2M _基本知识介绍_A

合集下载

二次函数与几何综合(讲义和习题)含答案

二次函数与几何综合(讲义和习题)含答案

二次函数与几何综合(讲义)➢ 课前预习1. 如图,直线112y x =+经过点A (1,m ),B (4,n ),点C 的坐标为(2,5),则△ABC 的面积为__________.提示:利用点坐标求面积,需要将点坐标转化为横平竖直的线段长,常考虑作横平竖直的线来对图形进行割补. 具体操作:①过点C 作CD ∥y 轴,交AB 于点D ; ②借助C ,D 坐标求解CD 长;③以CD 为底,则A ,B 两点间的水平距离为高,即1()2ABC ADC DBC B A S S S CD x x =+=⋅⋅-△△△2. 如图,在平面直角坐标系xOy 中,直线334y x =-+与x 轴,y 轴分别交于点A ,B ,点C 的坐标为(0,-2).若点D 在直线AB 上运动,点E 在直线AC 上运动,当以O ,A ,D ,E 为顶点的四边形是平行四边形时,点D 的坐标为__________.y xCB AO提示:(1)分析定点(A ,O ),动点(D ,E ),属于两定两动的平行四边形存在性问题.(2)连接两定点得定线段,考虑:①若定线段作为平行四边形的边,则通过平移确定点的坐标;②若定线段作为平行四边形的对角线,则绕定线段中点旋转,利用中点坐标公式确定点的坐标. (3)利用函数特征和几何特征求解后,结合图形进行验证.➢ 知识点睛1. “函数与几何综合”问题的处理原则:_________________,_____________________. 2. 研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________.②___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3. 二次函数之面积问题的常见模型①割补法——铅垂法求面积:1()2APB B A S PM x x =⋅⋅-△ 1()2APB B A S PM x x =⋅⋅-△②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ , 当P ,Q 在AB 同侧时, 当P ,Q 在AB 异侧时, PQ ∥AB .AB 平分PQ .➢ 精讲精练1. 如图,抛物线y =-x 2+2x +3经过A ,B ,C 三点.点M 是直线BC 上方抛物线上的点(不与B ,C 重合),过点M 作MN ∥y 轴交线段BC 于点N ,连接MB ,MC .(1)若设点M 的横坐标为m ,四边形OBMC 的面积为S ,则S 与m 的函数关系式为________________.(2)四边形OBMC 的最大面积为________,此时点M 的坐标为____________.2.如图,在平面直角坐标系中,抛物线y=-x2+2x+3经过A,B,C三点,点D的坐标为(0,1),直线AD与抛物线交于另一点E.(1)若M是直线AD上方抛物线上的一个动点,则△AME面积的最大值为__________.=6时,点G的坐标为_______________.(2)在直线AD下方的抛物线上有一动点G,当S△AEG3.如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A,B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC,CD,∠ACD=90°.(1)直接写出抛物线的解析式;(2)若点M在抛物线上,且以点M,A,C以及另一点N为顶点的平行四边形ACNM的面积为12,设M的横坐标为m,求m的值.4.如图,已知二次函数y=x2-3x-4的图象与x轴交于点A,B,且经过点C(2,-6),连接AC,二次函数图象的对称轴记为l.(1)点D(m,n)(-1<m<2)是二次函数图象上一动点,当△ACD关于l的对称点为E,求点E的坐标.(2)在(1)的条件下,能否在二次函数图象和直线l上分别找到点P,Q,使得以点D,E,P,Q为顶点的四边形为平行四边形.若能,求出点P的坐标;若不能,请说明理由.5. 如图,抛物线y =ax 2-5ax+4(a <0)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC . (1)求抛物线的解析式;(2)已知点D 在抛物线对称轴上,点E 在抛物线上,且以A ,B ,D ,E 为顶点的四边形是平行四边形,求点E 的坐标;(3)已知点F 是抛物线上的动点,点G 是直线y =-x 上的动点,且以O ,C ,F ,G 为顶点的四边形是平行四边形,求点G 的横坐标.【参考答案】➢课前预习1.9 22.1126 () 55D,,2286 () 55D,➢知识点睛1.利用横平竖直的线段长,函数特征与几何特征互转2.①四点一线;k,b②坐标转线段长➢精讲精练(2)(3,0)或(-2,-5)3.(1)y=x2-2x-3;(2)m=4或m=-1.二次函数与几何综合(习题)➢例题示范例1:如图,抛物线y=ax2+2ax-3a与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且OA=OC,连接AC.(1)求抛物线的解析式.(2)若点P是直线AC下方抛物线上一动点,求△ACP面积的最大值.(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.第一问:研究背景图形【思路分析】读题标注,注意到题中给出的表达式中各项系数都只含有字母a,0),对称轴为直线x=-1;结合题中给出的OA=OC,可得C(0,-3)析式.再结合所求线段长来观察几何图形,发现△AOC 【过程示范】解:(1)由y=ax2+2ax-3a=a(x+3)(x-1)可知A(-3,0),B(1,0),∵OA=OC,∴C(0,-3),将C(0,-3)代入y=ax2+2ax-3a,解得,a=1,∴y=x2+2x-3.(2+2x-3第二问:铅垂法求面积 【思路分析】(1)整合信息,分析特征:由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在直线AC 下方的抛物线上运动,即 -3<x P <0; (2)设计方案:注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达S △ACP . 【过程示范】如图,过点P 作PQ ∥y 轴,交AC 于点Q , 易得l AC :y =-x -3设点P 的横坐标为t ,则P (t ,t 2+2t -3), ∵PQ ∥y 轴, ∴Q (t ,-t -3),∴PQ =y Q -y P =-t -3-(t 2+2t -3)=-t 2-3t (-3<t <0), ∴2139()222ACP C A S PQ x x t t =⋅-=--△(-3<t <0) ∵302-<, ∴抛物线开口向下,且对称轴为直线32t =-,∴当32t =-时,S △ACP 最大,为278.第三问:平行四边形的存在性 【思路分析】 分析不变特征:以A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点A ,B 连接成为定线段AB .分析形成因素:要使这个四边形为平行四边形.首先考虑AB在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则AB既可以作边,也可以作对角线.画图求解:先根据平行四边形的判定来确定EF和AB之间应满足的条件,再通过平移和旋转来尝试画图,确定图形后设计方案求解.①AB作为边时,依据平行四边形的判定,需满足EF∥AB且EF=AB,要找EF,可借助平移.点E在对称轴上,沿直线容易平移,故将线段AB拿出来沿对称轴上下方向平移,确保点E在对称轴上,来找抛物线上的点F.注意:在对称轴的左、右两侧分别平移.找出点之后,设出对称轴上E点坐标,利用平行且相等表达抛物线上F点坐标,代入抛物线解析式求解.②AB作为对角线时,依据平行四边形的判定,需满足AB,EF互相平分,先找到定线段AB的中点,在旋转过程中找到EF恰好被AB中点平分的位置,因为E和AB中点都在抛物线对称轴上,说明EF所在直线即为抛物线对称轴,则与抛物线的交点(抛物线顶点)即为F点坐标.结果验证:画图或推理,根据运动范围考虑是否找全各种情形.【过程示范】(3)①当AB为边时,AB∥EF且AB=EF,如图所示,设E点坐标为(-1,m),当四边形是□ABFE时,由A(-3,0),B(1,0)可知,F1(3,m),代入抛物线解析式,可得,m=12,∴F1(3,12);当四边形是□ABEF时,由A(-3,0),B(1,0)可知,F2(-5,m),代入抛物线解析式,可得,m=12,∴F2(-5,12).②当AB为对角线时,AB与EF互相平分,AB的中点D(-1,0),设E(-1,m),则F(-1,-m),代入抛物线解析式,可得,m=4,∴F3(-1,-4).综上:F1(3,12),F2(-5,12),F3(-1,-4).➢巩固练习1.如图,直线12y x=-与抛物线2164y x=-+交于A,B两点,C是抛物线的顶点.(1)在直线AB上方的抛物线上有一动点P,当△ABP的面积最大时,点P的坐标为__________________.(2)若点M在抛物线上,且以点M,A,B以及另一点N为顶点的平行四边形ABNM的面积为240,则M,N两点的坐标为_______________.2.已知抛物线y=-mx2+4x+2m与x轴交于点A(α,0),B(β,0),且112αβ+=-.抛物线的对称轴为直线l,与y轴的交点为点C,顶点为点D,点C关于l的对称点为点E.(1)抛物线的解析式为_________.(2)连接CD,在直线CD下方的抛物线上有一动点G,当S△CDG=3,点G的坐标为______________.(3)若点P在抛物线上,点Q在x轴上,当以点D,E,P,Q为顶点的四边形是平行四边形时,点Q的坐标为_______.3.已知抛物线y=ax2-4ax+b的对称轴为直线x=2,顶点为P,与x轴交于A,B两点,与y轴交于点C,其中A(1,0),连接BC,PB,得到∠PBC=90°.(1)求抛物线的解析式.(2)抛物线上是否存在异于点P的一点Q,使△BCQ与△BCP的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.(3)若点E是抛物线上一动点,点F是x轴上一动点,是否存在以B,C,E,F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2).抛物线y=ax2-ax-b与y轴交于点D,且经过点C,连接AD,可得AB=AD.(1)求抛物线的解析式.(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,点Q是抛物线对称轴l上一动点,是否存在点P,使以P,Q,A,B为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.【参考答案】1.(1)23 (1)4,;(2)M1(-10,-19),N1(-20,-14);M2(12,-30),N2(2,-25) 2.(1)y=-x2+4x+2;(2)G1(-1,-3),G2(3,5);(3)1(40)Q,2(40)Q,3(0)Q,40)Q3.(1)y=-x2+4x-3;(2)存在,Q1(1,0),237 (22Q --,,337(22Q+-+,;(3)存在,F1(7,0),F2(-1,0).4. (1)211222y x x =--;(2)3x =(3)存在,1313()28P -,,2113()28P --,,3117()28P -,.。

