时间无关的热电势干扰; (4)长期处于高通量中系统辐照环境下,由于负极中的锰(Mn)、钴(Co)等元素发生蜕变,使其稳定性欠佳,致使热电势发生较大变化。 2、S 型热电偶(铂铑10 -铂热电偶) 该热电偶的正极成份为含铑10% 的铂铑合金,负极为纯铂。 其特点是:

(1)热电性能稳定、抗氧化性强、宜在氧化性气氛中连续使用、长期使用温度 可达1300 ℃,超达1400 ℃时,即使在空气中、纯铂丝也将会再结晶,使晶粒粗 大而断裂; (2)精度高,在所有热电偶中准确度等级最高,通常用作标准或测量较高温度;(3)使用范围较广,均匀性及互换性好; (4)主要缺点有:微分热电势较小,因而灵敏度较低;价格较贵,机械强度低, 不适宜在还原性气氛或有金属蒸汽的条件下使用。 3、E 型热电偶(镍铬-铜镍[康铜]热电偶) E型热电偶为一种较新产品,正极为镍铬合金,负极为铜镍合金(康铜)。其最 大特点是在常用的热电偶中,其热电势最大,即灵敏度最高;它的应用范围虽不及K型偶广泛,但在要求灵敏度高、热导率低、可容许大电阻的条件下,常常被 选用;使用中的限制条件与K型相同,但对于含有较高湿度气氛的腐蚀不很敏感。 4、N 型热电偶(镍铬硅-镍硅热电偶) 该热电偶的主要特点:在1300 ℃以下调温抗氧化能力强,长期稳定性及短期热循环复现性好,耐核辐射及耐低温性能好,另外,在400 ~1300 ℃范围内,N型热电偶的热电特性的线性比K型偶要好;但在低温范围内(-200 ~400 ℃)的非线性误差较大,同时,材料较硬难于加工。 5、J 型热电偶(铁-康铜热电偶) J 型热电偶:该热电偶的正极为纯铁,负极为康铜(铜镍合金),具特点是价格 便宜,适用于真空氧化的还原或惰性气氛中,温度范围从-200 ~800℃,但常用温度只在500 ℃以下,因为超过这个温度后,铁热电极的氧化速率加快,如采用粗

热电偶的材料、结构及种类

热电偶的材料、结构及种类 一、热电偶材料 根据金属的热电效应原理.组成热电偶的热电极,If以是任意的合同材料 中,用作热电极的材料应具备以下几方面的条件: 1.测量范围广 在规定的温度测量范围内具有较高的测量精确度 的关系是单值函数。 2.热电性能稳定 要求在规定的温度测量范围内使用时热电性能稳定,有较好的均匀性和复现性。 3.化学稳定性好 要求在规定的温度测旦范闲内使用时有良好的化学稳定性、抗氧化或抗还原性能 蒸发现象。 满足上述条件的热电偶材料并不很多。目前,我国大量生产和使用的性能符合专业 标准 成国家标服并具钉统一分度表凶热屯悯材料称为定型热屯偶材料,共有6个仍牌。它 们分别 是铀诧”饱姥,、钢铭l。—5日、镍铬—镍硅、镍铬嘴铜、镍铬—镍铝、铜—铜镍。 此外,我囚还生产一些未定型的热电偶材料,如铂锭J s—59、铱姥M—铱、钨锦;—钨钢:。及金铁 热电偶、双钠钥热心佃等。这些非标热电偶应用于一些特殊条件下的测温,如超高温、极低温、 禹真空或核辐射环境等。 热电偶温度传感器广泛应用于工业生产过程中的温度测量。根据其用途和安装位置不 它具有多种结构形式。 [一)普通工业热电偶的结构

