概率论试题

合集下载

概率论期末试题及答案

概率论期末试题及答案

概率论期末试题及答案一、选择题(每题2分,共20分)1. 随机事件A的概率为P(A),则其对立事件的概率为:A. P(A) + 1B. 1 - P(A)C. P(A) - 1D. P(A) / 22. 某校有男女生比例为3:2,随机抽取1名学生,该学生是男生的概率为:A. 1/5B. 3/5C. 2/5D. 5/73. 抛一枚均匀硬币两次,至少出现一次正面的概率是:A. 1/2B. 1/4C. 3/4D. 5/84. 设随机变量X服从二项分布B(n, p),若n=15,p=0.4,则P(X=7)是:A. C^7_15 * 0.4^7 * 0.6^8B. C^7_15 * 0.6^7 * 0.4^8C. C^7_15 * 0.4^15D. C^8_15 * 0.4^7 * 0.6^85. 若随机变量Y服从泊松分布,λ=2,则P(Y=1)是:A. e^(-2) * 2B. e^(-2) * 2^2C. e^(-2) * 2^1D. e^(-2) * 2^06. 设随机变量Z服从标准正态分布,则P(Z ≤ 0)是:A. 0.5B. 0.25C. 0.75D. 0.337. 若两个事件A和B相互独立,P(A)=0.6,P(B)=0.7,则P(A∩B)是:A. 0.42B. 0.35C. 0.6D. 0.78. 随机变量X服从均匀分布U(0, 4),则E(X)是:A. 2B. 4C. 0D. 19. 设随机变量X和Y的协方差Cov(X, Y)=-2,则X和Y:A. 正相关B. 负相关C. 独立D. 不相关10. 若随机变量X服从指数分布,λ=0.5,则P(X > 1)是:A. e^(-0.5)B. e^(-1)C. 1 - e^(-0.5)D. 2 - e^(-1)二、填空题(每题3分,共30分)11. 若随机变量X服从参数为θ的概率分布,且P(X=θ)=0.3,P(X=2θ)=0.4,则P(X=3θ)=________。