公路养护基本知识考核试题及答案

公路养护基本知识考核试题及答案

公路养护基本知识考核试题一.单项选择题1.用于综合评价公路路基、路面、桥隧构造物和沿线设施技术状况的指标是(\ [单项选择题]*A.SCIB.MQIVC.PQID.BCI2.公路技术状况检测与调查应以()m路段长度为基本检测(或调查)单元。

[单项选择题]*A.100B.500C.1000VD.50003.以下不属于公路技术状况指标体系的是(\ [单项选择题]*A.SCIB.BQIVC.PCID.PQI4.路面结构强度指数计算中,路面结构强度系数是()[单项选择题]*A.PSSIB.SSI44.路面损坏状况指数用()表示。

[单项选择题]*A.MQIB.SCIC.PCIVD.PQI45.路基技术状况指数用()表示。

[单项选择题]*A.BCIB.SCIVC.PCID.TCI46.路面行驶质量指数用()表示。

[单项选择题]*A.RQIVB.SRIC.PSSID.RDI47.沥青路面纵向裂缝长10m ,其破坏面积是()m2。

[单项选择题]*二、多项选择题1.路面技术状况检测应采用自动化检测设备,其检测频率说法正确的选项是(I [多项选择题]*A.高速公路每个检测方向应至少一个主要行车道VB.二级公路的路面状况检测宜选择技术状况相对较差的方向VC.三级公路的路面状况检测宜选择技术状况相对较差的方向VD.四级公路的路面状况检测宜选择技术状况相对较差的方向V2.公路技术状况评定应计算()三项统计指标。

[多项选择题]*A.优等路率V8.优良路率,C.次等路率D.次差路率V9.路面技术状况自动化检测应采用断面类检测设备的是(\ [多项选择题]*A.路面平整度自动化检测V10路面车辙自动化检测VC.路面跳车自动化检测VD.路面磨耗自动化检测V4.关于高速公路、一级公路沥青路面公路技术状况检测与调查频率说法正确的选项是(* [多项选择题]A.路面损坏1年1次,B.路面平整度1年1次VC.路面车撤1年1次VD.路面抗滑1年1次5.关于二、三、四级公路沥青路面公路技术状况检测与调查频率说法正确的选项是(I [多项选择题]*A.路面损坏1年1次VB.路面平整度1年1次VC.路面车撤1年1次D.路面结构强度抽样检测V6.关于高速公路、一级公路水泥混凝土路面公路技术状况检测与调查频率说法正确的选项是(X [多项选择题]A.路面损坏1年1次,B.路面平整度1年1次VC.路面车辙1年1次D.路面抗滑1年1次7.关于二、三、四级公路水泥混凝土路面公路技术状况检测与调查频率说法正确的选项是(\ [多项选择题]*A.路面损坏1年1次V8.路面平整度1年1次V C.路面车辙1年1次D.路面结构强度抽样检测8.公路技术状况指数(MQI)评定是()指数的加权求和。