热电偶通常出热电极、绝缘管.保护宾管和接线盒等几个主要部分织成 5所不。现对各部分构造做简申的介绍。 1.热电权 热电极又称偶丝.它是热电佃斯麦迪电子的珏本组成部分。用普通分届做成的偶丝,其直径一般为 o.5—3.2mm;用责至金属做成的佃丝,盲役一般为o.3一o.6mm。偶耸的良度则由工作端插 入被测介质中的深度来决定,通常为300一20()o nlnl,常内的长度为历o mm。 2.绝缘管 绝缘管又称绝缘子,是用于热电极之间及热心极与保护宾之间进行绝缘保护的零件,以防 止它们之间立相短路。其形状一般为圆形或椭圆形,钾间开心2个、4个或6个孔, 热电偶偶 丝穿孔而过。材料为就上质、高铝质、刚玉质等,根据使用的热电偶而定。 3.保护套管 保护套管是用于保护热电偶感混元件免受被测介质化学腐蚀和机械损伤的装置。保 护名 管应具有耐高温、耐腐蚀见导热性灯的特性,可以用作保护套管的材料有金属、非金 属及金属 陶瓷二大类。金属材料有铝、黄铜、碳钢、不锈钠等,其小1〔:f13X19,I、j不锈 钢是目前热电偶保 护套管使用的典型材料。非金属材AVX钽电容料有高铝质(A12()j的质量分数为85% 一90%)、刚玉质 (A1z():的质量分数为99%),使用温度都在1:300℃以上。金属陶瓷材料毛氧化铁 加众届铂, 这种材料使用温度在1700℃,且在高温厂啊很好的抗氧化能力、适用于钢水温度的连续测量。

热电偶如何分类和识别

?绝缘层和正极的颜色为褐色。 ?负极的颜色为白色。 ?本质安全电路绝缘层总是蓝色。 类型K (IEC 584) 类型K (IEC 584 EX) 图. 02 ?绝缘层和正极的颜色为绿色。 ?负极的颜色为白色。 ?本质安全电路绝缘层总是蓝色。

类型 B (IEC 584) 类型 B (IEC 584 EX) 图. 03 ?绝缘层和正极的颜色为灰色。 ?负极的颜色为白色。 ?本质安全电路绝缘层总是蓝色。 类型N (IEC 584) 类型N (IEC 584 EX) 图. 04 ?绝缘层和正极的颜色为粉红色。 ?负极的颜色为白色。 ?本质安全电路绝缘层总是蓝色。 类型 E (IEC 584) 类型 E (IEC 584 EX) 图. 05 ?绝缘层和正极的颜色为紫色。 ?负极的颜色为白色。 ?本质安全电路绝缘层总是蓝色。

类型R / S (IEC 584) 类型R / S (IEC 584 EX) 图. 06 ?绝缘层和正极的颜色为橙色。 ?负极的颜色为白色。 ?本质安全电路绝缘层总是蓝色。 类型J (IEC 584) 类型J(IEC 584 EX) 图. 07 ?绝缘层和正极的颜色为黑色。 ?负极的颜色为白色。 ?本质安全电路绝缘层总是蓝色。 类型 C (IEC 584)类型C(IEC 584 EX) 图. 08 ?绝缘层和正极的颜色为红色。 ?负极的颜色为白色。 ?本质安全电路绝缘层总是蓝色。

类型L (DIN 43714) 图. 09 ?绝缘层的颜色为蓝色。 ?正极的颜色为红色。 ?负极的是蓝色。 类型U (DIN 43714) 图. 10 ?绝缘层的颜色为褐色。 ?正极的颜色为红色。 ?负极的是白色。 注意: 使用热电偶时,必须进行温度补偿。

热电偶的种类讲述

热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (S型热电偶)铂铑10-铂热电偶 铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。 S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电

偶仍可用于近似实现国际温标。 S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。 (R型热电偶)铂铑13-铂热电偶 铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。 R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R 型热电偶的综合性能与S型热电偶相当,在我国一直难于推广,除在进口设备上的测温有所应用外,国内测温很少采用。1967年至1971年间,英国NPL,美国NBS和加拿大NRC三大研究机构进行了一项合作研究,其结果表明,R型热电偶的稳定性和复现性比S型热电偶均好,我国目前尚未开展这方面的研究。 R型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。

