16周测 椭圆的综合练习题

合集下载

椭圆及其性质讲义1(题)

椭圆及其性质讲义1(题)

x2 y 2 1 所截得的线段的中点,求直线 l 的方程. 36 9
例 9 已知椭圆 4 x2 y 2 1 及直线 y x m .
(1)当 m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为
2 10 ,求直线的方程. 5
例 10 已知椭圆
x2 y 2 1, 2
( A、 )
1 1 1 倍 B、 倍 C、 倍 D、7 倍 7 5 4 2 2 x y 1 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 10、如果椭圆 36 9 A、 x 2 y 0 B、 x 2 y 4 0 C、 2 x 3 y 12 0 D、 x 2 y 8 0
B. ex0 a C. a ex0 D. ex0 a
例 4 已知 F1 、 F2 是椭圆的两个焦点,过 F1 且与椭圆长轴垂直的直线交椭圆于 A、B 两点,若 ABF2 是正三角形,
则这个椭圆的离心率是() A.
3 3
B.
2 3
C.
2 2
D.
3 2

例 5 若椭圆经过原点,且焦点为 F1(1,0) ,F2(3,0) ,则其离心率为 ( 3 2 1 1 A. B. C. D. 4 3 2 4
7 时,求椭圆的离心率 e 的取值 2
1 x2 y 2 1 的离心率为 ,则 m =( 2 2 m 3 2
C.
).
B.
8 3
D.
2 3

0 2.设 F 1 、 F2 是椭圆的两个焦点,若椭圆上存在点 P,使 F 1PF 2 120 ,则椭圆的离心率 e 的取值范围是(
A. [
3 ,1) 2
2
[补例练习] 1、已知椭圆的对称轴为坐标轴,离心率 e