二项式定理

二项式定理

二项式定理1.二项式定理2.(1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -kn .(2)二项式系数先增后减中间项最大当n 为偶数时,第n 2+1项的二项式系数最大,最大值为C n2n ;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n ,C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)C r n an -r b r 是二项展开式的第r 项.(×) (2)二项展开式中,系数最大的项为中间一项或中间两项.(×) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.(√) (4)在(1-x )9的展开式中系数最大的项是第五、第六两项.(×)(5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.(×) (6)在(x +1)n 的展开式中,每一项的二项式系数就是这项的系数.(√) (7)(a +b )n 与(b +a )n 的展开式中通项公式是一样的.(×)(8)(x -y )n 的展开式中,第m 项的系数为(-1)m C m -1n .(×)(9)(1+2x )5的展开式中含x 的项的系数为5.(×)(10)n x x )12(3 的展开式中不可能有常数项.(×)考点一 二项展开式的通项及应用[例1] (1)(2016·高考全国乙卷)(2x +x )5的展开式中,x 3的系数是________.(用数字填写答案)解析:T r +1=C r 5(2x )5-r ·(x )r =25-r C r 5·,令5-r2=3,得r =4,∴T 5=10x 3,∴x 3的系数为10. 答案:10(2)(2016·高考四川卷)设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4 D .20i x 4解析:∵T r +1=C r 6x r (i)6-r ,∴含x 4的项为T 5=C 46x 4i 2=-15x 4.答案:A(3)(2017·河北唐山一模)322)21(-+xx 展开式中的常数项为( ) A .-8 B .-12 C .-20 D .20解析:∵322)21(-+x x =6)1(xx -,∴T r +1=C r 6x 6-r rx )1(-=C r 6(-1)r x 6-2r ,令6-2r =0,得r =3,∴常数项为C 36(-1)3=-20.答案:C(4)(2015·高考课标全国卷Ⅰ)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 解析:法一:利用二项展开式的通项公式求解.(x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.法二:利用组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.答案:C[方法引航] 求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,含字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可.1.在本例(1)中,求展开式中系数最大的项是第几项. 解:设第r +1项的系数最大,T r +1=25-r C r 5·,第r 项的系数为26-r C r -15第r +2项的系数为24-r C r +15∴⎩⎨⎧25-r C r 5≥26-r C r -1525-r C r 5≥24-r C r +15,1≤r ≤2当r =1时,T 2= 当r =2时,T 3=故系数最大的项为T 2或T 3.2.在本例(2)中,求展开式中的常数项.解:由T r +1=C r 6x6-r ·i r可知,当r =6时. 常数项为T 7=C 66·i 6=-1. 3.在本例(4)中,求展开式中含x 3y 3的系数.解析:(x 2+x +y )5为5个x 2+x +y 之积,其中有三个取y ,一个取x 2,一个取x 即可,所以x 3y 3的系数为C 35C 12C 11=10×2×1=20.考点二 二项展开式的系数和问题[例2] 在(2x -3y )10的展开式中,求: (1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.解:设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数和为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9,x 的奇次项系数和为a 1+a 3+a 5+…+a 9,x 的偶次项系数和为a 0+a 2+a 4+…+a 10.由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 010+C 110+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C 010+C 210+…+C 1010=29, 偶数项的二项式系数和为C 110+C 310+…+C 910=29.(4)令x =y =1,得到a 0+a 1+a 2+…+a 10=1,① 令x =1,y =-1(或x =-1,y =1), 得a 0-a 1+a 2-a 3+…+a 10=510,②①+②得2(a 0+a 2+…+a 10)=1+510,∴奇数项系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510,∴偶数项系数和为1-5102.(5)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102; x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.[方法引航] (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a 、b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.1.5)12)((x x x a x -+的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40 解析:选D.令x =1得(1+a )(2-1)5=1+a =2,所以a =1.因此5)12)(1(x x x x -+展开式中的常数项即为5)12(xx -展开式中1x 的系数与x 的系数的和.5)12(xx -展开式的通项为T k +1=C k 5(2x )5-k ·(-1)k ·x -k =C k 525-k x 5-2k·(-1)k .令5-2k =1,得2k =4,即k =2,因此5)12(xx -展开式中x 的系数为C 2525-2(-1)2=80.令5-2k =-1,得2k =6,即k =3,因此5)12(x x -展开式中1x 的系数为C 3525-3·(-1)3=-40. 所以5)12)(1(x x x x -+展开式中的常数项为80-40=40.2.(2017·广西来宾一中检测)(1-x +x 2)3(1-2x 2)4=a 0+a 1x +a 2x 2+…+a 14x 14,则a 1+a 3+a 5+…+a 13的值为________.解析:设f (x )=(1-x +x 2)3(1-2x 2)4.令x 分别取1,-1,f (1)=a 0+a 1+a 2+…+a 13+a 14=1,f (-1)=a 0-a 1+a 2-…-a 13+a 14=27,∴a 1+a 3+a 5+…+a 13=f (1)-f (-1)2=1-272=-13.答案:-13考点三 二项式定理的综合应用[例3] (1)若S =C 127+C 227+…+C 2727,求S 除以9的余数. 解:S =C 127+C 227+…+C 2727=227-1=89-1 =(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1 =9(C 09×98-C 19×97+…+C 89)-2.∵C 09×98-C 19×97+…+C 89是正整数,∴S 被9除的余数为7.(2)求1.025的近似值.(精确到两位小数)解:1.025=(1+0.02)5=1+C 15×0.02+C 25×0.022+…+C 55×0.025≈1+5×0.02=1.10.[方法引航] (1)利用二项式定理进行近似计算:当n 不很大,|x |比较小时,(1+x )n ≈1+nx . (2)利用二项式定理证明整除问题或求余数问题:在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都有除式的因式,要注意变形的技巧.1.将本例(1)变为S =1+2+22+…+25n -1.求证:S 能被31整除. 证明:∵1+2+22+…+25n -1=25n -12-1=25n-1=32n -1=(31+1)n -1 =C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C nn -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ),显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数,∴原式能被31整除.2.