热电偶的分度号有哪几种

热电偶的分度号有哪几种?有什么区别? 热电偶的分度号有主要有S、R、B、N、K、E、J、T等几种。其中S、R、B属于贵金属热电偶, N、K、E、J、T属于廉金属热电偶。 t、S分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃ 短期1600℃。在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶;^ R分度号与S分度号相比除热电动势大15%左右,其它性能几乎完全相同; B分度号在室温下热电动势极小,故在测量时一般不用补偿导线。它的长期使用温度为1600℃ 短期1800℃。可在氧化性或中性气氛中使用,也可在真空条件下短期使用。 N分度号的特点是1300℃下高温抗氧化能力强,热电动势的长期稳定性及短期热循环的复现性 好,耐核辐照及耐低温性能也好,可以部分代替S分度号热电偶; K分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃ 短期1200℃。在所有热电偶中使用最广泛; E分度号的特点是在常用热电偶中,其热电动势最大,即灵敏度最高。宜在氧化性、惰性气氛 连续使用,使用温度0-800℃; J分度号的特点是既可用于氧化性气氛(使用温度上限750℃),也可用于还原性气氛(使用温度 限950℃),并且耐H2及CO气体腐蚀,多用于炼油及化工; T分度号的特点是在所有廉金属热电偶中精确度等级最高,通常用来测量300℃以下的温度 补偿导线工作原理: 在一定温度范围内,具有与其匹配的热电动势标称值相同的一对带绝缘包覆的导线叫补偿导用它们连接热电偶与测量装置,以补偿热电偶连接处的温度变化所产生的误差。 补偿导线特点: ① 热电特性稳定,电绝缘性能好,使用寿命长。 ② 柔软,弯曲性能能好,使用方便。 ③ 包覆层材料稳定可靠,具有一定的耐温性和耐寒性能。 补偿导线结构和用途: ①补偿导线由芯线和绝缘包覆层组成; ②补偿导线应因芯线合金材质不同分为延长型和补偿型两种,延长型补偿导线有 NX (镍铬硅硅镁)、 KX (镍铬 10- 镍硅 3 )、 EX (镍铬 10- 铜镍 45 )、 JX (铁 - 铜镍 45 TX (铜 - 铜镍 45 ),补偿型补偿导线有 SC 和 RC (铜 - 铜镍 0.6 )、 KC (铜镍 40 )、 NC (铁 - 铜镍)等;

热电偶测量温度原理.

1、2两点的温度不同时,回路中就会产生热电势,因而?就有电流产生,电流表就会?发生偏转,这一现象称为热?电效应(塞贝克效应),产生的电势、电流分别叫热电?势、热电流。 热电偶温度计属于接触式温度测量仪表。是根据热电效应即塞贝克效应原理来测量温度的,是温度测量仪表中常用的测温元件。将不同材料的导体A、B接成闭合回路,接触测温点的一端称测量端,一端称参比端。若测量端和参比端所处温度t和t0 不同,则在回路的A、B之间就产生一热电势EAB(t,t0 ),这种现象称为塞贝克效应,即热电效应。EAB大小随导体A、B的材料和两端温度t和t0 而变,这种回路称为原型热电偶。在实际应用中,将A、B的一端焊接在一起作为热电偶的测量端放到被测温度t处,而将参比端分开,用导线接入显示仪表,并保持参比端接点温度t0稳定。显示仪表所测电势只随被测温度而t变化。 第一节热电偶的测温原理 在1821年德国医生塞贝克在实验中发现热电效应以来,经珀尔帖、汤姆逊以及开尔文等科学家的大量研究,热电效应理论得到了不断的发展,并日趋完善。热电偶是热电效应的具体应用之一,它在温度测量中得到了广泛的应用,热电偶具有结构简单、容易制造、使用方便和测量精度高等优点。可用于快速测温、点温测量和表面测量等,但是热电偶也存在着不足的地方,如使用的参考端温度必须恒定,否则将歪曲测量结果;在高温或长期使用中,因受被测介质或气氛的作用(如氧化、还原等)而发生劣化,降低使用寿命。尽管如此,热电偶仍在工业生产和科研活动中起着举足轻重的作用。下面我们从三个热电效应的阐述中来讨论热电偶的测温原理。 一、塞贝克效应和塞贝克电势 热电偶为什么能用来测量温度呢?这就是从热能和电能的相互转化的热电现象说起。在1821年,塞贝克通过实验发现一对异质金属A、B组成的闭合回路(如图1-1)中,如果对

常见热电偶类型及特点

常见热电偶类型及特点 1、K型热电偶镍铬(镍硅(镍铝)热电偶) K型热电偶是抗氧化性较强的贱金属热电偶,可测量0~1300℃的介质温度,适宜在氧化性及惰性气体中连续使用,短期使用温度为1200℃,长期使用温度为1000℃,其热电势与温度的关系近似线性,是目前用量最大的热电偶。然而,它不适宜在真空、含硫、含碳气氛及氧化还原交替的气氛下裸丝使用;当氧分压较低时,镍铬极中的铬将择优氧化,使热电势发生很大变化,但金属气体对其影响较小,因此,多采用金属制保护管。 K型热电偶缺点: (1)热电势的高温稳定性较N型热电偶及贵重金属热电偶差,在较高温度下(例如超过1000℃)往往因氧化而损坏; (2)在250~500℃范围内短期热循环稳定性不好,即在同一温度点,在升温降温过程中,其热电势示值不一样,其差值可达2~3℃; (3)其负极在150~200℃范围内要发生磁性转变,致使在室温至230℃范围内分度值往往偏离分度表,尤其是在磁场中使用时往往出现与时间无关的热电势干扰; (4)长期处于高通量中系统辐照环境下,由于负极中的锰(Mn)、钴(Co)等元素发生蜕变,使其稳定性欠佳,致使热电势发生较大变化。 2、S型热电偶(铂铑10-铂热电偶) 该热电偶的正极成份为含铑10%的铂铑合金,负极为纯铂。 其特点是:

(1)热电性能稳定、抗氧化性强、宜在氧化性气氛中连续使用、长期使用温度可达1300℃,超达1400℃时,即使在空气中、纯铂丝也将会再结晶,使晶粒粗大而断裂; (2)精度高,在所有热电偶中准确度等级最高,通常用作标准或测量较高温度;(3)使用范围较广,均匀性及互换性好; (4)主要缺点有:微分热电势较小,因而灵敏度较低;价格较贵,机械强度低,不适宜在还原性气氛或有金属蒸汽的条件下使用。 3、E型热电偶(镍铬-铜镍[康铜]热电偶) E型热电偶为一种较新产品,正极为镍铬合金,负极为铜镍合金(康铜)。其最大特点是在常用的热电偶中,其热电势最大,即灵敏度最高;它的应用范围虽不及K型偶广泛,但在要求灵敏度高、热导率低、可容许大电阻的条件下,常常被选用;使用中的限制条件与K型相同,但对于含有较高湿度气氛的腐蚀不很敏感。 4、N型热电偶(镍铬硅-镍硅热电偶) 该热电偶的主要特点:在1300℃以下调温抗氧化能力强,长期稳定性及短期热循环复现性好,耐核辐射及耐低温性能好,另外,在400~1300℃范围内,N型热电偶的热电特性的线性比K型偶要好;但在低温范围内(-200~400℃)的非线性误差较大,同时,材料较硬难于加工。 5、J型热电偶(铁-康铜热电偶) J 型热电偶:该热电偶的正极为纯铁,负极为康铜(铜镍合金),具特点是价格便宜,适用于真空氧化的还原或惰性气氛中,温度范围从-200~800℃,但常用温度只在500℃以下,因为超过这个温度后,铁热电极的氧化速率加快,如采用粗

热电阻温度计基础知识

热电阻温度计 1、测温原理 随着温度的升高,导体或半导体的电阻会发生变化,温度和电阻间具有单一的函数关系,利用这一函数关系来测量温度的方法,即为热电阻测温法,用于测温的导体或半导体被称为热电阻。测温用的热电阻主要有金属电阻和半导体两大类。 2、金属热电阻 大量实验表明,对于金属导体,在一定的温度范围内,其电阻和温度有以下的关系: R =R [1 + α(T – T )] 式中,R 为温度T 下的金属电阻值;R 为温度T 下的电阻值;α为电阻温度系数,℃,大多数金属的电阻温度系数不是常数,但在一定的温度范围内可取其平均值作为常数值。 热电阻的温度系数越大,表明热电阻的灵敏度越高;一般情况下,材料的纯度越高,热电阻的温度系数也越高。通常纯金属的温度系数比合金要高,所以多采用纯金属来制造热电阻。热电阻的温度系数还与制造工艺有关。在使用热电阻材料拉制金属丝的过程中,会产生内应力,并由此引起电阻温度系数的变化。因此,在制作热电阻时必须进行退火处理,以消除内应力的影响。作为测量温度的金属热电阻材料必须满足以下几个要求: ①电阻温度系数应大,这样的热电阻的灵敏度才能高。 ②要求有较大的电阻率,因为电阻率越大,同样阻值的热电阻体积就越小,从而可减小其热容量和热惯性,提高对温度变化的反应速度。 ③在测温范围内,应具有稳定的物理和化学性质,确保测量结果的稳定性。 ④电阻与温度的关系最好近似线性,或者为平滑的曲线,以简化测量数据处理与显示的难度。⑤复现性好,复制性强,互换性好,容易得到纯净的金属,易于加工,价格低廉,工艺性好。 热电阻(铠装热电阻)的外形结构与热电偶(铠装热电偶)外形结构基本相同,特别是保护管和连接盒是难以区分的,可是内部结构不同,使用时应特别注意。热电阻的结构如图1所示。 T 00T 00-1