2024数学高考前冲刺题《圆锥曲线(椭圆、双曲线、抛物线)》含答案

2024数学高考前冲刺题《圆锥曲线(椭圆、双曲线、抛物线)》含答案

黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l与C 交于D ,E 两点,且12AF F 的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛ ⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.9.(2024·江苏南通·二模)已知双曲线E的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.12.(2024·河北·二模)已知椭圆()2222:10x y E a b a b +=>>的离心率e =(1)若椭圆E过点(,求椭圆E 的标准方程.(2)若直线1l ,2l 均过点()()*,00,n n P p p a n <<∈N 且互相垂直,直线1l 交椭圆E 于,A B 两点,直线2l 交椭圆E于,C D 两点,,M N 分别为弦AB 和CD 的中点,直线MN 与x 轴交于点(),0n Q t ,设13n np =.(ⅰ)求n t ;(ⅱ)记n a PQ =,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .13.(2024·辽宁沈阳·二模)P 为大圆上一动点,大圆半径OP 与小圆相交于点,B PP x '⊥轴于,P BB PP ⊥'''于,B B ''点的轨迹为Ω.(1)求B '点轨迹Ω的方程;(2)点()2,1A ,若点M N 、在Ω上,且直线AM AN 、的斜率乘积为12,线段MN 的中点G ,当直线MN 与y 轴的截距为负数时,求AOG ∠的余弦值.14.(2024·广东佛山·二模)两条动直线1y k x =和2y k x =分别与抛物线()2:20C y px p =>相交于不同于原点的A ,B 两点,当OAB 的垂心恰是C 的焦点时,AB =(1)求p ;(2)若124k k =-,弦AB 中点为P ,点()2,0M -关于直线AB 的对称点N 在抛物线C 上,求PMN 的面积.15.(2024·广东深圳·二模)设抛物线C :22x py =(0p >),直线l :2y kx =+交C 于A ,B 两点.过原点O 作l 的垂线,交直线=2y -于点M .对任意R k ∈,直线AM ,AB ,BM 的斜率成等差数列.(1)求C 的方程;(2)若直线//l l ',且l '与C 相切于点N ,证明:AMN 的面积不小于16.(2024·湖南·一模)已知双曲线2222:1(1)x y C b a a b-=>>的渐近线方程为y =,C 的半焦距为c ,且44244a b c ++=.(1)求C 的标准方程.(2)若P 为C 上的一点,且P 为圆224x y +=外一点,过P 作圆224x y +=的两条切线12,l l (斜率都存在),1l 与C 交于另一点2,M l 与C 交于另一点N ,证明:(ⅰ)12,l l 的斜率之积为定值;(ⅱ)存在定点A ,使得,M N 关于点A 对称.17.(2024·湖南岳阳·三模)已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=;(2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值.18.(2024·湖北·二模)已知双曲线P 的方程为()()221,,0,,04x y B a C a -=-,其中()()00002,,,0a D x y x a y >≥>是双曲线上一点,直线DB 与双曲线P 的另一个交点为E ,直线DC 与双曲线P的另一个交点为F ,双曲线P 在点,E F 处的两条切线记为121,,l l l 与2l 交于点P ,线段DP 的中点为G ,设直线,DB DC 的斜率分别为12,k k .(1)证明:12114k k <+≤(2)求GBGC的值.19.(2024·湖北·模拟预测)已知椭圆2212:1x C y a +=和()2222:10x C y a b b +=>>的离心率相同,设1C 的右顶点为1A ,2C 的左顶点为2A ,()0,1B ,(1)证明:12BA BA ⊥;(2)设直线1BA 与2C 的另一个交点为P ,直线2BA 与1C 的另一个交点为Q ,连PQ ,求PQ 的最大值.参考公式:()()3322m n m n m mn n +=+-+20.(2024·山东·二模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,设C 的右焦点为F ,左顶点为A ,过F 的直线与C 于,D E 两点,当直线DE 垂直于x 轴时,ADE V 的面积为92.(1)求椭圆C 的标准方程;(2)连接AD 和AE 分别交圆22(1)1x y ++=于,M N 两点.(ⅰ)当直线DE 斜率存在时,设直线DE 的斜率为1k ,直线MN 的斜率为2k ,求12k k ;(ⅱ)设ADE V 的面积为1,S AMN △的面积为2S ,求12S S 的最大值.21.(2024·山东潍坊·二模)已知双曲线C :()222210,0x y a b a b -=>>的实轴长为2F 到一条渐近线的距离为1.(1)求C 的方程;(2)过C上一点(1P 作C 的切线1l ,1l 与C 的两条渐近线分别交于R ,S 两点,2P 为点1P 关于坐标原点的对称点,过2P 作C 的切线2l ,2l 与C 的两条渐近线分别交于M ,N 两点,求四边形RSMN 的面积.(3)过C 上一点Q 向C 的两条渐近线作垂线,垂足分别为1H ,2H ,是否存在点Q ,满足122QH QH +=,若存在,求出点Q 坐标;若不存在,请说明理由.22.(23-24高三下·湖北武汉·阶段练习)已知抛物线2:=E y x ,过点()1,2T 的直线与抛物线E 交于,A B 两点,设抛物线E 在点,A B 处的切线分别为1l 和2l ,已知1l 与x 轴交于点2,M l 与x 轴交于点N ,设1l 与2l 的交点为P .(1)证明:点P 在定直线上;(2)若PMN ,求点P 的坐标;(3)若,,,P M N T 四点共圆,求点P 的坐标.23.(2024·福建漳州·一模)已知过点()11,0F -的直线l 与圆2F :()22116x y -+=相交于G ,H 两点,GH 的中点为E ,过1GF 的中点F 且平行于2EF 的直线交2G F 于点P ,记点P 的轨迹为C .(1)求轨迹C 的方程.(2)若,A B 为轨迹C 上的两个动点且均不在y 轴上,点M 满足OM OA OB λμ=+(λ,μ∈R ),其中O 为坐标原点,从下面①②③中选取两个作为条件,证明另外一个成立.①点M 在轨迹C 上;②直线OA 与OB 的斜率之积为34-;③221λμ+=.注:若选择不同的组合分别解答,则按第一个解答计分.24.(2024·福建福州·模拟预测)点P 是椭圆E :22221x y a b +=(0a b >>)上(左、右端点除外)的一个动点,()1,0F c -,()2,0F c 分别是E 的左、右焦点.(1)设点P 到直线l :2a x c =的距离为d ,证明2PF d 为定值,并求出这个定值;(2)12PF F △的重心与内心(内切圆的圆心)分别为G ,I ,已知直线IG 垂直于x 轴.(ⅰ)求椭圆E 的离心率;(ⅱ)若椭圆E 的长轴长为6,求12PF F △被直线IG 分成两个部分的图形面积之比的取值范围.25.(2024·福建三明·三模)已知平面直角坐标系xOy 中,有真命题:函数(0,0)ny mx m n x =+≥>的图象是双曲线,其渐近线分别为直线y mx =和y 轴.例如双曲线4y x=的渐近线分别为x 轴和y 轴,可将其图象绕原点O 顺时针旋转π4得到双曲线228x y -=的图象.(1)求双曲线1y x=的离心率;(2)已知曲线22:2E x y -=,过E 上一点P 作切线分别交两条渐近线于,A B 两点,试探究AOB 面积是否为定值,若是,则求出该定值;若不是,则说明理由;(3)已知函数y x =Γ,直线:30l x -=,过F 的直线与Γ在第一象限交于,M N 两点,过,M N 作l 的垂线,垂足分别为,C D ,直线,MD NC 交于点H ,求MNH △面积的最小值.26.(2024·浙江绍兴·二模)已知抛物线C :()220y px p =>的焦点到准线的距离为2,过点()2,2A 作直线交C 于M ,N 两点,点()1,1B -,记直线BM ,BN 的斜率分别为1k ,2k .(1)求C 的方程;(2)求()121232k k k k -+的值;(3)设直线BM 交C 于另一点Q ,求点B 到直线QN 距离的最大值.27.(2024·浙江绍兴·模拟预测)已知抛物线C :22y px =的焦点F ,直线l 过F 且交C 于两点M N 、,已知当3MF NF =时,MN (1)求C 的标准方程.(2)令,02p F ⎛⎫'- ⎪⎝⎭,P 为C 上的一点,直线F P ',FP 分别交C 于另两点A ,B .证明:·1AF PF PF BF '='.(3)过,,A B P 分别作C 的切线123,,l l l , 3l 与1l 相交于D ,同时与2l 相交于E ,求四边形ABED 面积取值范围.28.(2024·河北保定·二模)平面几何中有一定理如下:三角形任意一个顶点到其垂心(三角形三条高所在直线的交点)的距离等于外心(外接圆圆心)到该顶点对边距离的2倍.已知ABC 的垂心为D ,外心为E ,D 和E 关于原点O 对称,()13,0A .(1)若()3,0E ,点B 在第二象限,直线BC x ⊥轴,求点B 的坐标;(2)若A ,D ,E 三点共线,椭圆T :()222210x y a b a b+=>>与ABC 内切,证明:D ,E 为椭圆T 的两个焦点.29.(2024·浙江杭州·模拟预测)设双曲线22:12x C y -=,直线:l y x m =+与C 交于,A B 两点.(1)求m 的取值范围;(2)已知C 上存在异于,A B 的,P Q 两点,使得PA PB QA QB t ⋅=⋅=.(i )当4t =时,求,P Q 到点()2,m m --的距离(用含m 的代数式表示);(ii )当2t =时,记原点到直线PQ 的距离为d ,若直线PQ 经过点(),m m -,求d 的取值范围.30.(2024·湖北·一模)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为12,A ,B 分别为椭圆的左顶点和上顶点,1F 为左焦点,且1ABF(1)求椭圆M 的标准方程:(2)设椭圆M 的右顶点为C 、P 是椭圆M 上不与顶点重合的动点.(i )若点31,2P ⎛⎫⎪⎝⎭,点D 在椭圆M 上且位于x 轴下方,直线PD 交x 轴于点F ,设APF 和CDF 的面积分别为1S ,2S 若1232S S -=,求点D 的坐标:(ii )若直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点N ,求证:2QN QC k k -为定值,并求出此定值(其中QN k 、QC k 分别为直线QN 和直线QC 的斜率).黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.【答案】(1)2214x y +=;【分析】(1)根据所给条件求出,a b ,即可得出椭圆标准方程;(2)联立直线与椭圆方程,根据根与系数的关系及OA OB ⊥,列出方程求k 即可.【详解】(1)设椭圆的标准方程为22221(0)x y a b a b+=>>.由题意可知22224c a a b c ⎧=⎪=⎨⎪=+⎩,解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆的标准方程为2214x y +=.(2)设()()1122,,,A x y B x y ,如图,联立方程2214y kx x y ⎧=⎪⎨+=⎪⎩,消去y ,得()221440k x +++=,则12122414x x x x k +==+,从而(1212y y kx kx =+()212122k x x x x =+++222414kk-=+,因为,0OA OB OA OB ⊥⋅=,即12120x x y y +=,所以22222424640141414k k k k k --+==+++,解得k =或,经验证知Δ0>,所以k.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,且12AF F的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.【答案】(1)2214x y +=【分析】(1)由椭圆离心率和焦点三角形的周长,列方程组求出,a b ,得椭圆C 的方程;(2)设直线1l ,2l 的方程,与椭圆联立,利用韦达定理和32AB DE =求出DE 和2l 的方程,再求出O 到直线2l 的距离,可求ODE 的面积.【详解】(1)由题意知,222224a c ca b a c ⎧+=+⎪⎪=⎨⎪=-⎪⎩,解得2,1,a b c ===所以椭圆C 的方程为2214x y +=;(2)若直线1l 的斜率不存在,则直线2l 的斜率为0,不满足32AB DE =,直线1l 的的斜率为0,则12,,A F F 三点共线,不合题意,所以直线1l 的斜率存在且不为0,设直线1l的方程为x my =由2214x my x y ⎧=⎪⎨+=⎪⎩,消去x得2211044m y y ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y,则12y y +=1221414y y m =-+,()2241.4m AB m +∴===+同理可得()222214141.1144m m DE m m ⎛⎫+ ⎪+⎝⎭==++,由32AB DE =,得()()2222414134214m m m m++=⋅++,解得22m =,则43DE =,∴直线2l的方程为y x =,∴坐标原点O 到直线2l的距离为d ==1423ODE S =⨯= 即ODE【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.