概率论第一章单元测试题

概率论第一章单元测试题

概率论第一章单元测试题一、判断题(每题1分,共5分)1.事件“A,B至少发生一个”与事件“A,B至多发生一个”是对立事件.()2.设A与B为任意两个互不相容事件,则P(AB)=P(A)P(B).()3.设A与B为任意两事件,则A-B不等于B A.()4.设A与B互为对立事件,且P(A)>0,P(B)>0,则()0P B A=.()5.已知P(A)>0,P(B) >0,若A与B互不相容,则A,B一定不独立.()二、选择题(每题1分,共15分)1.设A,B,C是3个事件,则A发生且B与C都不发生可表示为().A.BCA B.CB A C.)S-A D.BC(CB2.设A,B为两个事件,且A≠φ,B≠φ,则)+A+(表示AB)(BA.必然事件B.不可能事件C.A与B不能同时发生 D.A与B恰有一个发生3.对于事件A,B,下列命题正确的是().A.若A,B,互不相容,则BA,也互不相容B.若A,B,相容,则BA,也相容C.若A,B,互不相容,且概率都大于零,则BA,也相互独立D.若A,B,相互独立,则BA,也相互独立4.设随机事件A与B相互独立且P(B)=0.5,P(A-B)=0.3,则P(B-A)=().A .0.1B .0.2 C.0.3D.0.42”的概率是().5.在区间(0,1)中随机的取两个数,则事件“两数之和大于3A .31B .97C .32D . 92 6. 设A 与B 为任意两个互不相容,且P (A )P (B )>0,则必有( ).A .)(1)(B P A P -= B .)()()(B P A P AB P =C .1)(=B A PD .1)(=AB P7. 设A 与B 为任意两个事件,则使P (A -C )=P (A )-P (C )成立的C 为( ).A .A C =B .B AC = C .))((B A B A C -=D .)()(A B B A C --=8. 将两封信随机地投入四个邮筒中,则未向前两个邮筒中投信的概率( ).A .2242B .2412C C C .24A 2!D .4!2! 9. 设A ,B 为随机事件,P (B )>0,()1P A B =,则必有( ).A .)()(A PB A P = B .B A ⊂C .)()(B P A P =D .)()(A P AB P =10. 设随机事件A 与B 互不相容,P (A )=0.4,P (B )=0.2,则()P A B = ( ).A .0.2B .0.4C .0D .0.511. 设P (A )>0,P (B )>0,则由A 与B 相互独立不能推出( ).A .)()()(B P A P B A P += B .()()P A B P A =C .()()P B A P B =D .)()()(B P A P B A P =12. A ,B 为任意两个事件,则下列叙述正确的是( ).A .)()()(B P A P AB P ≤ B .)()()(B P A P AB P ≥C .2)()()(B P A P AB P +≤D .2)()()(B P A P AB P +≥ 13. 事件A ,B 满足P (A )+P (B )>1,则A 与B 一定( ).A .不相互独立B .相互独立C .互不相容D .不互斥14. 设A ,B ,C 是3个随机事件,且A 与C 相互独立,B 与C 相互独立,则B A 与C相互独立的充要条件是( ).A .A 与B 相互独立 B .A 与B 互不相容C .AB 与C 相互独立D .AB 与C 互不相容15. 某人连续向一目标射击,每次命中目标的概率为43,他连续射击直到命中为止,则射击次数为3的概率是( ).A .343⎪⎭⎫ ⎝⎛B .41432⨯⎪⎭⎫ ⎝⎛C .43412⨯⎪⎭⎫ ⎝⎛D .4341223⨯⎪⎭⎫ ⎝⎛C 三、填空题(每题2分,共30分)1. 设Ω为随机试验的样本空间A ,为随机事件,且{}=05x x Ω≤≤,A={}12x x ≤≤,B={}02x x ≤≤,试求:=B A ,B -A= .2. 设两个相互独立的事件A 和B 都不发生的概率是91,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则P (A ) = .3. 若111(),(),()432P A P B A P A B ===,则()P A B = . 4. 若()0.4,()0.3,()0.5P A P B P A B ===,则()P A B -= .5. 从10个整数0,1,2,…,9中任取4个不同的数字,此4个数字组成4位偶数的概率 .此4个数字组成4位奇数的概率 .6. 将3只球随机地放入4个杯子中去,则杯子中球的最大个数为3的概率 .杯子中球的最大个数为2的概率 .7. 一批产品共100件,次品率为10%,每次从中任取一件,取后不放回且连续3次,则第三次才取到合格品的概率为 .8. 某一3口之家,患某种传染病的概率有以下规律:P{孩子得病}=0.6,P{母亲得病/孩子得病}=0.5,P{父亲得病/母亲及孩子得病}=0.4则母亲及孩子得病而父亲未得病的概率.9.在一次考试中某班学生数学和外语的及格率都是0.7,且这两门课是否及格相互独立,现从该班任选一名学生,该生数学及外语只有一门及格的概率.10.已知10把钥匙中有3把能打开门,现任取两把,则能打开门的概率为.11.掷两颗骰子,则点数之和为偶数或小于5的概率.12.甲盒装有5只红球,4只白球;乙盒装有4红球,5只白球;先从甲盒中任取两球放入乙盒,然后从乙盒任取一球,则取到白球的概率.13.某种商品的商标为“MAXAM”,其中有两个字母脱落,有人捡起随意放回,则放回后仍为“MAXAM”的概率.14.已知男子有5%是色盲患者,女子有0.25%是色盲患者.今从男女人数相等的人群中随机挑选一人,恰好是色盲患者,则此人是男性的概率.15.某宾馆大楼有4部电梯,通过调查,知道在某时刻T,各电梯正在运行的概率均为0.75,则在此时刻至少有1台电梯在运行的概率.在此时刻恰好有一半电梯在运行的概率.四、计算题(40分)1.(2分)将15名新生随机地平均分配到3个班级中去,这15名新生中有3名是优等生,求(1)每个班级各分配到一名优等生的概率(2)3名优等生分配在同一班级的概率2.(8分)一学生接连参加同一课程的两次考试.第一次及格的概率为p,若第一次及p.格则第二次及格的概率也为p;若第一次不及格则第二次及格的概率为2(1) 若至少有一次及格则他能取得某种资格,求他取得该资格的概率.(2) 若已知他第二次及格了,求他第第一次及格的概率.解:设A i=“第i次及格”,i=1,2.3.(5分)甲乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率是多少?4.(7分)雨伞掉了,落在图书馆中的概率为%.0;落50,这种情况下找回的概率为80在教室里的概率为%20,这种30,这种情况下找回的概率为60.0;落在商场的概率为%情况找回的概率为05.0,求:(1)找回雨伞的概率;(2)雨伞被找回,求它掉在图书馆的概率.5.(10分)每箱产品有10件,其中次品从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品为不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.求检验一箱产品能通过验收的概率.6.(5分)在100件产品有5件次品,从中连续取二件,每次取一件,取后不放回,试求:(1) 第一次取得次品后第二次取得正品的概率;(2) 第二次才取得正品的概率.7.(3分)已知电路如图所示,若A,B,C 损坏与否相互独立,且它们损坏的概率分布为0.3,0.2,0.1,求电路断电的概率五、证明题(10分)1. (5分)设A ,B 为两个随机事件,0()1P B <<,()()P A B P A B =,证明:A 与B 相互独立.2.(5分)设事件A ,B ,C 的概率都是21,且)()(C B A P ABC P =,证明:21)()()()(2-++=BC P AC P AB P ABC P .。