将本例(2)改为:求1.028的近似值.(精确到小数点后三位)解:1.028=(1+0.02)8≈C 08+C 18·0.02+C 28·0.022+C 38·0.023≈1.172.[易错警示]多次应用二项展开式通项公式搭配不全[典例] (x 2+2)52)11(-x的展开式的常数项是( ) A .-3 B .-2 C .2 D .3 [正解] 二项式52)11(-x展开式的通项为: T r +1=C r 5r x-52)1(·(-1)r =C r 5·x 2r -10·(-1)r. 当2r -10=-2,即r =4时,有x 2·C 45x -2·(-1)4=C 45×(-1)4=5;当2r -10=0,即r =5时,有2·C 55x 0·(-1)5=-2. ∴展开式中的常数项为5-2=3,故选D. [答案] D [易误] (x 2+2)与52)11(-x的各因式的积为常数项,不只是2与(-1)的积,还有x 2与x -2的积也为常数.[警示] 求几个二项式积的展开式中某项的系数或特定项时,一般要根据这几个二项式的结构特征进行分类搭配,分类时要抓住一个二项式逐项分类,分析其它二项式应满足的条件,然后再求解结果.[高考真题体验]1.(2015·高考课标全国卷Ⅱ)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.解析:(1+x )4的展开式通项为C r 4x r ,其中r 可取0,1,2,3,4. x 的所有奇数次幂为a C 14x ,a C 34x 3,C 04x ,C 24x 3,C 44x 5,∴系数和为8a +8=32,∴a =3. 答案:32.(2014·高考课标全国卷Ⅰ)(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)解析:(x -y )(x +y )8=x (x +y )8-y (x +y )8,故展开式中x 2y 7的系数为C 78-C 68=8-28=-20.答案:-203.(2014·高考课标全国卷Ⅱ)(x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案)解析:∵(x +a )10展开式的通项为T r +1=C r 10x10-r a r (r =0,1,…,10), ∴(x +a )10的展开式中x 7的系数为C 310a 3=15,得a =12. 答案:124.(2013·高考课标全国卷Ⅰ)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ) A .5 B .6 C .7 D .8解析:选B.由题意可知a =C m 2m ,b =C m +12m +1,又13a =7b ,即13C m 2m =7C m 2m +1,解得m =6.课时规范训练 A 组 基础演练1.(1+2x )5的展开式中,x 2的系数等于( )A .80B .40C .20D .10解析:选B.T k +1=C k 515-k (2x )k =C k 5×2k ×x k ,令k =2,则可得含x 2项的系数为C 25×22=40.2.532)2(x x -展开式中的常数项为( )A .80B .-80C .40D .-40解析:选C.T k +1=C k 5(x 2)5-k kx )2(3-=C k 5(-2)k x 10-5k,令10-5k =0得k =2.∴常数项为T 3=C 25(-2)2=40.3.(x -2y )8的展开式中,x 6y 2项的系数是( )A .56B .-56C .28D .-28解析:选A.二项式的通项为T r +1=C r 8x 8-r (-2y )r ,令8-r =6,即r =2,得x 6y 2项的系数为C 28(-2)2=56.4.已知8)(x a x -展开式中常数项为1 120,其中a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或28解析:选C.由题意知C 48·(-a )4=1 120,解得a =±2,令x =1,得展开式中各项系数的和为(1-a )8=1或38.5.如果nx x )12(2+的展开式中含有常数项,则正整数n 的最小值为( ) A .3 B .5 C .6 D .10解析:选B.n xx )12(2+的展开式的通项为T r +1=C r n ·(2x )n -r rx )1(2=∵n ,r ∈N ,且r ≤n ,∴n =5r ∈N ,即n 的最小值为5.6.在n x x )12(3-的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( ) A .-7 B .7 C .-28 D .28解析:选B.由题意有n =8,T k +1=C k 8k -8)21((-1)kx 8-43k ,k =6时为常数项,常数项为7. 7.已知C 0n +2C 1n +22C 2n +22C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C nn 等于( )A .63B .64C .31D .32解析:选A.逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.故选A.8.若n x x )1(2-的展开式中第三项与第五项的系数之比为314,则展开式中常数项是( ) A .-10 B .10 C .-45 D .45解析:选D.因为展开式的通项公式为T r +1=C r n (x 2)n -r·=C r n (-1)r,所以C 2nC 4n=314,解得n =10,所以T r +1=C r 10·(-1)r ·,令20-5r 2=0,则r =8.所以常数项为T 9=C 810=C 210=45.9.在52)12(x x -的二项展开式中,x 的系数为( )A .10B .-10C .40D .-40解析:选D.因为T k +1=C k 5(2x 2)5-k kx )1(-=C k 525-k x 10-2k (-1)k x -k =C k 525-k(-1)k x 10-3k , 令10-3k =1,得k =3,所以x 的系数为C 3525-3(-1)3=-40. 10.(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n 等于( ) A .6 B .7 C .8 D .9解析:选B.(1+3x )n 的展开式中含x 5的项为C 5n (3x )5=C 5n 35x 5,展开式中含x 6的项为C 6n 36x 6,由两项的系数相等得C 5n ·35=C 6n ·36,解得n =7.B 组 能力突破1.(4x -2-x )6(x ∈R )展开式中的常数项是( )A .-20B .-15C .15D .20解析:选C.设展开式的常数项是第k +1项,则T k +1=C k 6·(4x )6-k ·(-2-x )k =C k 6·(-1)k ·212x -2kx ·2-kx=C k 6·(-1)k ·212x -3kx ,∴12x -3kx =0恒成立.∴k =4,∴T 5=C 46·(-1)4=15. 2.若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-…+(-1)n a n 等于( )A.34(3n -1)B.34(3n -2)C.32(3n -2)D.32(3n -1) 解析:选D.在展开式中,令x =2得3+32+33+…+3n =a 0-a 1+a 2-a 3+…+(-1)n a n , 即a 0-a 1+a 2-a 3+…+(-1)na n =3(1-3n )1-3=32(3n-1).3.设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________. 解析:a 10,a 11分别是含x 10和x 11项的系数,所以a 10=-C 1121,a 11=C 1021,所以a 10+a 11=C 1021-C 1121=0.答案:04.(2016·高考山东卷)若52)1(xax +的展开式中x 5的系数是-80,则实数a =________. 解析:T r +1=rrrx C a 251055--,令10-52r =5,解之得r =2,所以a 3C 25=-80,a =-2.答案:-25.(2016·高考天津卷)82)1(xx -的展开式中x 7的系数为________.(用数字作答)解析:T r +1=C r 8x 16-2r (-1)r x -r =(-1)r ·C r 8x 16-3r,令16-3r =7,得r =3,所以x 7的系数为(-1)3C 38=-56.答案:-566.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n=121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项是T 8=C 715(3x )7和T 9=C 815(3x )8. 答案:T 8=C 715(3x )7和T 9=C 815(3x )8。