【答案】(1)2214x y +=(2)存在,3个【分析】(1)设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,根据条件得到41314m m n =⎧⎪⎨+=⎪⎩,即可求出结果;(2)设直线DA 为1y kx =+,直线DB 为11y x k=-+,当1k =时,由椭圆的对称性知满足题意;当21k ≠时,联立直线与椭圆方程,求出,A B 的坐标,进而求出AB 中垂线方程,根据条件中垂线直经过点(0,1)D ,从而将问题转化成方程42710k k -+=解的个数,即可解决问题.【详解】(1)由题设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,因为椭圆过()2,0,1,M N ⎛ ⎝两点,所以41314m m n =⎧⎪⎨+=⎪⎩,得到1,14m n ==,所以椭圆C 的方程为2214x y +=.(2)由(1)知(0,1)D ,易知直线,DA DB 的斜率均存在且不为0,不妨设(0)DA k k k =>,1DB k k=-,直线DA 为1y kx =+,直线DB 为11y x k =-+,由椭圆的对称性知,当1k =时,显然有DA DB =,满足题意,当21k ≠时,由22114y kx x y =+⎧⎪⎨+=⎪⎩,消y 得到221()204k x kx ++=,所以2814A k x k =-+,222281411414A k k y k k -=-+=++,即222814(,)1414k k A k k--++,同理可得22284(,44k k B k k -++,所以()2222222222222414(4)14(4)(14)1414888(144)5414ABk k k k k k k k k k k k k k k k k k ----+-+--++===++++++,设AB 中点坐标为00(,)x y ,则2220228812(1)1442(4)(14)k kk k k k x k k -+-++==++,22222022144151442(4)(14)k k k k k y k k --+-++==++,所以AB 中垂线方程为222222215512(1)()(4)(14)1(4)(14)k k k k y x k k k k k -+=--++-++,要使ADB 为AB 为底边的等腰直角三角形,则直AB 中垂线方程过点(0,1),所以222222215512(1)1(0)(4)(14)1(4)(14)k k k k k k k k k -+=--++-++,整理得到42710k k -+=,令2t k =,则2710t t -+=,4940∆=->,所以t 有两根12,t t ,且121270,10t t t t +=>=>,即2710t t -+=有两个正根,故有2个不同的2k 值,满足42710k k -+=,所以由椭圆的对称性知,当21k ≠时,还存在2个符合题意的三角形,综上所述,存在以D 为顶点,AB 为底边的等腰直角三角形,满足条件的三角形的个数有3个.【点睛】关键点点晴:本题的关键在于第(2)问,通过设出直线DA 为1y kx =+,直线DB 为11y x k=-+,联立椭圆方程求出,A B 坐标,进而求出直线AB 的中垂线方程,将问题转化成直线AB 的中垂线经过点(0,1)D ,再转化成关于k 的方程的解的问题.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.【答案】(1)22182x y +=(2)证明见解析【分析】(1)通过椭圆的性质和中点的坐标,然后根据向量的数量积得到等量关系即可求出椭圆的标准方程;(2)设出直线l 的方程并与椭圆方程联立,化简写出根与系数的关系,求得点,P Q 的坐标,进而证得线段PQ 的中点为定点.【详解】(1)由题可得()28,,0a E a = ,()()120,,0,B b B b -,1EB ∴的中点为,22a b G ⎛⎫ ⎪⎝⎭,2221233(,),1,2,2222a b a bEB GB a b b ⎛⎫⋅=-⋅--=-=∴= ⎪⎝⎭ 故椭圆C 的方程为22182x y +=;(2)依题意可知直线l 的斜率存在,设直线l 的方程为()4y k x =+,由()224182y k x x y ⎧=+⎪⎨+=⎪⎩消去y 并化简得()222214326480k x k x k +++-=,由()()422Δ10244146480k k k =-+->,得2111,422k k <-<<.设()(),,,M M N N M x y N x y ,则222232648,1414M N M N k k x x x x k k -+=-=++,依题意可知直线,MA NA 的斜率存在,直线MA 的方程为()1122M M y y x x ++=++,令4x =-,得()2442422M M M M P M M k x x y x y x x -+-----==++()()()2184212424221222M M M M M k x k k x k k k x x x ------+--+===---+++,同理可求得42212Q N k y k x +=---+,()N 4242114242422222P Q M N M k k y y k k k x x x x ⎛⎫++∴+=----=---++ ⎪++++⎝⎭()()4424224M N M N M N x x k k x x x x ++=---+⋅+++()22222232414424242(42)064832241414k k k k k k k k k k -++=---+⋅=--++=⎛⎫-+-+ ⎪++⎝⎭,∴线段PQ 的中点为定点()4,0-.【点睛】方法点睛:对于直线和圆锥曲线相交的问题,我们一般将直线和圆锥曲线联立,利用韦达定理带入计算求解.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.【答案】(1)22143x y +=(2)点Q 在定直线上,定直线方程为330x y +-=【分析】(1)设点,,P A B 的坐标,利用平面向量的坐标表示消参得0032x x y ⎧=⎪⎨⎪=⎩,结合正方形面积得Γ的方程;(2)设:14l y kx k =+-,,,Q M N 的坐标,与椭圆联立并根据韦达定理得,M N 横坐标关系,再根据线段乘积关系化为比值关系得01120244x x x x x x --=--,化简得0243kx k+=+,代入直线方程即可0y ,从而求出定直线方程.【详解】(1)设()()()00,,,0,0,P x y A x B y ,由0000222(,0))()333OP OA x y x y ==+=,得0023x x y y ⎧=⎪⎪⎨⎪=⎪⎩,所以032x x y ⎧=⎪⎨⎪=⎩,因为正方形ABCD 的面积为29AB =,即22009x y +=,所以223())92x +=,整理可得22143x y +=,因此C 的轨迹方程为22143x y +=.(2)依题意,直线l 存在斜率,设l :1(4)y k x -=-,即14y kx k =+-,设点()00,Q x y ,()11,M x y ,()22,N x y ()102x x x <<,由22143412y kx kx y =+-⎧⎨+=⎩,消y 得2234(14)12x kx k ++-=,即222(34)8(14)4(14)120k x k k x k ++-+--=,由()()()2222Δ64141634143k k k k ⎡⎤=--+--⎣⎦()()()()()22222216144344834483414k k k k k k ⎡⎤⎡⎤=--+++=+--⎣⎦⎣⎦()()22481282966410k k k k =-++=-++>,k <<所以3k ≠-,可得1228(14)34k k x x k -+=-+,21224(14)1234k x x k --=+,由||||||||EM QN QM EN ⋅=⋅ ,得||||||||QM EM QN EN =,所以01120244x x x x x x --=--,可得222121201228(14)4(14)124234344()28(14)8()834k k k k k x x x x x k k x x k ⎡⎤---⎡⎤--⎢⎥⎢⎥+++-⎣⎦⎣⎦==--+⎡⎤--⎢⎥+⎣⎦()()2222232148142432128128648242432824248k k k k k k k k k k k----+-+-+-+==++-+1632242483k kk k++==++,所以()()200143243914333k k k k ky kx k k k k-++-=+-=+=+++,因为00612393333k kx y k k+-+=+=++,所以点Q 在定直线上,定直线方程为330x y +-=.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.【答案】(1)24y x =;(2)(.【分析】(1)先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,联立直线与抛物线方程,结合韦达定理及抛物线定义即可求解;(2)先设出()221,2R m m +,进而可求,P Q 的坐标,可得直线//QR x 轴,求出QR 的范围,再由三角形面积公式即可求解.【详解】(1)不妨先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,代入22y px =,可得2220y mpy p --=,所以122y y mp +=,212y y p =-,则()21212222MN x x p m y y p m p p =++=++=+,由题意可知当斜率为1时,1m =,又8MN =,即228p p +=,解得2p =,所以C 的方程为24y x =;(2)由(1)知2p =,直线l 的方程为1x my =+,抛物线方程24y x =,124y y m +=,124y y =-所以R 的纵坐标1222R y y y m +==,将R 的纵坐标2m 代入1x my =+,得221x m =+,所以R 的坐标()221,2m m +,易知抛物线的准线为=1x -,又因为l 与C 的准线交于点P ,所以P 的坐标21,m ⎛⎫-- ⎪⎝⎭,则直线OP 的方程为2m x y =,把2mx y =代入24y x =,得22y my =,即2y m =或0y =,因为点Q 异于原点,从而Q 的纵坐标为2m ,把2y m =代入2m x y =,得22mx y m ==,所以()2,2Q m m ,因为R 的坐标()221,2m m +,所以R ,Q 的纵坐标相同,所以直线//QR x 轴,且222211QR m m m =+-=+,所以MNQ △面积1212MNQ MRQ NRQ S S S QR y y =+=- ,因为()22212121241616y y y y y y m -=+-=+,所以12y y -==,所以()332222112122MNQS m m QR =+⨯=+= ,因为点Q 异于原点,所以0m ≠,所以210m +>,因为3QR ≤,所以13QR <≤,所以3222QR <≤MNQ △面积的取值范围为(.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.【答案】(1)1(2)221499x y ⎛⎫-+=⎪⎝⎭【分析】(1)根据已知条件作出图形,设出直线AB 的方程,与抛物线联立,利用韦达定理及直线的点斜式方程即可求解;(2)根据(1)的结论及向量的数量积的坐标表示,进而得出直线AB 的方程,利用直线的斜率公式及直线的点斜式方程,结合角平分线的性质及圆的标准方程即可求解.【详解】(1)设直线AB 的方程为()()()11220,,,,x my t m A x y B x y =+>,则()()11,,,0C x y M t -,由24x my ty x =+⎧⎨=⎩,消去x ,得2440y my t --=,()22Δ1600m t m t =+>⇒+>,所以12124,4y y m y y t +==-,直线BC 的方程为()211121y y y y x x x x ++=--,化简得1221214y y xy y y y y =---,令0y =,得124Q y y x t ==-,所以(),0Q t -因此1OM t OQt==-.(2)因为点Q 的横坐标为1-,由(1)可知,()()1,0,1,0Q M -,设QA 交抛物线于D ,()()()()11221144,,,,,,,A x y B x y C x y D x y -,如图所示又由(1)知,124y y =-,同理可得144y y =,得42y y =-,又()212121211242x x my my m y y m +=+++=++=+,()22212121214416y y y y x x =⋅==,又()()22111,,1,MB x y MC x y =-=-- ,则()()()221121212111444MB MC x x y y x x x x m ⋅=---=-+++=- ,故2844,9m -=结合0m >,得m =所以直线AB的方程为330,x -=又12163y y -===,则141414221214141412443444AD y y y y y y k y y x x x x y y y y ---======--+--,所以直线AD 的方程为3430x y -+=,设圆心(,0)(11)T s s -<<,因为QM 为AQB ∠的平分线,故点T 到直线AB 和直线AD 的距离相等,所以333354s s +-=,因为11s -<<,解得19s =,故圆T 的半径33253s r +==,因此圆T 的方程为221499x y ⎛⎫-+= ⎪⎝⎭.