《概率论试题库》

《概率论试题库》

概率论试题库考试试卷分布说明:试卷共四个大题:选择题.填空题、判断题和解答题,共22个小 题。

其中:选择题共5个小题(4个基础题,1个能力题),每小题4分,共20分; 填空题共6个(5个基础题,1个能力题),每小题4分,共24分;判断题共6个(5 个基础题,1个能力题),每小题2分,共12分;解答题共5个(3个基础题,1个 能力题,1个提高题),3个基础题每小题8分,能力题和提高题各10,共44分。

满足: 基础题:能力题:提高题=7:2:1。

一、选择题40小题。

(每小题4分,共5小题,共20分)1、从四个乒乓球种子选手中选两个人代表学校岀去比赛,在比赛前采用每两个人都对决的选拔赛,则选拔赛共要举行的场数为(A2、下列不属于抽样调查的特点的是(4、设某种电灯泡的寿命X 服从正态分布其中〃是未知的,现在随机的抽取4只这种灯泡,测得其寿命为1500, 1455, 1368, 1649,是估计总体均值“为(C )A 、 1500B 、 1649C 、 1493D 、 13685、某人从A 地到B 地要经过两个有红、黃、绿灯的交通路口,则他一路是碰绿灯的概率是(C )A 、一B 、一C 、—D 、一 4 2 27 9 6A 、0. 05B 、0. 13C 、0. 14D 、0. 127、小明打开收音机,想听电台报时(1小时报一次时),则他等待的时间小于1刻钟的概率是(A )A 、6B 、30C 、4D 、3 A 、经济性B 、时效性C 、广泛性D 、客观性3、书架上一共有3本英文书,2本法文书,5本中文书, 从中任取一本,则取得的书是外文书的概率(A )A 、0.5B 、0. 1C 、0.2D 、0.6A、0. 25B、0. 6C、0.5D、0.458、随机变量g〜N(20, 25),则随机变量g的标准差是(D )A、20B、25C、45D、 59、甲、乙两人向同一H标射击,甲命中的概率为0.8,乙命中的概率为0.4,则日标被击中的概率为(B )A、0. 32B、0. 88C、0. 8D、0. 110、设事件A与B互不相容,且P(A)HO, P(B)HO,则下面结论正确的是(D )A、瓦与耳互不相容;B、P(B|A)>0 :C、P(AB)=P(A)P(B);D、P(AP)= P(A)11、书架上一共有3本英文书,2本法文书,5本中文书,从中任取一本,则取得的书是外文书的概率(A )A、0. 5B、0. 1C、0. 2D、0. 612、中、乙两人向同一目标射击,中命中的概率为0.6,乙命中的概率为0.5,则目标被两人都击中的概率为(D )A、0. 32B、0. 5C、0. 56D、0. 313、某人从中地到乙地要经过三个有红、绿灯的交通路口,则他一路是碰绿灯的概率是(C )A、丄B、丄C、丄D> -4 2 8 314、从数字1、2、3、4、5中,随机抽取3个数字组成一个不重复的3位数,其各位数字之和为6的概率为(D )A、丄B、丄C、丄—125 5 10 12515、设A、B、C为三个事件,则A、B、C至少发生一个的事件应该表示为(B )A、ABCB、AUBUCC、ABCD、ABC16、。