晶体学基本知识

晶体学基本知识
3
对称性和点群 symmeTry and poinT
groups
❖ 了解对称性和对称操作,认识晶体的 三十二个点群
❖ To undersTand The symmeTry and 32 poinT groups in crysTals
44
对称性SymmeTry
在我们周围到处都可以碰到对称现象 :
坐标轴(x、y、z)。目前都选择z轴与晶轴c重合 ;x轴在晶轴a和c组成的平面内,并指向+a方向 ;y轴垂直于ac平面,并指向+b方向,如图1-23 所示。
34
图2-23 三斜晶系中的晶轴与坐标系
35
单斜晶系
晶轴。单斜晶系的特点是具有一个二次旋转 轴或二次旋转倒反轴。选二次轴为b轴,并 在与b轴垂直的平面上选择相交的晶棱方向 作为c轴和a轴。晶格常数大小为:abc, a>c,晶轴之间夹角为==90,>90。 单斜晶系的实例如图1-24所示。
15
16
旋转轴符号
17
旋转倒反轴(像转轴)
这是一个复合对称元素。它是一个假象的 直线和此直线上的一个定点,相应的对 称操作为对此轴线转2/n角度后,接着 再对此点进行倒反。若晶体经过这个操 作后能够复原,则称此晶体有n次旋转倒 反轴。RoTaTion-inversion
与旋转轴的情况一样,晶体也只能有1、2 、3、4、6次旋转倒反轴,而不能有5次 或6次以上的旋转倒反轴。旋转倒反轴的 国际符号为1 、2 、3、4 、6 。
坐标轴(x、y、z)。因为正交晶系的晶轴互相垂 直,分别选晶轴a、b、c为坐标轴x、y、z。正 交晶系的实例如图1-26所示。
39
图2-26 酒石酸钾钠(KNT)在非铁电相时属于 222点群,其中a、b、c轴都是二次旋转轴