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.【答案】(1)23122y x x =-+;(2)0b <或1b >;(3)证明见解析.【分析】(1)根据题意,由平面向量的坐标运算,结合等差中项的定义代入计算,即可得到结果;(2)根据题意,由平移公式可得曲线2C 的方程,然后与直线MN 的方程联立,由平面向量的夹角公式,代入计算,即可得到结果;(3)根据题意,求导可得在点,M N 处的切线方程,联立两条切线方程,代入计算,即可得到结果.【详解】(1)由题意可得(1,)PA x y =-- ,(,1)PB x y =-- ,(1,1)PC x y =--,则22(1)()()(1)PA PB x x y y x y x y ⋅=-⋅-+-⋅-=+--,22(1)(1)()(1)21PA PC x x y y x y x y ⋅=-⋅-+-⋅-=+--+,又2y 是PA PB ⋅ ,PA PC ⋅的等差中项,()()22222212x y x y x y x y y ∴+--++--+=,整理得点(,)P x y 的轨迹方程为23122y x x =-+.(2)由(1)知2131:22C y x x =-+,又31,416a ⎛⎫=- ⎪⎝⎭ ,∴平移公式为34116x x y y ⎧=-⎪⎪⎨⎪=+'⎩'⎪即34116x x y y ⎧=+⎪⎪⎨⎪=-'⎩'⎪,代入曲线1C 的方程得到曲线2C 的方程为:213331164242y x x ''⎛⎫⎛⎫-=+-++ ⎪ ⎪⎝⎭⎝⎭',即2y x ¢¢=.曲线2C 的方程为2y x =.如图由题意可设M ,N 所在的直线方程为y kx b =+,由2y x y kx b⎧=⎨=+⎩消去y 得20x kx b --=,令()11,M x y ,()()2212,N x y x x ≠,则1212x x kx x b +=⎧⎨=-⎩,()()21111,,OM x y x x ∴== ,()()22222,,ON x y x x == ,又MON ∠ 为锐角,cos 0||||OM ONMON OM ON ⋅∴∠=>⋅,即2212120||||x x x x OM ON +>⋅ ,2212120x x x x ∴+>,又12x x b =-,2()0b b ∴-+->,得0b <或1b >.(3)当2b =时,由(2)可得12122x x kx x b +=⎧⎨=-=-⎩,对2y x =求导可得2y x '=,∴抛物线2C 在点,()211,M x x ∴=,()222,N x x 处的切线的斜率分别为12M k x =,22N k x =,∴在点M ,N 处的切线方程分别为()2111:2M l y x x x x -=-,()2222:2N l y x x x x -=-,由()()()211112222222y x x x x x x y x x x x ⎧-=-⎪≠⎨-=-⎪⎩,解得交点R 的坐标(,)x y .满足12122x x x y x x +⎧=⎪⎨⎪=⋅⎩即22k x y ⎧=⎪⎨⎪=-⎩,R ∴点在定直线=2y -上.【点睛】关键点点睛:本题主要考查了曲线的轨迹方程问题以及切线问题,难度较大,解答本题的关键在于联立方程结合韦达定理计算以及转化为坐标运算.9.(2024·江苏南通·二模)已知双曲线E 的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.【答案】(1)2213x y -=(2)①⎫⎪⎪⎭;②27π16S >且7π4S ≠【分析】(1)根据渐近线方程及顶点求出,a b 得双曲线方程;(2)①设(),0D t ,由四点共圆可得1AG OH k k ⋅=,根据斜率公式转化为,B C 点坐标表示形式,由直线与双曲线联立得出根与系数的关系,据此化简即可求出t ;②求出G 点坐标得出OG ,利用正弦定理求出外接圆的半径,根据均值不等式求出半径的最值,即可得出圆面积的最值.【详解】(1)因为双曲线的渐近线关于坐标轴及原点对称,又顶点在x 轴上,可设双曲线的方程为22221x y a b-=(0a >,0b >),从而渐近线方程为:b y x a =±,由题条件知:b a =因为双曲线的左顶点为()A ,所以a =1b =,所以双曲线的方程为:2213x y -=.(2)如图,①(),0D t ,设直线BC 的方程为:my x t =-,将x my t =+代入方程:22330x y --=,得()2223230m y mty t -++-=,当230m -≠且()22Δ1230t m =+->时,设()11,B x y ,()22,C x y ,则12223mt y y m +=--,212233t y y m -=-.设直线AG 的倾斜角为α,不妨设π02α<<,则π2AGH α∠=-,由于O ,A ,G ,H 四点共圆知:HOD AGH ∠=∠,所以直线OH 的倾斜角为π2α-,πsin πsin 2tan tan 1π2cos cos 2AG OH k k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭.直线AC的方程为:y x =,令x t =,则y =H t ⎛ ⎝,所以OH k=AGABk k==1=((1212t y y t x x ⇒=,又11x my t =+,22xmy t =+代入上式得:((1212t y yt my t my t =++,((()(22121212t y y t m y y m t y y t ⎡⎤⇒=+++⎢⎥⎣⎦,(((2222222332333t t mtt t m m t t m m m ⎛⎤---⇒⋅=⋅+⋅++ ⎥---⎝⎦,化简得:2430t +-=,解得:t =(舍)或t =故点D 的坐标为⎫⎪⎪⎭.②直线AG 的方程为(tan y x α=⋅,由①知:t =所以G α⎫⎪⎪⎭.直线OH 方程;1tan y x α=,所以H ,若G ,H 在x 轴上方时,G 在H 的上方,即tan 0α>α>若G ,H 在x 轴下方时,即t an 0α<α<所以tan α>tan α<又直线AG 与渐近线不平行,所以tan α≠所以0πα<<,tan α>tan α<tan α≠因为OG ==设圆P 的半径为R ,面积为S ,则2sin OG R α==所以()()()2222222125tan 125tan sin cos 3164sin 64sin R αααααα+⋅++=⨯=⨯()()22222125tan 1tan 33125tan 2664tan 64tan ααααα++⎛⎫=⨯=++ ⎪⎝⎭327266416⎛⎫≥= ⎪ ⎪⎝⎭,当且仅当22125tan tan αα=即tan α=tan α>tan α<tan α≠所以22716R >且274R ≠,从而27π16S >且7π4S ≠.【点睛】关键点点睛:本题的关键点在于利用直线的倾斜角与圆的内接四边形的角的关系,得出πsin πsin 2tan tan 1π2cos cos 2AG OHk k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭这一关键数量关系,再转化为直线与双曲线相交,利用根与系数的关系化简求参数的常规问题.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.【答案】(1)y x =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,a ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围.【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =.由222+=a b c,得a ,所以E的渐近线的方程为y =(2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,11112OP OQ y +=+设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,1AF2p =由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)2213y x -=(2)(i )证明见解析;(ii )是,12【分析】(1)设曲线C 上任意一点坐标为(),x y ,利用坐标可得曲线C 的方程;(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,联立方程组可得1221231my y m +=--,122931y y m =-,求得直线AM :()1111y y x x =++,求得P ,H ,进而可得Q 的坐标,求得FQ 的坐标,直线MN 的方向向量的坐标,利用向量法可证结论.(ii) 法一:利用(i )可求得()226113mMN m +=-;QF=()()322329112213m S MN QF m+=⋅=-,进而求得()1212114S S PH x x +=⋅+-,代入运算可求得()()32212291413m S S m++=-,可求结论.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,计算可得1218S S PH MN +=⋅,又312S MN QF =⋅,12314PH S S S QF +=,进而计算可得结论成立.【详解】(1)设曲线C 上任意一点坐标为(),x y ,则由题意可知:()2222222212444441123y x y x x x y x x x ⎛⎫-+=-⇒-++=-+⇒-= ⎪⎝⎭,故曲线C 的方程为2213y x -=.(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,其中m <<且11x >,21x >()22222311290330x my m y my x y =+⎧⇒-++=⎨--=⎩,故1221231my y m +=--,122931y y m =-;直线AM :()1111y y x x =++,当12x =时,()11321y y x =+,故()1131,221y P x ⎛⎫⎪ ⎪+⎝⎭,同理()2231,221y H x ⎛⎫⎪ ⎪+⎝⎭,Q 为PH 中点,故()()()()1221121212111332211411Q y x y x y y y x x x x +++⎛⎫=⋅+=⋅ ⎪++++⎝⎭;()()()()()()222212121212293693111333931m m m x x my my m y y m y y m -+-++=++=+++=-2931m =--;(*)()()()()()122112211212221836181133233131m m my x y x y my y my my y y y m m -+++=+++=++==---;故3183492Q m m y =⋅=,即13,22m Q ⎛⎫⎪⎝⎭,则33,22m FQ ⎛⎫=- ⎪⎝⎭ ,直线MN 的方向向量(),1a m =,33022m m a FQ ⋅=-+= ,故QF MN ⊥.(ii)法一:12y y -===(**)故()2226113m MN y m +=-=-;QF==又QF MN ⊥,故()()322329112213mSMN QF m+=⋅=-.()12121211111122224S S PQ x HQ x PH x x ⎛⎫⎛⎫+=⋅-+⋅-=⋅+- ⎪ ⎪⎝⎭⎝⎭;()()222121222311293133113m m m x x m y y m m +-+-+-=++==--;()()()()()()1221121212113332121211y x y x y y PH x x x x +-+=-=++++,()()()()()()12211212123339211211y my y my y y x x x x +-+-==++++,由(*)知()()12291113x x m ++=-,由(**)知12y y -=,故291329m PH -==故()()()3222122231911413413m mS S m m+++=⋅=--,则12312S S S +=.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,故()()12121111488S S PH x x PH MF NF PH MN +=+-=⋅+=⋅,又312S MN QF =⋅,故12314PH S S S QF +=,又()()12129411P H y y y y x x =++,且由(*)知229993194431P Hm y y m -==--,记直线PH 与x 轴相交于点K ,由94P Hy y =可得2PK HK FK ⋅=,即PK FK FK HK =,即PKF PFH ∽△△,故PF HF ⊥;又Q 为PH 的中点,故12QF PH =,即1231142PH S S S QF +==.【点睛】方法点睛:直线与双曲线联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可设出直线方程.。