概率论基础试题及答案

概率论基础试题及答案

概率论基础试题及答案一、单项选择题(每题2分,共10分)1. 随机变量X服从标准正态分布,P(X≤0)的值为:A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 已知随机变量X服从二项分布B(n, p),若n=10,p=0.3,则P(X=3)的值为:A. 0.0573B. 0.05734C. 0.05735D. 0.0574答案:A3. 若随机变量X与Y相互独立,则P(X>Y)的值为:A. P(X)P(Y)B. P(X) - P(X≤Y)C. 1 - P(X≤Y)D. 1 - P(X)P(Y)答案:C4. 随机变量X服从泊松分布,其期望值为λ,若λ=5,则P(X=3)的值为:A. 0.175467B. 0.175468C. 0.175469D. 0.17547答案:A5. 随机变量X服从均匀分布U(a, b),其概率密度函数为:A. f(x) = 1/(b-a), a≤x≤bB. f(x) = 1/(a-b), a≤x≤bC. f(x) = 1/(a+b), a≤x≤bD. f(x) = 1/(a-b), b≤x≤a答案:A二、填空题(每题3分,共15分)1. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = __________,其中μ为均值,σ^2为方差。

答案:1/(σ√(2π)) * e^(-(x-μ)^2/(2σ^2))2. 已知随机变量X服从指数分布,其概率密度函数为f(x) = λe^(-λx),其中x≥0,则其期望值为E(X) = __________。

答案:1/λ3. 若随机变量X与Y相互独立,且P(X) = 0.6,P(Y) = 0.4,则P(X∩Y) = __________。

答案:0.244. 随机变量X服从二项分布B(n, p),若n=5,p=0.2,则P(X≥3) = __________。

答案:0.031255. 随机变量X服从几何分布,其概率质量函数为P(X=k) = (1-p)^(k-1)p,其中k=1,2,3,...,则其方差Var(X) = __________。

概率测试题及答案

概率测试题及答案

概率测试题及答案一、选择题1. 一个骰子掷出6点的概率是:A. 1/3B. 1/6C. 1/2D. 1答案:B2. 抛一枚硬币,正面朝上和反面朝上的概率相等,这个概率是:A. 1/2B. 1/3C. 1/4D. 2/3答案:A3. 如果一个事件的发生不影响另一个事件的发生,这两个事件被称为:A. 互斥事件B. 独立事件C. 必然事件D. 不可能事件答案:B二、填空题1. 概率的基本性质是:概率的值介于________和1之间。

答案:02. 如果事件A和事件B是互斥的,那么P(A∪B) = P(A) + P(B) -P(A∩B),其中P(A∩B) = ________。

答案:0三、简答题1. 什么是条件概率?请给出条件概率的公式。

答案:条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率的公式为P(A|B) = P(A∩B) / P(B),其中P(B)≠ 0。