《杠杆》练习题[1]123456

《杠杆》练习题[1]123456

《杠杆》练习题一、选择题1、O为一根轻质杠杆的支点,OA=2m,OB=2.5m,A点处挂着重100N的物体。

若在B端施加一个竖直方向的力,使杠杆在水平位置上保持静止,则这个力的大小和方向是:A.20N,竖直向上; B.20N,竖直向下;C.80N,竖直向上; D.80N,竖直向下.2、使用杠杆时,下列哪个说法是正确的:A.阻力越大,动力一定越大; B.阻力臂越短,动力臂一定越长;C.动力臂越长,动力一定越小; D.动力臂和阻力臂一定是相互垂直的.3、对于费力杠杆,动力臂与阻力臂的关系是:A动力臂大于阻力臂; B动力臂小于阻力臂;C动力臂等于阻力臂; D要看具体情况判定.4、将重为5N和15N的甲、乙两物体分别挂在杠杆的左、右两端,若杠杆的重力忽略不计,当杠杆平衡时,左、右两力臂长之比为:A.3:1; B.2:1; C.1:3; D.4:1.5、下列关于杠杆的几种说法中不正确的是:A、杠杆可以是直的,也可以是弯的;B、杠杆的支点一定在杠杆上;C、支点可以在杠杆上的任何位置;D、动力臂与阻力臂之和一定等于杠杆长度。

6、下列说法中错误的是:A.使用费力杠杆可以省距离;B.使用省力杠杆一定费距离;C.使用杠杆一定省力;D.既省力,又省距离的杠杆是没有的.7、两个力作用在杠杆两端,使杠杆平衡.则:A这两个力的大小必须相等; B这两个力的力臂必须相等;C力臂较长的那个力必须大; D力臂较长的那个力必须较小.8、在生活和生产中经常使用简单机械,其目的在于:A、省力;B、省距离;C、改变力的方向;D、工作的方便.9、处于平衡状态的杠杆:A.一定是静止不动; B.一定是匀速转动;C.一定是静止在水平位置; D.以上情况都有可能.10、要使如图的杠杆水平平衡,可采取的做法是:A.支点两端各减少一个钩码; B.支点两端各增加一个钩码;C.支点左端增加一个钩码 ; D.支点左端减少一个钩码.11、如图, 杠杆挂上砝码后刚好平衡, 每个砝码的质量相同, 在下列情况中,杠杆还能保持平衡的是:---( )A、左右砝码各向支点移一格;B、左右各减少一个砝码;C、左右各减少一半砝码;D、左右各增加两个砝码。

测量学重点知识点总结

测量学重点知识点总结

测量学重点知识点总结第一章绪论一,测量学的定义:测量学是研究地球表面各个部分以及地球的形状和大小,并进行测绘的一门应用科学。

二,测量学的分类:1、按研究对象可以分为:普通测量学:小区域;地球:大地测量学 2、按测量的技术手段来分:航空摄影测量:应用航空摄影像片来测绘地形图。

卫星遥感测量:应用卫星技术到测量中 3、按测量的应用有:工程测量学:为工程建设服务的测量科学。

各种测量学都是以普通测量学为基础的。

三,测量学的任务:1、使用测量仪器和工具进行实地测量,将小区域地面的形状和大小按比例测绘成图,以供生产和建设使用(提供技术资料)。

2、将图上规划和设计好的工程或建筑物的位置,准确地测设到地面上,作为施工的依据。

1/ 183、测定整个地球形状和大小,作为测量计算和研究地壳升降、大陆变迁、海岸线移动等问题的依据。

总的概括:把地形图测绘出来,竣工图测绘出来。

四,在园林中的主要内容:主要介绍小区域内地面形状和大小的测定方法;进行这种测量工作时所用仪器的构造和使用;测量成果的整理和图的绘制方法(底图和竣工图)等。

五,测量的基本工作:包括距离测量、角度测量、高程测量及制图。

为了提高测量工作的精度,必须遵守三个原则:a 在测量布局上,由整体到局部; b在精度上,由高级到低级 c 在程序上,先测控制点,后测碎部点。

第二章距离测量与直线定向一,直接量距(直线定线):当丈量的 A、 B 两点间距离较长或地面地势起伏时,为了使尺段沿直线方向进行丈量,就需要在 A、 B 两点间的直线上再标定一些点位,这一工作就称为直线定线。

直线定线的方法一般采用目测定线。

有三种情形:(一) A、 B 为地面上互相通视的两点(二)过山岗直线定线(三)过山各直线定线二,间接量距:光学测距(视距测量)和光电测距补充:距离丈量分为直接量距与间接量距:直接用各种尺来量距是直接量距。