中职高考数学一轮复习讲练测专题8-4 椭圆(讲)(含详解)

中职高考数学一轮复习讲练测专题8-4   椭圆(讲)(含详解)

专题8.4 椭圆【考纲要求】1.理解椭圆的定义和椭圆的标准方程,能够根据条件写出椭圆的标准方程;2.了解椭圆的性质:范围、对称性、顶点、长轴和短轴、离心率.【考向预测】1. 椭圆的定义应用.2. 求椭圆的标准方程.3. 求椭圆的主要几何量.4. 求椭圆的离心率.5.直线与椭圆的位置关系.【知识清单】1. 椭圆的定义平面内与两个定点F1、F2的__距离的和等于常数(大于|F1F2|)__的点的轨迹叫做椭圆,这两个定点叫做椭圆的__焦点__,两焦点间的距离叫做椭圆的__焦距__.注:若集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a、c为常数,则有如下结论:(1)若a>c,则集合P为__椭圆__;(2)若a=c,则集合P为__线段F1F2__;(3)若a<c,则集合P为__空集__.2.椭圆的标准方程和几何性质-a≤x≤a-b≤x≤b3.直线与椭圆的位置关系直线y =kx +m 与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系判断方法:由⎩⎪⎨⎪⎧y=kx +m ,x 2a 2+y 2b 2=1.消去y (或x )得到一个一元二次方程.4.直线与椭圆相交弦长设直线斜率为k ,直线与椭圆两交点为A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2__|x 1-x 2|__=1+1k2__|y 1-y 2|__,一般地,|x 1-x 2|=(x 1+x 2)2-4x 1x 2用根与系数关系求解.【考点分类剖析】考点一 椭圆的定义例1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=10,则动点M 的轨迹是( ) A .椭圆 B .直线 C .圆D .线段【变式探究】1.设P 是椭圆x 24+y 23=1上的任意一点,若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .2C .23D .32. 已知△ABC 的周长是8,且B (-1,0)、C (1,0),则顶点A 的轨迹方程是( ) A .x 29+y 28=1(x ≠±3) B .x 29+y 28=1(x ≠0)C .x 24+y 23=1(y ≠0)D .x 23+y 24=1(y ≠0)考点二 求椭圆的标准方程例1. 求满足下列各条件的椭圆的标准方程: (1)长轴是短轴的3倍且经过点A (3,0); (2)经过点P (-23,1),Q (3,-2)两点;(3)与椭圆x 24+y 23=1有相同离心率,且经过点(2,-3).【方法归纳】 1.已知椭圆的几何性质,求其标准方程主要采用待定系数法,解题步骤为:(1)确定焦点所在的位置,以确定椭圆标准方程的形式;(2)确立关于a 、b 、c 的方程(组),求出参数a 、b 、c ;(3)写出标准方程.2.注意事项:当椭圆的焦点位置不确定时,通常要分类讨论,分别设出标准方程求解,可确定类型的量有焦点、顶点;而不能确定类型的量有长轴长、短轴长、离心率、焦距.【变式探究】1.根据下列条件,求椭圆的标准方程. (1)经过点P (1,32),两焦点间的距离为2,焦点在x 轴上;(2)经过点(2,-3)且与椭圆9x 2+4y 2=36有共同的焦点.2.已知椭圆的对称轴是坐标轴,离心率为13,长轴长为12,则椭圆方程为( )A .x 2144+y 2128=1或x 2128+y 2144=1B .x 26+y 24=1C .x 236+y 232=1或x 232+y 236=1D .x 24+y 26=1或x 26+y 24=1考点三 椭圆的主要几何量例1 求椭圆9x 2+16y 2=144的长轴长、短轴长、离心率、焦点和顶点坐标. 【方法归纳】由椭圆方程讨论其几何性质的步骤: (1)化椭圆方程为标准形式,确定焦点在哪个轴上. (2)由标准形式求a 、b 、c ,写出其几何性质.【变式探究】求椭圆25x 2+16y 2=400的长轴长、短轴长、离心率、焦点坐标和顶点坐标. 考点四 椭圆的离心率例1. 椭圆x 24+y 23=1的离心率是( )A .32B .22C .13D . 12【变式探究】1.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则椭圆C 的方程是( )A .x 23+y 24=1B .x 24+y 23=1C .x 24+y 22=1D .x 24+y 23=12. 已知椭圆的两个焦点和短轴的两个端点恰好为一个正方形的四个顶点,则该椭圆的离心率为( ) A .13B .12C .33D .22考点五 直线与椭圆的位置关系例1 已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围;【变式探究】当m 取何值时,直线l :y =x +m 与椭圆9x 2+16y 2=144.(1)无公共点;(2)有且仅有一个公共点;(3)有两个公共点.专题8.4 椭圆【考纲要求】1.理解椭圆的定义和椭圆的标准方程,能够根据条件写出椭圆的标准方程;2.了解椭圆的性质:范围、对称性、顶点、长轴和短轴、离心率.【考向预测】1. 椭圆的定义应用.2. 求椭圆的标准方程.3. 求椭圆的主要几何量.4. 求椭圆的离心率.5.直线与椭圆的位置关系.【知识清单】1. 椭圆的定义平面内与两个定点F1、F2的__距离的和等于常数(大于|F1F2|)__的点的轨迹叫做椭圆,这两个定点叫做椭圆的__焦点__,两焦点间的距离叫做椭圆的__焦距__.注:若集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a、c为常数,则有如下结论:(1)若a>c,则集合P为__椭圆__;(2)若a=c,则集合P为__线段F1F2__;(3)若a<c,则集合P为__空集__.2.椭圆的标准方程和几何性质-a≤x≤a-b≤x≤b3.直线与椭圆的位置关系直线y =kx +m 与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系判断方法:由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1.消去y (或x )得到一个一元二次方程.4.直线与椭圆相交弦长设直线斜率为k ,直线与椭圆两交点为A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2__|x 1-x 2|__=1+1k2__|y 1-y 2|__,一般地,|x 1-x 2|=(x 1+x 2)2-4x 1x 2用根与系数关系求解.【考点分类剖析】考点一 椭圆的定义例1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=10,则动点M 的轨迹是( A ) A .椭圆 B .直线 C .圆D .线段[解析] ∵|MF 1|+|MF 2|=10>|F 1F 2|=6,由椭圆定义,动点M 轨迹为椭圆.【变式探究】1.设P 是椭圆x 24+y 23=1上的任意一点,若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( A )A .4B .2C .23D .3[解析] ∵|PF 1|+|PF 2|=2a =4,∴选A .2. 已知△ABC 的周长是8,且B (-1,0)、C (1,0),则顶点A 的轨迹方程是( A )A .x 29+y 28=1(x ≠±3)B .x 29+y 28=1(x ≠0)C .x 24+y 23=1(y ≠0)D .x 23+y 24=1(y ≠0)[解析] ∵|AB |+|AC |=8-|BC |=6>|BC |=2,∴顶点A 的轨迹是以B 、C 为焦点的椭圆,设其方程为x 2a 2+y 2b 2=1(a >b >0),则a =3,b =2 2.又∵A 、B 、C 三点不共线,∴顶点A 的轨迹方程为x 29+y 28=1(x ≠±3).考点二 求椭圆的标准方程例1. 求满足下列各条件的椭圆的标准方程: (1)长轴是短轴的3倍且经过点A (3,0); (2)经过点P (-23,1),Q (3,-2)两点;(3)与椭圆x 24+y 23=1有相同离心率,且经过点(2,-3).[解析] (1)若焦点在x 轴上,设方程为x 2a 2+y 2b 2=1(a >b >0).∵椭圆过点A (3,0),∴9a 2=1,∴a =3.∵2a =3×2b ,∴b =1.∴方程为x 29+y 2=1.若焦点在y 轴上,设方程为y 2a 2+x 2b 2=1(a >b >0).∵椭圆过点A (3,0),∴9b 2=1,∴b =3.又2a =3×2b ,∴a =9.∴方程为y 281+x 29=1.综上所述,椭圆方程为x 29+y 2=1或y 281+x 29=1.(2)设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ), ∵点P (-23,1),Q (3,-2)在椭圆上,∴⎩⎪⎨⎪⎧12m +n =1,3m +4n =1,解得m =115,n =15.故椭圆方程为x 215+y 25=1.(3)若焦点在x 轴上,设所求椭圆方程为x 24+y 23=t (t >0),将点(2,-3)代入,得t =224+(-3)23=2.故所求方程为x 28+y 26=1.若焦点在y 轴上,设方程为y 24+x 23=λ(λ>0)代入点(2,-3),得λ=2512,∴所求方程为y 2253+x 2254=1.综上可知椭圆方程为x 28+y 26=1或y 2253+x 2254=1.例2.求适合下列条件的椭圆的标准方程. (1)椭圆过点(3,0),离心率e =63; (2)在x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为8. [解析] (1)若焦点在x 轴上,则a =3, ∵e =c a =63,∴c =6,∴b 2=a 2-c 2=9-6=3.∴椭圆的方程为x 29+y 23=1.若焦点在y 轴上,则b =3, ∵e =c a=1-b 2a2=1-9a 2=63,解得a 2=27.∴椭圆的方程为y 227+x 29=1.综上可知椭圆方程为x 29+y 23=1或y 227+x 29=1.(2)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).如图所示,△A 1F A 2为等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b ,∴c =b =4,∴a 2=b 2+c 2=32,故所求椭圆的方程为x 232+y 216=1. 【方法归纳】 1.已知椭圆的几何性质,求其标准方程主要采用待定系数法,解题步骤为:(1)确定焦点所在的位置,以确定椭圆标准方程的形式;(2)确立关于a 、b 、c 的方程(组),求出参数a 、b 、c ;(3)写出标准方程.2.注意事项:当椭圆的焦点位置不确定时,通常要分类讨论,分别设出标准方程求解,可确定类型的量有焦点、顶点;而不能确定类型的量有长轴长、短轴长、离心率、焦距.【变式探究】1.根据下列条件,求椭圆的标准方程.(1)经过点P (1,32),两焦点间的距离为2,焦点在x 轴上;(2)经过点(2,-3)且与椭圆9x 2+4y 2=36有共同的焦点. [解析] (1)设椭圆的标准方程为x 2a 2+y 2b 2=1,(a >b >0),∵焦点在x 轴上,2c =2,∴a 2=b 2+1,又椭圆经过点P ⎝⎛⎭⎫1,32,∴1b 2+1+94b 2=1,解之得b 2=3,∴a 2=4. ∴椭圆的标准方程为x 24+y 23=1.(2)∵椭圆9x 2+4y 2=36的焦点为(0,±5),则可设所求椭圆方程为x 2m +y 2m +5=1(m >0),又椭圆经过点(2,-3),则有4m +9m +5=1,解得m =10或m =-2(舍去), 即所求椭圆的方程为x 210+y 215=1.2.已知椭圆的对称轴是坐标轴,离心率为13,长轴长为12,则椭圆方程为( C )A .x 2144+y 2128=1或x 2128+y 2144=1B .x 26+y 24=1C .x 236+y 232=1或x 232+y 236=1D .x 24+y 26=1或x 26+y 24=1[解析] 由条件知a =6,e =c a =13,∴c =2,∴b 2=a 2-c 2=32,故选C .考点三 椭圆的主要几何量例1 求椭圆9x 2+16y 2=144的长轴长、短轴长、离心率、焦点和顶点坐标.[解析] 把已知方程化成标准方程x 216+y 29=1,于是a =4,b =3,c =16-9=7,∴椭圆的长轴长和短轴长分别是2a =8和2b =6,离心率e =c a =74,两个焦点坐标分别是(-7,0)、(7,0),四个顶点坐标分别是(-4,0)、(4,0)、(0,-3)、(0,3). 【方法归纳】由椭圆方程讨论其几何性质的步骤: (1)化椭圆方程为标准形式,确定焦点在哪个轴上. (2)由标准形式求a 、b 、c ,写出其几何性质.【变式探究】求椭圆25x 2+16y 2=400的长轴长、短轴长、离心率、焦点坐标和顶点坐标.[解析] 将方程变形为y 225+x 216=1,得a =5,b =4,所以c =3,故椭圆的长轴和短轴的长分别为2a =10,2b=8,离心率e =c a =35,焦点坐标F 1(0,-3)、F 2(0,3),顶点坐标为A 1(0,-5)、A 2(0,5)、B 1(-4,0)、B 2(4,0).考点四 椭圆的离心率例1. 椭圆x 24+y 23=1的离心率是( D )A .32B .22C .13D . 12[解析] 由椭圆x 24+y 23=1可知,a =2,b =3,c =1,∴离心率e =c a =12,故选D .【变式探究】1.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则椭圆C 的方程是( D )A .x 23+y 24=1B .x 24+y 23=1C .x 24+y 22=1D .x 24+y 23=1[解析] 由椭圆的右焦点为F (1,0)知,椭圆的焦点在x 轴上,且c =1. 又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆C 的方程为x 24+y 23=1,故选D .2. 已知椭圆的两个焦点和短轴的两个端点恰好为一个正方形的四个顶点,则该椭圆的离心率为( D ) A .13B .12C .33D .22[解析] 依题意椭圆的焦距和短轴长相等,故b =c ,a 2-c 2=c 2,∴e =22. 考点五 直线与椭圆的位置关系例1 已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围;[解析] 由⎩⎪⎨⎪⎧4x 2+y 2=1y =x +m ,消去y 得,5x 2+2mx +m 2-1=0, ∵直线与椭圆有公共点, ∴Δ=4m 2-20(m 2-1)≥0,解得-52≤m ≤52. 【变式探究】当m 取何值时,直线l :y =x +m 与椭圆9x 2+16y 2=144.(1)无公共点;(2)有且仅有一个公共点;(3)有两个公共点.[解析] 由⎩⎪⎨⎪⎧y =x +m 9x 2+16y 2=144,消去y 得, 9x 2+16(x +m )2=144,化简整理得,25x 2+32mx +16m 2-144=0,Δ=(32m )2-4×25×(16m 2-144)=-576m 2+14 400.(1)当Δ=0时,得m =±5,直线l 与椭圆有且仅有一个公共点.(2)当Δ>0时,得-5<m <5,直线l 与椭圆有两个公共点.(3)当Δ<0时,得m <-5或m >5,直线l 与椭圆无公共点.。