热电偶种类及其工作原理

热电偶种类及其工作原理 2008-9-12 常用的热电偶种类 热电偶的工作原理 什么叫热电偶?这就要从热电偶测温原理说起,热电偶是一种感温元件 , 是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号 , 通过电气仪表(二次仪表)转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路 , 当两端存在温度梯度时 , 回路中就 会有电流通过,此时两端之间就存在 Seebeck 电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系 , 制成热电偶分度表 ; 分度表是自由端温度在0 ℃ 时的条件下得到的,不同的热电偶具有不同的分度表。 在热电偶回路中接入第三种金属材料时 , 只要该材料两个接点的温度相同 , 热电偶所产生的热电势将 保持不变,即不受第三种金属接入回路中的影响。因此 , 在热电偶测温时,可接入测量仪表 , 测得热电

动势后 , 即可知道被测介质的温度。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。 对于热电偶的热电势,应注意如下几个问题: 1、热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数; 2、热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3、当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。 【字体:大 热电偶的结构形式 2007-12-20 热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ·组成热电偶的两个热电极的焊接必须牢固; ·两个热电极彼此之间应很好地绝缘,以防短路; ·补偿导线与热电偶自由端的连接要方便可靠; ·保护套管应能保证热电极与有害介质充分隔离。 按热电偶的用途不同,常制成以下几种形式。

热电偶型号及测温范围总结

热电偶产品分类总结 南京万达仪表厂/ 2010-03-11 一、铠装热电偶 1、应用 通常和显示仪表、记录仪表、电子计算机配套使用。直接测量各种生产过程中的0℃-1300℃范围内液体、蒸汽和气体介质以及固体表面温度。 2、特点 热响应时间少,减少动态误差;可弯曲安装使用;测量范围大;机械强度高,耐压性能好。 3、工作原理 铠装热电偶的电极有两根不同导体材质组成。当测量与参比端存在温差时,就会产生热电势,工作仪表便显示出热电势所对应的温度值。 4、测量范围 型号分度号允许等级ⅠⅡ允差值测量范围℃允差值测量范围℃ WRNK K ±1.5℃ -40-375 ±2.5℃ -40-333 ±0.004︱t︱ 375-1000 ±0.075︱t︱ 1333-1200 WRMK N ±1.5℃ -40-375 ±2.5℃ -40-333 ±0.004︱t︱ 375-1000 ±0.075︱t︱ 1333-1200 WREK E ±1.5℃ -40-375 ±2.5℃ -40-333 ±0.004︱t︱ 375-800 ±0.004︱t︱ 333-900 WRFK J ±1.5℃ -40-375 ±2.5℃ -40-333 ±0.004︱t︱ 375-750 ±0.004︱t︱ 333-750 WRCK T ±1.5℃ -40-125 ±1℃ -40-133 ±0.004︱t︱ 125-350 ±0.075︱t︱ 133-350 WRPK S ±1℃ 0-1100 ±2.5℃ 0-600 ±[0.003(t-1100)] 1100-1600 ±0.0025︱t︱ 600-1600 5、常温绝缘电阻 GH3030 良好的抗氧化性与加工性能,测温热电偶保护管、高温氧化气氛下使用 GH3039 Ni/Cr/Mo 800℃下有足够的持久强度、良好的冷热疲劳性能和抗渗碳性能,易于焊接、冷冲压成型 1Cr18Ni9Ti ——奥氏体不锈钢的牌号(钢号)。1——平均碳含量为0.1%; Cr18——合金元素“铬”,平均含量为18%;Ni9——合金元素“镍”,平均含量9%;Ti——合金元素“钛”,平均含量<1.5%。

热电偶型号含义

技术参数 B型、S型、K型、E型主要技术参数 测量范围及基本误差限 热电偶和热电阻的区别 热电偶与热电阻均属于温度测量中的接触式测温,尽管其作用相同都是测量物体的温度,但是他们的原理与特点却不尽相同。.

热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测量范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成:温差电势和接触电势。 温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。 热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。 热电偶的电信号需要一种特殊的导线来进行传递,这种导线我们

热电偶原理

热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。半导体热敏电阻的阻值和温度关系为 Rt=AeB/t 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。 热电阻材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻种类(1)精密型热电阻:工业常用热电阻感温元件(电阻体)的结构及特点。从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制。 (2)铠装热电阻:铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2~φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点: ①体积小,内部无空气隙,热惯性上,测量滞后小; ②机械性能好、耐振,抗冲击; ③能弯曲,便于安装; ④使用寿命长。 (3)端面热电阻:端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 (4)隔爆型热电阻:隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。 工业上常用金属热电阻

相关文档
最新文档