间接量距包括视距测量与光电测距三,距离丈量的一般方法:(一)平坦地面的距离丈量整尺法:D=nl+q 其中:n:为整尺法段数,即手中的测钎数; l:为尺段长度; q:为余长(二)倾斜地面的距离丈量丈量距离的地面是倾斜的,倾斜面的坡度比较均匀时,用斜量法。

北师大五年级下册第五、六单元单元测试

北师大五年级下册第五、六单元单元测试卷考试时间:100分钟;命题人:学校:___________姓名:___________班级:___________考号:___________题号一二三四五总分得分一.我会选(每小题2分,共30分)1.下面有()处是以小红家作为观察点的。

①小红家在小明家北偏东30度方向距离2021处;②李老师家在小红家南偏西45度距离2021米处;③小红家在壮壮家的西面;④图书馆在小红家正北方向4000米处。

A.1 B.2 C.3 D.42.某班四人在计算900÷时,有四种不同的方法,其中不正确的是()A.900÷B.900÷3×4C.900×D.(900×4)÷(×4)3.如图,从家到学校所走的路线是()A.先向正东方向走300米,再向北偏东35°的方向走2021B.先向正东方向走300米,再向东偏北35°的方向走2021C.先向正东方向走600米,再向北偏东35°的方向走400米D.先向正东方向走600米,再向东偏北35°的方向走400米4.如图,邮局在学校的南偏东30°方向2m处。

学校在邮局的()方向2m处。

A.北偏西30°B.西偏北30°C.南偏东30°D.东偏南30°5.要计算÷3,下面算式中不正确的是()A.×3 B.×8÷(3×8)C.×D.6.小红从家到学校,先向,到达超市,接着,又向西偏南45°方向步行了2021,到达学校。

正确表示小红行走路线的是()A.B.C.D.7.以小明家为观测点,图书馆在小明家北偏西30°方向上,距离是600m。

下列图中能表示图书馆与小明家位置关系的是()A.B.C.D.8.如图,小东从学校出发,步行去图书馆,正确的行走路线是()A.向东偏北55°方向行走800米B.向西偏南40°方向行走400米C.向南偏西35°方向行走800米D.向南偏东40°方向行走400米9.如图,下列说法错误的是()A.笑笑家住在红红家的南面B.东东家在笑笑家的西边C.红红家离超市最近D.邮局在笑笑家的东北方向E.笑笑家在医院的东南方向10.如图,灯塔2在轮船()处。

网络维护基本知识测试题答案

网络维护基本知识测试题答案姓名:___县区:___分数:___一、选择题(30分)1.以下动环监控设备其中-------是属于干接点设备(D)A.DV800 B、DC2 C、SED6020 D、DV20002.驻波比最低为(C)此时信号无反射,是理论值。

A.2 B1.5 C.1 D.03.site master可以进行DTF测试。

DTF测试的意义在于( B)A.查找故障定位 B.定位故障距离 C.测试驻波比 D. 测试信号功率4.交流接触器的工作特点(A)。

A.高压吸合、低压维持、B.高压吸合、高压维持C.低压吸合、高压维持、D.低压吸合、低压维持5.四代站传输板提供(D)个75欧姆的2M接口A 1 B2 C3 D46.在三相五线制供电系统中,保护地线的颜色应当是(C )A.黄色B.绿色C.黄绿色D.黑色7. GSM系统使用的多址方式为____D__。

A.FDMAB.TDMAC.CDMAD.FDMA+TDMA8、现在FLEXI的最新基站软件包使用的是哪个版本:CA:1.11 B:1.12 C:2.10 D:1.179、能判断交流接触器已坏的方法有_A、B、C、D。

(多选)A. 在断电时,用手按不动接触器的活动部件,则接触器坏;B. 接触器发出烧焦的糊味,则接触器坏;C. 测线包电阻,发现电阻很大(远大于200欧姆);D. 加电后,在线包上测到有吸合电压(100V以上),但仍不吸合,则接触器坏;E. 电源系统上电后,接触器仍不吸合,则接触器坏。

10、分流器的作用是_B_。

A. 分配电流B. 检测电流C. 检测电压D. 分解电流11、更换PS48300/25系统的交流控制板时,须将_A_断掉。

A、电源系统的交流输入空开B、监控单元C、模块D、负载12、PS48300/25系统交流停电后再来电时,交流接触器来回跳闸,其原因是D_。

A、接触器坏B、交流采样板坏C、交流控制板坏D、电网带载差二、填空题(35分)1.在安装简易监控时,电池久压测点对应在37头的()和()针脚。

二次函数练习题及答案(解析版)