导数的应用周测卷中学2014年下学期高二理科周测16试卷

导数的应用周测卷中学2014年下学期高二理科周测16试卷

第2题图**中学2014年下学期高二理科周测十六试卷组卷:*** 审卷:*** 2015.1.6一、选择题(共11小题,每小题5分,共55分)1.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 2.执行如图所示的程序框图,若输入x =0.1,则输出的m 的值是( ) A .0 B .0.1 C .1D .-13.为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为( ) A. 40 B. 30 C. 20 D. 124.球的体积与其表面积的数值相等,则球的半径等于( )A .21B .1C .2D .3 5.函数()323922y x x x x =---<<有( )A .极大值5,极小值27-B .极大值5,极小值11-C .极大值5,无极小值D .极小值27-,无极大值6.观察式子:213122+<,221151233++<,222111712344+++<,,则可归纳出式子为( )A.22211111(2)2321n n n ++++<-≥ B.22211111(2)2321n n n ++++<+≥ C.222111211(2)23n n n n -++++<≥ D.22211121(2)2321n n n n ++++<+≥ 7.如图,一个简单空间几何体的三视图其主视图与左视图是边长为2的正 三角形、俯视图轮廓为正方形,则其体积是( ).A .324 B . 334 C. 63D . 388.下列函数中,在),0(+∞上为增函数的是 ( ) A .x y 2sin = B .xxe y =C .x x y -=3D .x x y -+=)1ln(俯视图主视图左视图第7题图9.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能的是( )10.过双曲线22149x y -=的右焦点F 且斜率是32的直线与双曲线的交点个数是( )A.0个B.1个C.2个D.3个 11.设)()(,sin )('010x f x f x x f ==, '21()(),,f x f x = '1()()n n f x f x +=,n ∈N ,则=)(2015x f ( ) A.sin x B.-sin xC.cos xD.-cos x二、填空题(共4小题,每小题5分,共20分) 12.已知x 与y 之间的一组数据为x 0 1 2 3y 13 5-a 7+a则y 与x 的回归直线方程a bx y +=∧必过定点_____.13.已知区域E ={(x ,y )|0≤x ≤3,0≤y ≤2},F ={(x ,y )|0≤x ≤3,0≤y ≤2,x ≥y },若向区域E 内随机投掷一点,则该点落入区域F 内的概率为________.14.若直线l 过定点M(1,2)且与抛物线y =2x 2有且仅有一个公共点,则直线l 的方程为.15.已知函数cx bx ax x f ++=23)(,其导函数y =)('x f 的图象经过点(1,0),(2,0),如图3所示,则下列说法中不正确的是________.①当x =32时函数取得极小值;②f(x)有两个极值点;③当x =2时函数取得极小值;④当x =1时函数取得极大值.图3y x O y x O y x O yxO A .B .C .D .***中学2014年下学期高二理科周测十六答题卷班级姓名学号卷面得分一、请将选择题答案填在机读卡上.二、填空题(共4小题,每小题5分,共20分)12. 13. 14. 15.三、解答题(第16题12分,第17题13分,共25分)16.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为A(0,1),离心率为22,过点B(0,-2)及左焦点F1的直线交椭圆于C,D两点,右焦点设为F2.(1)求椭圆的方程;(2)求△CDF2的面积.17.已知函数54)(23+++=bx ax x x f 在x =-1与x =32处有极值。

绵阳中学实验学校高二数学小练习-椭圆的简单几何性质2

绵阳中学实验学校高二数学小练习-椭圆的简单几何性质2

椭圆的简单几何性质2一、选择题1.椭圆x 2+ 8y 2=1的短轴的端点坐标是 ( ) A.(0,-42)、(0,42) B.(-1,0)、(1,0) C.(22,0)、(-22,0) D.(0,22)、(0,-22)2.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m 等于( ) A .3 B .23 C .38 D .32 3.椭圆12222=+b y a x (0b a >>)和k by x =+2222a (k>0)具有( ) A .相同的长轴长 B .相同的焦点C .相同的离心率D .相同的顶点4.焦距是8,离心率等于0.8的椭圆的标准方程为( ) A.1925x 22=+y B.1925y 22=+x C.1925y 22=+x 或1925x 22=+y D.1936x 22=+y 5.已知F 1、F 2为椭圆(a >b >0)的两个焦点,过F 2作椭圆的弦AB ,若△AF 1B 的周长为16,椭圆离心率23=e ,则椭圆的方程是 ( ) A.13422=+y x B.1342=+y x C.1342=+y x D.1342=+y x二、填空题6.若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率e 是 .7.椭圆的一个焦点将长轴分为3∶2的两段,则椭圆的离心率是________.8.椭圆14922=+y x 的焦点为1F 、2F ,点P 为其上的动点,当21PF F ∠为钝角时,点P 横坐标的取值范围是________.三、解答题9.已知椭圆上一点到两焦点的距离和为10,焦距是166)(f 2--=x x x 的零点,求椭圆的标准方程。

10.已知椭圆的中心在原点,对称轴为x 轴和y 轴,过焦点且垂直于坐标轴的直线与椭圆交于A,B 两点,21=AB ,半焦距为25,求以长半轴和短半轴为截距的直线方程。

(*选*)若椭圆)0(12222>>=+b a by a x 的左焦点为F ,,右顶点为A ,上顶点为B ,且离心率为215-,则∠ABF = .。

高一数学周测试题及答案

高一数学周测试题及答案

高一数学周测试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = x^2 + 1D. y = 1/x2. 若函数f(x) = 2x + 3,则f(-1)的值为()A. -1B. 1C. 5D. -53. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B为()A. {1, 2, 3}B. {2, 3}C. {1, 4}D. {1, 2, 3, 4}4. 函数y = 2x + 3的图象是()A. 一条直线B. 一条曲线C. 一个圆D. 一个椭圆5. 已知a > 0,b > 0,且a + b = 1,则ab的最大值为()A. 1/4B. 1/2C. 1D. 26. 已知等差数列{an}的首项a1 = 1,公差d = 2,则a5的值为()A. 9B. 11C. 5D. 77. 已知等比数列{bn}的首项b1 = 2,公比q = 3,则b3的值为()A. 18B. 54C. 27D. 818. 已知函数f(x) = x^2 - 4x + 4,其顶点坐标为()A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)9. 已知函数f(x) = x^2 - 6x + 9,其对称轴为()A. x = 3B. x = -3C. x = 6D. x = -610. 已知函数f(x) = 2^x,其反函数为()A. f^(-1)(x) = log2(x)B. f^(-1)(x) = 2^xC. f^(-1)(x) = log(x)D. f^(-1)(x) = x^2二、填空题(每题4分,共20分)11. 若函数f(x) = x^2 - 2x + 1,则f(0) = _______。

12. 已知函数f(x) = 3x - 2,求f(1) + f(-1) = _______。

13. 已知集合A = {x | x^2 - 5x + 6 = 0},则A = _______。

考点42 椭圆——2021年高考数学专题复习真题练习


7.选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点 带入能成立的就是答案 8.线性规划题目直接求交点带入比较大小即可(这个看楼下的说用这条要碰运 气,文科可以试试。) 9.遇到这样的选项 A 1/2 B 1 C 3/2 D 5/2 这样的话答案一般是 D 因为 B 可以看 作是 2/2 前面三个都是出题者凑出来的 如果答案在前面 3 个的话 D 应该是 2(4/2).
9 16
25 16
25 16
16 25
1
4.已知椭圆的中点在原点,焦点在坐标轴上,且长轴长为 12,离心率为 ,则椭圆的方程为________.
3
5.设 F1 、 F2 为椭圆 C :
x2 a2
y2 b2
1a
b
0 的左、右焦点,经过 F1 的直线交椭圆 C

A 、 B 两点,
若 F2 AB 的面积为 4 3 的等边三角形,则椭圆 C 的方程为______________.
94
7.已知斜率为 k1 k1 0 的直线 l 与椭圆 x2 y2 1交于 A , B 两点,线段 AB 的中点为 C ,直线 OC
4
( O 为坐标原点)的斜率为 k2 ,则 k1 k2

如何学好数学
1.圆锥曲线中最后题往往联立起来很复杂导致 k 算不出,这时你可以取特殊值 法强行算出 k 过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解 的表达式,就 ok 了 2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差 2 倍的小的 就是答案,体积找到差 3 倍的小的就是答案,屡试不爽! 3.三角函数第二题,如求 a(cosB+cosC)/(b+c)coA 之类的先边化角然后把第一题算 的比如角 A 等于 60 度直接假设 B 和 C 都等于 60°带入求解。省时省力! 4.空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想 不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直 接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有 2 分可以 得! 5.立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简 单! 6.高考选择题中求条件啥的充要和既不充分也不必要这两个选项可以直接排除! 考到概率超小 7.选择题中考线面关系的可以先从 D 项看起前面都是来浪费你时间的