四、计算题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

答案:抽到红球的概率为P(红球) = 5/(5+3) = 5/8。

2. 有3个独立事件A、B、C,它们各自发生的概率分别为P(A) = 0.3,P(B) = 0.4,P(C) = 0.5。

求事件A和事件B同时发生的概率。

答案:事件A和事件B同时发生的概率为P(A∩B) = P(A) × P(B) = 0.3 × 0.4 = 0.12。

五、论述题1. 论述什么是大数定律,并给出一个实际生活中的例子。

答案:大数定律是概率论中的一个概念,它指出随着试验次数的增加,事件发生的相对频率趋近于其概率。

例如,在抛硬币的实验中,随着抛硬币次数的增加,正面朝上的频率会趋近于1/2,即硬币正面朝上的概率。

概率论期末试题及答案

概率论期末试题及答案

概率论期末试题及答案在概率论的学习过程中,期末试题是评估学生对该学科知识理解和应用的重要方式。

本文将给出一份概率论的期末试题及答案,以供参考。

试题将按照适当的格式整理,确保排版整洁美观,语句通顺,全文表达流畅,同时符合阅读体验的要求。

试题一:概率基础1. 已知事件A发生的概率为0.4,事件B发生的概率为0.6,求事件A和事件B同时发生的概率。

2. 一桶中装有6个红色球和4个蓝色球,从中随机抽取2个球,求这2个球颜色相同的概率。

3. 掷一颗骰子,点数为1至6的概率各为1/6。

连续投掷两次,求两次投掷结果和为7的概率。

试题二:概率分布1. 某商品的销售量服从正态分布N(150, 25),计算销售量在120至180之间的概率。

2. 某批产品的质量服从均匀分布U(60, 80),求产品质量小于75的概率。

3. 甲、乙两个小组分别进行同一项任务,甲组平均完成时间为4小时,标准差为0.5小时;乙组平均完成时间为3.8小时,标准差为0.3小时。

求完成时间小于4.2小时的概率。

试题三:条件概率1. 假设事件A和事件B是相互独立的,已知P(A)=0.3,P(B)=0.4,求P(A|B)和P(B|A)。

2. 某城市的天气预报根据历史数据和气象模型给出,根据预报可以推测出降雨的概率。

已知天气预报准确率为80%,预报为有降雨的概率为30%,求实际发生降雨的概率。

3. 从一批产品中随机抽取一件进行检验,已知该批产品中次品率为5%,已检一件产品为次品,求该件产品来自次品批次的概率。

试题四:随机变量1. 设随机变量X服从指数分布Exp(λ),已知λ=0.1,求P(X≥2)。

2. 设随机变量X服从均匀分布U(20, 40),求X的期望值E(X)和方差Var(X)。

3. 设随机变量X服从正态分布N(60, 16),求P(X>70)和P(50≤X≤80)。

试题五:大数定律和中心极限定理1. 设随机变量X服从参数为p的二项分布B(n,p),当n=200,p=0.4时,根据大数定律,计算X的期望值E(X)和方差Var(X)。

(完整)概率复习题及答案

〈概率论〉试题一、填空题1.设A、B、C是三个随机事件。

试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,.则=3.若事件A和事件B相互独立, ,则4。

将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0。

5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7。

已知随机变量X的密度为,且,则________________8。

设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________ 10。

若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12。

用()的联合分布函数F(x,y)表示13。

用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。

15。

已知,则=16.设,且与相互独立,则17。

设的概率密度为,则=18。

设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19。

设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或~。

特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于。

22.设是来自正态总体的样本,令则当时~。

23。

设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24。

专升本概率论试题及答案

专升本概率论试题及答案一、选择题(每题2分,共20分)1. 事件A和事件B互斥,且P(A)=0.3,P(B)=0.4,那么P(A∪B)等于多少?A. 0.3B. 0.4C. 0.7D. 0.6答案:C2. 随机变量X服从正态分布N(μ, σ^2),若μ=0,σ=1,则P(-1≤X≤1)等于多少?A. 0.34B. 0.68C. 0.95D. 0.99答案:B3. 抛一枚硬币两次,求至少出现一次正面的概率。