二次函数练习题及答案(解析版)一、选择题:1 下列关系式中,属于二次函数的是(x为自变量)( )2 函数y=x2-2x+3的图象的顶点坐标是( )A (1,-4) B(-1,2) C (1,2) D(0,3)23 抛物线y=2(x-3)的顶点在( )A 第一象限B 第二象限C x轴上D y轴上4 抛物线的对称轴是( )A x=-2 Bx=2 C x=-4 D x=45 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )A ab>0,c>0B ab>0,c<0C ab<0,c>0D ab<0,c<06 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( )A 一B 二C 三D 四7 如图所示,已知二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,图象交 x 轴于点A(m,0) 和点B ,且m>4,那么AB 的长是( )A 4+mB mC 2m-8D 8-2m8 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )9 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x1,y 1) ,P 2(x2,y 2) 是抛物线上的点,P3(x3,y 3) 是直线上的点,且-1A y110 把抛物线物线的函数关系式是( ) AC 的图象向左平移2个单位,再向上平移3个单位,所得的抛B D二、填空题:11 二次函数y=x2-2x+1的对称轴方程是______________12 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________13 若抛物线y=x2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________14 抛物线y=x2+bx+c,经过A(-1,0) ,B(3,0) 两点,则这条抛物线的解析式为_____________15 已知二次函数y=ax2+bx+c的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________16 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s2) 若v 0=10m/s,则该物体在运动过程中最高点距地面_________m17 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3) 的抛物线的解析式为______________18 已知抛物线y=x2+x+b2经过点,则y 1的值是_________三、解答题:19 若二次函数的图象的对称轴方程是,并且图象过A(0,-4) 和B(4,0) ,(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;20 在直角坐标平面内,点 O 为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交 x 轴于点A(x1,0) 、B(x2,0) ,且(x1+1)(x2+1)=-8 (1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积21 已知:如图,二次函数y=ax2+bx+c的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0) ,点C(0,5) ,另抛物线经过点(1,8) ,M 为它的顶点(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB22 某商店销售一种商品,每件的进价为250元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是1350元时,销售量为500件,而单价每降低1元,就可以多售出200件请你分析,销售单价多少时,可以获利最大二次函数练习题参考答案与解析一、选择题1 考点:二次函数概念选A2 考点:求二次函数的顶点坐标解析:法一,直接用二次函数顶点坐标公式求法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k) ,y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2) ,答案选C3 考点:二次函数的图象特点,顶点坐标解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0) ,所以顶点在x 轴上,答案选C4 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为解析:抛物线,直接利用公式,其对称轴所在直线为答案选B5 考点:二次函数的`图象特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,答案选C6 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,在第四象限,答案选D7 考点:二次函数的图象特征解析:因为二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,所以抛物线对称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m,0) ,且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C8 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0) 点答案选C9 考点:一次函数、二次函数概念图象及性质解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y 随x 的增大而减小,所以y 210 考点:二次函数图象的变化抛物线平移2个单位得到,再向上平移3个单位得到的图象向左答案选C二、填空题11 考点:二次函数性质解析:二次函数y=x2-2x+1,所以对称轴所在直线方程答案x=112 考点:利用配方法变形二次函数解析式解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2答案y=(x-1)2+213 考点:二次函数与一元二次方程关系解析:二次函数y=x2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x2-x 1|=4答案为414 考点:求二次函数解析式解析:因为抛物线经过A(-1,0) ,B(3,0) 两点,解得b=-2,c=-3,答案为y=x2-2x-315 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-116 考点:二次函数的性质,求最大值解析:直接代入公式,答案:717 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:如:y=x2-4x+318 考点:二次函数的概念性质,求值三、解答题19 考点:二次函数的概念、性质、图象,求解析式解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20 考点:二次函数的概念、性质、图象,求解析式解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8 ∴x 1x 2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5) ,P(2,-9)21 解: (1)依题意:(2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0)由,得M(2,9)作ME ⊥y 轴于点E ,则可得S △MCB =1522 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(135-x)元了单个的商品的利润是(135-x-25)这时商品的销售量是(500+200x)总利润可设为y 元利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润解:设销售单价为降价x 元顶点坐标为(425,91125)即当每件商品降价425元,即售价为135-425=925时,可取得最大利润91125元数学速算的技巧1、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124因为44+56=100是个整百的数,所以先把它们的和算出来。

高二数学选修1-2全册课件2、3章末

第三章
数系的扩充与复数的引入
章末归纳总结
人 教 A 版 数 学
第三章
数系的扩充与复数的引入
人 教 A 版 数 学
第三章
数系的扩充与复数的引入
本章在小学、初中和高中所学知识的基础上,介绍复 数的概念、复数的代数形式的运算和数系的扩充等内容.
人 教 A 版 数 学
第三章
数系的扩充与复数的引入
本章共分两大节.第一大节是“数系的扩充与复数的
,所以 m=0
所以 m=0 时,z 为纯虚数
第三章
数系的扩充与复数的引入
m(m-1)=2 (3)由题意可得 2 m +2m-3=5 m=2或m=-1 解得 m=-4或m=2
,∴m=2
人 教 A 版 数 学
所以当 m=2 时,复数 z 为 2+5i.
第三章
数系的扩充与复数的引入
人 教 A 版 数 学
第三章
数系的扩充与复数的引入
人 教 A 版 数 学
概念”.第二大节是“复数的运算”.在第一大节中,首 先简要地展示了数系的扩充过程,回顾了数的发展,并指 出当数集扩充到实数集时,由于负数不能开平方,因而大 量代数方程无法求解,于是就产生了要开拓新数集的要求,
人 教 A 版 数 学
从而自然地引入虚数i,复数由此而产生,接着,介绍了复
数的有关概念和复数的几何表示.主要涉及的概念有:复 数、虚数、纯虚数、共轭复数、实部、虚部、复数相等、 复数的模等.
人 教 A 版 数 学
(2i) =-4.本题主要考查复数的基本知识, 利用复数代数形式 的运算法则解决此类问题.
第三章
数系的扩充与复数的引入
[例3]
在复平面内,点P,Q对应的复数分别为z1,z2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档