高一数学周测试题及答案

高一数学周测试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x+1,则f(-1)的值为()A. -3B. 1C. 3D. -12. 已知集合A={x|x<1},B={x|x>2},则A∩B为()A. {x|x<1}B. {x|x>2}C. ∅D. {x|1<x<2}3. 若a,b,c为实数,且满足a+b+c=0,则下列等式中一定成立的是()A. a^2+b^2+c^2=0B. ab+bc+ca=0C. a^3+b^3+c^3=3abcD. (a+b)(b+c)(c+a)=04. 已知函数f(x)=x^2-4x+3,求f(2)的值为()A. -1B. 1C. -3D. 35. 若x,y∈R,且x^2+y^2=1,则x+y的最大值为()A. √2B. 1C. 0D. -16. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值为()A. 9B. 7C. 5D. 37. 若函数f(x)=x^3-3x,求f'(x)的值为()A. 3x^2-3B. x^2-3C. x^3-3x^2D. 3x^2-3x8. 已知双曲线C的方程为x^2/4-y^2=1,求双曲线C的渐近线方程为()A. y=±x/2B. y=±2xC. y=±√2xD. y=±√2/2x9. 若直线l的方程为y=2x+1,且直线l与圆x^2+y^2=4相交于点A和点B,则|AB|的值为()A. 2√2B. 2C. √2D. 410. 已知抛物线C的方程为y^2=4x,求抛物线C的焦点坐标为()A. (1,0)B. (0,1)C. (2,0)D. (0,2)二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-6x+8,求f(1)的值为______。