A. 0.5B. 0.75C. 0.25D. 0.8答案:B4. 随机变量X的期望E(X)=5,方差Var(X)=4,那么E(X^2)等于多少?A. 25B. 9D. 20答案:C5. 一批产品中,有10%是次品,现在随机抽取5件产品,求至少有1件次品的概率。

A. 0.9B. 0.81C. 0.64D. 0.5答案:B6. 某工厂的机器发生故障的概率为0.01,求在100天内至少发生一次故障的概率。

A. 0.65B. 0.9C. 0.99D. 0.3答案:C7. 一个骰子连续投掷两次,求两次点数之和为7的概率。

A. 1/6B. 1/3C. 5/36D. 2/3答案:C8. 某城市有两家医院,A医院的治愈率为80%,B医院的治愈率为70%,随机选择一家医院治疗,求治愈的概率。

A. 0.75B. 0.76D. 0.85答案:B9. 某工厂生产的产品中有5%是次品,现在从一批产品中随机抽取100件,求至少有5件次品的概率。

A. 0.95B. 0.99C. 0.05D. 0.50答案:A10. 随机变量X服从二项分布B(n, p),其中n=10,p=0.2,求P(X=2)。

A. 0.36B. 0.28C. 0.18D. 0.12答案:B二、填空题(每题2分,共10分)1. 随机变量X服从泊松分布,其参数λ=3,则P(X=2)=________。

答案:0.342. 若随机变量X服从均匀分布U(a, b),则其期望E(X)=________。

概率论期末试题及解析答案

概率论期末试题及解析答案1. 简答题(每题10分)1.1 什么是概率?概率是描述随机事件发生可能性的数值。

它可以用来衡量某一事件在多次重复试验中出现的频率。

1.2 什么是样本空间?样本空间是指一个随机试验中所有可能结果的集合。

1.3 什么是事件?事件是样本空间中包含的一组可能结果的子集。

1.4 什么是互斥事件?互斥事件是指两个事件不能同时发生。

1.5 什么是独立事件?独立事件是指两个事件的发生与不发生互不影响。

2. 计算题(每题20分)2.1 设一枚硬币抛掷3次,计算至少出现两次正面的概率。

解析:样本空间:{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}至少出现两次正面的事件:{HHH, HHT, HTH, THH}概率 = 事件发生的次数 / 样本空间的次数 = 4 / 8 = 1/22.2 设A、B两个事件相互独立,且P(A) = 0.4,P(B) = 0.6,计算P(A∪B)。

解析:由于A、B事件相互独立,所以P(A∩B) = P(A) * P(B) = 0.4 * 0.6 = 0.24P(A∪B) = P(A) + P(B) - P(A∩B) = 0.4 + 0.6 - 0.24 = 0.763. 应用题(每题30分)3.1 甲乙两个备胎分别拥有10个和15个备用轮胎,轮胎坏掉时甲用2个备用轮胎的概率为0.2,乙用3个备用轮胎的概率为0.15。

现在从甲、乙两个备胎中随机挑选一个备用轮胎,请计算此备用轮胎坏掉的概率。

解析:设事件A为甲备胎的备用轮胎坏掉,事件B为乙备胎的备用轮胎坏掉。

P(A) = 0.2 * 10 / (0.2 * 10 + 0.15 * 15) = 0.2 * 10 / (2 + 2.25) ≈ 0.6667 P(B) = 0.15 * 15 / (0.2 * 10 + 0.15 * 15) = 0.15 * 15 / (2 + 2.25) ≈0.3333由于只能选择甲或乙中的一个备用轮胎,所以备用轮胎坏掉的概率为P(A) + P(B) ≈ 13.2 水果篮子中有5个橙子、3个苹果和2个香蕉,现从篮子中随机挑选两个水果,请计算挑选出的两个水果中至少有一个是橙子的概率。

概率论试题与答案

一、填空题:(每题4分,共24分)1.已知事件A 与B 相互独立,()0.4P A =,()0.7P A B +=,则概率()P B A 为 。

2.某次考试中有4个单选选择题,每题有4个答案,某考生完全不懂,只能在4个选项中随机选择1个答案,则该考生至少能答对两题的概率为 , 3.若有 ξ~(0,1)N ,η=21ξ-,则η~N ( , )4.若随机变量X 服从参数为λ的泊松分布,且DX EX -=4,则参数λ=5.设连续型随机变量ξ的概率密度为2(1)01()0x x f x -<<⎧=⎨⎩其他,且2ηξ=,则η的概率密度为 。

6.设总体2~(,)X N μσ的分布,当μ已知,12,,n X X X 为来自总体的样本,则统计量∑=-ni i X 12)(σμ服从 分布。

二、选择题:(每小题4分,共20分)1. 设事件,,A B C 是三个事件,作为恒等式,正确的是( ) A.()ABC AB CB = B.A BC ABC =C.()A B A B -=D.()()()A B C A C BC =2.n 张奖券有m 张有奖的,k 个人购买,每人一张,其中至少有一人中奖的概率是( )。

A.11k m n m knC C C -- B. k n m C C. k n k mn C C --1 D. 1r nm k r nC C =∑3. 设EX μ=,2DX σ=,则由切比雪夫不等式知(4)P X μσ-≤≥( ) A.1416 B. 1516 C. 15 D. 16154. 如果随机向量),(ηξ的联合分布表为:则协方差),cov(ηξ=( )A.-0.2B. –0.1C.0D. 0.1 5. 设总体 ξ~2(,)N μσ ,(12,,n X X X )是 ξ 的简单随机样本,则为使1211ˆ()n i ii C X X θ-+==-∑为2σ的无偏估计,常数C 应为( ) A.1n B. 11n - C. 12(1)n - D. 12n - 三、计算题:待用数据(0.9750.9750.950.95(35) 2.0301,(36) 2.0281,(35) 1.6896,(36) 1.6883t t t t ====,8413.0)1(=Φ,9772.0)2(=Φ975.0)96.1(=Φ,95.0)645.1(=Φ)1.三个人同时射击树上的一只鸟,设他们各自射中的概率分别为0.5,0.6,0.7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 卷 共 6 页 第 页
1
概率论与数理统计试卷
(A) 1

姓名: 班级: 学号: 得分:
一、是非题(共7分,每题1分)
1.设A,B,C为随机事件,则A与CBA是互不相容的. ( )
2.)(xF是正态随机变量的分布函数,则)(1)(xFxF. ( )
3.若随机变量X与Y独立,它们取1与1的概率均为5.0,则YX. ( )

4.等边三角形域上二维均匀分布的边缘分布仍是均匀分布. ( )
5. 样本均值的平方2X不是总体期望平方2的无偏估计. ( )
6.在给定的置信度1下,被估参数的置信区间不一定惟一. ( )
7.在参数的假设检验中,拒绝域的形式是根据备择假设1H而确定的. ( )

二、选择题
(15分,每题3分)

(1)设AB,则下面正确的等式是 。
(a))(1)(APABP; (b))()()(APBPABP;

(c))()|(BPABP; (d))()|(APBAP
(2)离散型随机变量X的概率分布为kAkXP)((,2,1k)的充要条件是 。
(a)1)1(A且0A; (b)1A且10;
(c)11A且1; (d)0A且10.
(3)设10个电子管的寿命iX(10~1i)独立同分布,且AXDi)((10~1i),则10个
电子管的平均寿命Y的方差)(YD .
(a)A; (b)A1.0; (c)A2.0; (d)A10.