12. 若a,b,c∈R,且a+b+c=6,a^2+b^2+c^2=14,则(a-b)^2+(b-c)^2+(c-a)^2的值为______。

北师大七年级数学上册周周测:第1章 丰富的图形世界

第一章丰富的图形世界周周测1一.选择题1.下面几何体中,全是由曲面围成的是()A.圆柱B.圆锥C.球D.正方体2.下列说法错误的是()A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面、侧面为长方形D.球体的三种视图均为同样大小的图形3.如图,在一个棱长为6cm的正方体上摆放另一个正方体,使得上面正方体的四个顶点恰好均落在下面正方体的四条棱上,则上面正方体体积的可能值有()A.1个B.2个C.3个D.无数个4.如图,左排的平面图形绕轴旋转一周,可以得到右排的立体图形,那么与甲、乙、丙、丁各平面图形顺序对应的立体图形的编号应为()A.③④①②B.①②③④C.③②④①D.④③②①5.下面图形中为圆柱的是()6.若一个棱柱有10个顶点,则下列说法正确的是()A.这个棱柱有4个侧面B.这个棱柱有5条侧棱C.这个棱柱的底面是十边形D.这个棱柱是一个十棱柱7.将如图所示的几何图形,绕直线l旋转一周得到的立体图形()8.下列各图中,经过折叠能围成立方体的是A. B. C. D.9.下列四个图中,是三棱锥的表面展开图的是A. B.C. D.10.将如图的正方体展开能得到的图形是A. B. C. D.11.如图,以下四个图形是由立体图形展开得到的,相应的立体图形的顺次是A.正方体、圆柱、圆锥、三棱锥B.正方体、三棱锥、圆柱、圆锥C.正方体、圆柱、三棱柱、圆锥D.三棱锥、圆锥、正方体、圆锥12.下列图形是四棱柱的侧面展开图的是A. B.C. D.13.如图是正方体的一个平面展开图,如果原正方体上前面的字为“友”,则后面的字为A.善B.国C.诚D.爱14.如图所示是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与13重合的数字是A.1和9B.1和10C.1和12D.1和815.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A、B、C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是A. B. C. D.二.填空题16.在下列几何体中,由三个面围成的有,由四个面围成的有.(填序号)17.用五个面围成的几何体可能是.18.硬币在桌面上快速地转动时,看上去象球,这说明了.19.若一个直四棱柱的底面是边长为1cm的正方形,侧棱长为2cm,则这个直棱柱的所有棱长的和是cm.20.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是________.三.解答题21.(2016•枣庄十五中月考)如图:将一个长方形形沿它的长或宽所在的直线l 旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽边分别为6厘米和4厘米,分别绕它的长或宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)22.已知一个长方体的长为4cm,宽为3cm,高为5cm,请求出:(1)长方体所有棱长的和.(2)长方体的表面积.23.如图是一个几何体的表面展开图,图中的数字表示相应的棱的长度单位:写出该几何体的名称;计算该几何体的表面积.24.图中,请直接写出图1和图2几何体的名称,图3和图4是某些几何体的平面展开图,请判断后在横线上写出相应的几何体的名称.周周测2一、选择题(每小题3分,共30分)1.在铅球、西瓜、铁饼、标枪、易拉罐、课本、暖气管等物体中,形状类似于圆柱的有()A.1个B.2个C.3个D.4个2.下列图形,不是柱体的是()3.下面几何体的截面不可能为圆的是()A.圆柱B.圆锥 C.棱柱 D.球4.圆锥侧面展开图是()5由两块大小不同的正方体搭成如图1-1的几何体,那么从上面看这个图形时,看到的图形是()图1-16.用一个平面去截一个几何体,得到的截面是四边形,则这个几何体可能是()A.圆锥B.圆柱C.球体D.以上都有可能7.有三块积木,每一块的各面都涂有不同的颜色,三块的涂法完全相同,现把它们摆放成不同的位置(如图1-2),请你根据图形判断涂成绿色一面的对面的颜色是()图1-2A.白色B.红色 C.黄色 D.黑色8.分别从正面、左面、上面看一个几何体时,看到的图形依次是三角形、三角形、长方形,则这个几何体是()A.三棱柱B.四棱锥C.圆柱D.圆锥9.把如图1-3的三角形绕它的最长边旋转一周,得到的几何体为图中的()图1-310.用一些大小相同的小正方体搭成一个几何体,从上面看这个几何体时看到的图形如图1-4,其中正方形中的数字表示该位置上的小正方体的个数,那么从左面看这个几何体时,看到的图形是()图1-4二、填空题(每小题4分,共32分)11.图1-5是将正方体切去一个角后的几何体,则该几何体有_____个面,_____条棱.图1-5图1-612.由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图1-6,则搭成这个几何体的小正方体的个数最多为___,最少为_____.13.棱柱的侧面展开图是______.14.沿图示的箭头方向用平面去截图1-7中的三个几何体,截面的形状依次为____、_____和_____.图1-715.如图1-8,三棱柱的底面边长都为2cm,侧棱长为5cm,则这个三棱柱的侧面展开图的面积为_____.图1-8图1-9图1-1016.如图1-9,长方体的底面是边长分别为2和4的一个长方形,从左面看这个长方体时,看到的图形的面积为6,则这个长方体的体积为_____.17.如图1-10,5个棱长为1cm的正方体摆在桌子上,则裸露在表面的部分的面积为______.18.三棱柱有5个面、6个顶点、9条棱,四棱柱有6个面、8个顶点、12条棱,五棱柱有7个面、10个顶点、15条棱,……由此可推测n棱柱有____个面、____个顶点、____条棱.三、解答题(共58分)19.(8分)如图1-11,在无阴影的方格中选出两个画上阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.〔在图1-11(1)和图1-11(2)中任选一个进行解答,只填出一种答案即可〕图1-1120.(8分)是否存在一个由10个面、24条棱和18个顶点构成的棱柱?若存在,请指出是几棱柱;若不存在,请说明理由.21.(10分)如图1-12的几何体放在水平桌面上,请你画出分别从正面、左面、上面看这个几何体时所看到的图形.图1-1222.(10分)用若干个完全相同的小正方体搭成一个几何体,当从正面、上面看这个几何体时,得到的图形如图1-13.问:在这个几何体中,小正方体的个数最多是多少?最少是多少?图1-1323.(10分)一个表面涂满色的正方体,现将棱三等分,再把它切开变成若干个小正方体.问:其中三面都涂色的小正方体有多少个?两面都涂色的小正方体有多少个?只有一面涂色的小正方体有多少个?各面都没有涂色的小正方体有多少个?24.(12分)图1-14是一张铁皮.(1)计算该铁皮的面积.(2)它能否做成一个长方体盒子?若能,画出它的几何图形,并计算它的体积;若不能,说明理由.图1-14答案:一、1.B解析:根据圆柱的特征,可以发现易拉罐、暖气管的形状都类似于圆柱,共2个.故选B.2.D解析:柱体的主要特征是有两个完全相同的底面,选项A为圆柱,选项B 为四棱柱,选项C为三棱柱,均不符合题意.故选D.3.C解析:因为棱柱中没有曲面,所以截面不可能为圆.故选C.4.D解析:选项A是圆锥的表面展开图,选项B,C不是圆锥的侧面展开图,只有选项D是圆锥的侧面展开图.故选D.5.D解析:选项A中没有画出小正方形的轮廓线,选项B,C中小正方形的轮廓线画的位置不对,只有选项D正确.故选D.6.B解析:用一个平面去截一个圆柱,得到的图形可能是圆、椭圆、四边形.故选B.7.C解析:因为涂有绿色一面的邻边有白、黑、红、蓝,所以涂成绿色一面的对面的颜色是黄色.故选C.8.B解析:从正面、左面看一个几何体时,看到的图形都是三角形的几何体为棱锥或圆锥;从上面看一个几何体时,看到的图形是长方形的几何体为四棱锥或四棱柱.因此符合题意的几何体一定是四棱锥.故选B.9.D解析:三角形绕它的最长边旋转时,另外两条边旋转而成的两个图形都是圆锥.故选D.10.B解析:先根据已知条件画出这个几何体或用实物摆出这个几何体,再画出从左面看这个几何体时看到的图形.故选B.二、11.714解析:先计算出原正方体的面数、棱数,再切去一个角后可增加1个面、2条棱,6+1=7(个),12+2=14(条).所以该几何体有7个面,14条棱.12.97解析:根据从正面看的图形和从左面看的图形可知,这个几何体的底层最少有4个小正方体,最多有6个小正方体,第二层有2个小正方体,第三层有1个小正方体,所以最多有6+2+1=9(个)小正方体,最少有4+2+1=7(个)小正方体.13.长方形14.正方形长方形椭圆15.30cm2解析:三棱柱的侧面展开图是一个长方形,且长方形的长为三棱柱的底面周长,长方形的宽为三棱柱的高,则其侧面展开图的面积为2×3×5=30(cm2).16.24解析:从左面看这个长方体时,看到的图形是一个长方形,因为这个长方形的面积为6,所以这个长方体的高为3,所以这个长方体的体积为2×4×3=24.17.16cm2解析:摆放在桌面上的5个正方体的裸露部分,我们可以从前、后、左、右和上面5个角度去观察,而前、后、左、右4个角度各能观察到3个正方形,加之从上面观察实际可以看到4个正方形的面积,因此几何体的裸露部分的面积是16cm2.18.(n+2)2n3n三、19.解:如图D1-1,从图(1)(2)的所有图中只要画出一种即可.(1)(2)图D1-120.解:不存在.理由:因为有10个面的棱柱一定是八棱柱,而八棱柱有24条棱,但它不是18个顶点,而是16个顶点.21.解:从正面、左面、上面看这个几何体时,所看到的图形如图D1-2.图D1-222.解:根据已知可得,在从上面看到的图形中,各位置上小正方体的个数最多时如图D1-3(1),各位置上小正方体的个数最少时如图D1-3(2).图D1-3由图(1)可知,这个几何体中有5个小正方体;由图(2)可知,这个几何体中有4个小正方体.即在这个几何体中,小正方体的个数最多是5,最少是4.23.解:由题意知,各顶点处的小正方体的三面都涂色,共有8个;有一条边在棱上的小正方体有12个,是两面涂色;每个面的正中间有一个只有一面涂色的,有6个;正方体正中心处有1个小正方体,它的各面都没有涂色.因此三面涂色的小正方体有8个,两面涂色的小正方体有12个,只有一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个.24.解:(1)该铁皮的面积为(1×3)×2+(2×3)×2+(1×2)×2=22(m2).(2)能做成一个长方体盒子,如图D1-4.图D1-4其体积为3×1×2=6(m3).周周测3一.选择题(共12小题)1.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥2.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A.B.C.D.3.下列图形中,可以是正方体表面展开图的是()A.B.C.D.4.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱5.如图是一个正方体的表面展开图,则原正方体中与“美”字所在面相对的面上标的字是()A.丽B.宿C.州D.市6.中国讲究五谷丰登,六畜兴旺.如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A.羊B.马C.鸡D.狗7.如图,一个由相同小正方体堆积而成的几何体,该几何体的主视图是()A.B.C.D.8.下面是几何体中,主视图是矩形的()A.B.C.D.9.下列四个立体图形中,主视图、左视图、俯视图都相同的是()A.B.C.D.10.下列几何体中,主视图为三角形的是()A.B.C.D.11.桌面上放置的几何体中,主视图与左视图可能不同的是()A.圆柱B.正方体C.球D.直立圆锥12.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.二.填空题(共6小题)13.如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是.14.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为.15.某几何体的三视图如图所示,则这个几何体的名称是.16.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是.17.由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是个.三.解答题(共3小题)18.某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积.19.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)20.如图,是一个几何体的二视图,求该几何体的体积.(π取3.14)参考答案与试题解析一.选择题(共12小题)1.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥【分析】根据四棱锥的特点,可得答案.【解答】解:四棱锥的底面是四边形,侧面是四个三角形,底面有四条棱,侧面有4条棱,故选:D.【点评】本题考查了认识立体图形,熟记常见几何体的特征是解题关键.2.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A.B.C.D.【分析】由平面图形的折叠及无盖正方体的展开图就可以求出结论.【解答】解:由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C.故选C.【点评】本题考查了正方体的平面展开图,解答时熟悉四棱柱的特征及无盖正方体展开图的各种情形是关键.3.下列图形中,可以是正方体表面展开图的是()A.B.C.D.【分析】观察选项中的图形,确定出作为正方体表面展开图的即可.【解答】解:下列图形中,可以是正方体表面展开图的是,故选D【点评】此题考查了几何体的展开图,熟练掌握正方体的表面展开图是解题关键.4.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.5.如图是一个正方体的表面展开图,则原正方体中与“美”字所在面相对的面上标的字是()A.丽B.宿C.州D.市【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“宿”与“丽”是相对面,“美”与“州”是相对面,“的”与“市”是相对面,故选:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.中国讲究五谷丰登,六畜兴旺.如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A.羊B.马C.鸡D.狗【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“猪”相对的字是“羊”;“马”相对的字是“狗”;“牛”相对的字是“鸡”.故选:C.【点评】本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特征.7.如图,一个由相同小正方体堆积而成的几何体,该几何体的主视图是()A.B.C.D.【分析】从正面观察几何体看一看可观察到几个面,并依据各之间的位置关系进行判断即可.【解答】解:该几何体的主视图为:故选D.【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的概念是解题的关键.8.下面是几何体中,主视图是矩形的()A.B.C.D.【分析】先得到相应的几何体,找到从正面看所得到的图形即可.【解答】解:A、圆柱的主视图为矩形,符合题意;B、球体的主视图为圆,不合题意;C、圆锥的主视图为三角形,不合题意;D、圆台的主视图为等腰梯形,不合题意.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.9.下列四个立体图形中,主视图、左视图、俯视图都相同的是()A.B.C.D.【分析】分别分析圆锥、圆柱、球体、三棱柱的主视图、左视图、俯视图,从而得出结论.【解答】解:∵球的主视图、左视图、俯视图都是圆,∴主视图、左视图、俯视图都相同的是B,故选B.【点评】本题考查三视图,熟练掌握常见几何体的三视图,是解决问题的关键.10.下列几何体中,主视图为三角形的是()A.B.C.D.【分析】分别找出从图形的正面看所得到的图形即可.【解答】解:A、主视图是矩形,故此选项错误;B、主视图是矩形,故此选项错误;C、主视图是三角形,故此选项正确;D、主视图是正方形,故此选项错误;故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图是从几何体的正面看所得到的图形.11.桌面上放置的几何体中,主视图与左视图可能不同的是()A.圆柱B.正方体C.球D.直立圆锥【分析】分别确定每个几何体的主视图和左视图即可作出判断.【解答】解:A、当圆柱侧面与桌面接触时,主视图和左视图有一个可能是长方形,另一个是圆,故选项符合题意;B、正方体的主视图和作左视图都是正方形,一定相同,故选项不符合题意;C、球的主视图和作左视图都是圆,一定相同,故选项不符合题意;D、直立圆锥的主视图和作左视图都是等腰三角形,一定相同,故选项不符合题意;故选A.【点评】本题考查了简单几何体的三视图,确定三视图是关键.12.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.【分析】根据俯视图是从物体的上面看得到的视图解答即可.【解答】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个矩形,故选:D.【点评】本题考查的是几何体的三视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.二.填空题(共6小题)13.如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是22.【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二层有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.∴这个几何体的表面积是5×6﹣8=22,故答案为22.【点评】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.14.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为5.【分析】根据立体图形画出它的主视图,再求出面积.【解答】解:主视图如图所示,∵由6个棱长均为1的正方体组成的几何体,∴主视图的面积为5×12=5,故答案为5.【点评】此题是简单组合体的三视图,主要考查了立体图的主视图,解本题的关键是画出它的主视图.15.某几何体的三视图如图所示,则这个几何体的名称是圆柱.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故答案为:圆柱.【点评】考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为圆就是圆柱.16.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是5.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个;故答案为:5.【点评】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.17.由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是7个.【分析】根据几何体主视图,在俯视图上表上数字,即可得出搭成该几何体的小正方体最多的个数.【解答】解:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故答案为:7.【点评】此题考查了由三视图判断几何体,在俯视图上表示出正确的数字是解本题的关键.三.解答题(共3小题)18.某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积.【分析】考查立体图形的三视图,圆柱的全面积的求法及公式的应用.【解答】解:(1)根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,故可判断出该几何体为圆柱.(2分)(2)根据圆柱的全面积公式可得,20π×40+2×π×102=1000π(6分).【点评】注意立体图形三视图的看法,圆柱的全面积的计算.19.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可,答案不唯一.【解答】解:答案不惟一,如图.【点评】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.20.如图,是一个几何体的二视图,求该几何体的体积.(π取3.14)【分析】俯视图有一个圆与一个矩形,在正视图看来有两个矩形,则可以判断该几何体是一个长方体与圆柱的结合.根据长方体以及圆柱的体积计算公式解出即可.=π()2×32+30×25×40=40048cm3.【解答】解:V=V圆柱+V长方体【点评】本题主要考查由三视图确定几何体和求圆柱体的面积,同时考查学生的空间想象能力.。

《椭圆的几何性质》2

1.
1.
16 9
2







2
x
y
4.
1.
45 36
x2 y 2
2.
1.
4
9
2
2
x
y
5.

1.
100 64
x2 y 2
3.
1.
34 25
x2 y 2
x2 y 2
6.
1或
1.
25 16
16 25
3
复习练习
2、下列方程所表示的曲线中,关于x轴和y 轴都对称的是( D )
y
就是椭圆的焦半径公式.
y
M
F1 O
2
椭圆 2

2
+ 2

M
F2
|MF1|=a+ex0 |MF2|=a-ex0







O
F1
x
= 1 > > 0 的焦半径公式是
F2
2
椭圆 2

2
+ 2

x
= 1 > > 0 的焦半径公式是
|MF1|=a+ey0
|MF2|=a-ey0
17
5、若椭圆的两个焦点及一个短轴端点构成正三角形,则其离心
1
率为

1
2
6、若椭圆的 的两个焦点把长轴分成三等分,则其离心率为
3。
7、以椭圆的焦距为直径并过两焦点的圆,交椭圆于四个不同
的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档