(4)设),,,(21nXXX为总体)1,0(~NX的一个样本,X为样本均值,2S为样本方
差,则有 。
(a))1,0(~NX; (b))1,0(~NXn;

(c))1(~/ntSX; (d))1,1(~/)1(2221nFXXnnii.
A 卷 共 6 页 第 页
2

(5)设),,,(21nXXX为总体),(2N(已知)的一个样本,X为样本均值,则在总
体方差2的下列估计量中,为无偏估计量的是 。
(a)niiXXn1221)(1; (b)niiXXn1222)(11;

(c)niiXn1223)(1; (d)niiXn1224)(11.
三、填空题(18分,每题3分)
(1)设随机事件A,B互不相容,且3.0)(AP,6.0)(BP,则)(ABP .
(2)设随机变量X服从(-2,2)上的均匀分布,则随机变量2XY的概率密度函数
为)(yfY
.

(3)设随机变量)0;3,1;2,0(~),(22NYX,则概率)12(YXP= .

(4)设随机变量),(YX的联合分布律为
),(YX
)0,1(
)1,1(

)0,2(

)1,2(

P
4.0 2.0 a b

若8.0)(XYE,则),cov(YX .
(5)设(621,,,XXX)是来自正态分布)1,0(N的样本,
2642
3
1)()(iii
i
XXY

当c= 时, cY服从2分布,)(2E= .
(6)设某种清漆干燥时间),(~2NX(单位:小时),取9n的样本,得样本均值和
方差分别为33.0,62SX,则的置信度为95%的单侧置信区间上限

: .

四、计算与应用题(54分,每题9分)
A 卷 共 6 页 第 页
3

1.
某厂卡车运送防“非典”用品下乡,顶层装10个纸箱,其中5箱民用口罩、2箱医用

口罩、3箱消毒棉花. 到目的地时发现丢失1箱,不知丢失哪一箱. 现从剩下9箱中任意
打开2箱,结果都是民用口罩,求丢失的一箱也是民用口罩的概率.

2.
设随机变量(,)XY的联合密度函数




他其0,20),(xyxA

yxf

求 (1) 常数A ; (2) 条件密度函数)(xyfXY; (3) 讨论X与Y的相关性.

3.
设随机变量)1,0(~UX(均匀分布),)1(~EY(指数分布),且它们相互独立,

试求YXZ2的密度函数)(zfZ.

4.
某彩电公司每月生产20万台背投彩电,次品率为0.0005. 检验时每台次品未被

查出的概率为0.01. 试用中心极限定理求检验后出厂的彩电中次品数超过3台的
概率.

5.
设总体X的概率分布列为:

X
0 1 2 3

P
p2 2 p(1-p) p2 1-2p

其中p (2/10p) 是未知参数. 利用总体X的如下样本值:
1, 3, 0, 2, 3, 3, 1, 3
求 (1) p的矩估计值; (2) p的极大似然估计值 .

6.
某冶金实验室对锰的熔化点作了四次试验,结果分别为
A 卷 共 6 页 第 页
4

12690C 12710C 12630C 12650C
设数据服从正态分布),(2N,以5 % 的水平作如下检验:
(1) 这些结果是否符合于公布的数字12600C?(2) 测定值的标准差是否不超过20C?
须详细写出检验过程.

五、证明题
(6分)

设随机变量X与Y相互独立,且都服从参数为3的泊松(Poisson)分布,证明
XY
仍服从泊松分布,参数为6.

附表:
标准正态分布数值表 2分布数值表 t分布数
值表

6554.0)4.0(
815.7)3(205.0


1824.3)3(025.0t

950.0)645.1(
348.9)3(2025.0

3534.2)3(05.0t

975.0)960.1(
448.9)4(205.0

8595.1)8(05.0t

9772.0)0.2(
143.11)4(2025.0


306.2)8(025.0t

相关文档
最新文档