最新数电知识点总结(整理版)

合集下载

数字电路知识点汇总(精华版)汇编

数字电路知识点汇总(精华版)汇编

数字电路知识点汇总(东南大学)第1章数字逻辑概论一、进位计数制1•十进制与二进制数的转换2•二进制数与十进制数的转换3. 二进制数与16进制数的转换二、基本逻辑门电路第2章逻辑代数表示逻辑函数的方法,归纳起来有:真值表,函数表达式,卡诺图,逻辑图及波形图等几种。

一、逻辑代数的基本公式和常用公式1) 常量与变量的关系A +0=A与A AA +1 = 1 与 A 0=0A A = 1 与 A A = 02) 与普通代数相运算规律a. 交换律:A + B = B +AA B = B Ab. 结合律:(A + B) + C = A + (B + C)(A B) C 二A (B C)C.分配律:A (B C) = A B A CA B C = (A B)()A C))3) 逻辑函数的特殊规律a.同一律:A + A + Ab.摩根定律:A B =A B , AB -A Bb.关于否定的性质人=A二、逻辑函数的基本规则代入规则在任何一个逻辑等式中,如果将等式两边同时出现某一变量A的地方,都用一个函数L表示,则等式仍然成立,这个规则称为代入规则例如:A B 二 C • A B 二C可令L= B二C则上式变成A L A L = A二L=A二B二C三、逻辑函数的:一一公式化简法公式化简法就是利用逻辑函数的基本公式和常用公式化简逻辑函数,通常,我们将逻辑函数化简为最简的与一或表达式1) 合并项法:利用A + A A =1或A B二A B二A,将二项合并为一项,合并时可消去一个变量例如:L= ABC ABC = AB(C C) = AB2) 吸收法利用公式A A A,消去多余的积项,根据代入规则 A B可以是任何一个复杂的逻辑式例如化简函数1= AD BE解:先用摩根定理展开:AB = A B 再用吸收法L= AB AD BE=A B AD BE=(A AD) (B BE)=A(1 AD) B(1 BE)=A B3) 消去法利用A A^A B消去多余的因子例如,化简函数L= AB AB ABE ABC解:L= AB AB ABE ABC=(AB ABE) (AB ABC)=A(B BE) A(B BC)=A(B C)(B B) A(B B)(B C)=A(B C) A(B C)=AB AC AB AC=AB ABC4) 配项法利用公式A B A C B^A B A C将某一项乘以(A A ),即乘以1, 然后将其折成几项,再与其它项合并。

数电基本知识点总结

数电基本知识点总结

数电基本知识点总结数电(数字电子技术)是研究数字信号的产生、处理、传输和存储的科学与技术。

在现代社会中,数字电子技术已经深入各个领域,发挥着重要作用。

本文将从几个基本知识点入手,总结数电的一些基本概念和原理。

一、二进制二进制是数电中最基础的概念之一。

在二进制系统中,只存在两个数字0和1,这两个数字代表了电路中的两个状态。

二进制系统的优势在于可以方便地进行数值表示和逻辑运算。

在二进制中,每个位上的数值表示的是2的幂次。

例如,二进制数1101表示的是1*2^3 + 1*2^2 + 0*2^1 + 1*2^0 = 13。

二、逻辑门逻辑门是数电中常见的基本电路,用于实现特定的逻辑功能。

最常见的逻辑门包括与门、或门和非门。

与门的输出只有当所有输入都是高(1)时才为高,否则为低(0)。

或门的输出只有当任一输入为高时才为高,否则为低。

非门则是将输入取反,即输入为高时输出低,输入低时输出高。

逻辑门可以通过组合和级联的方式构成复杂的逻辑电路,实现各种复杂的逻辑功能。

三、触发器触发器是用于存储数据的元件,也是数字电子中的重要组成部分。

最常见的触发器是D触发器和JK触发器。

D触发器具有存储功能,利用时钟信号确定存储的时间,而JK触发器则具有存储与反转的功能。

触发器可以用于存储状态、实现时序控制和生成频率分频信号等。

四、进位加法器进位加法器是用于进行二进制数加法的电路。

最简单的进位加法器是半加器,可以实现两个一位二进制数的加法。

而全加器则可以实现三个一位二进制数的加法,并考虑了进位的情况。

进一步地,多个全加器可以级联构成更高位数的加法器,实现多位二进制数的加法运算。

五、时序控制时序控制是数字电子中的重要内容之一,它涉及到电路的时序运算以及各个部件之间的时序关系。

时序控制可以实现各种复杂的功能,例如计时器、状态机等。

常用的时序控制电路有时钟发生器、时钟分频电路、计数器等。

总结起来,数电是研究数字信号的产生、处理、传输和存储的科学与技术。

数电知识点总结

数电知识点总结

数电知识点总结数电(数位电子)是一门研究数字电子技术的学科,涉及到数字电路、数字信号处理、数字系统等多个方面的知识。

数字电子技术已经成为现代电子工程技术的基础,并且在通信、计算机、控制、显示、测量等领域都有广泛的应用。

本文将从数字电路、数字信号处理和数字系统三个方面对数电的知识点进行总结。

1. 数字电路数字电路是将数字信号作为输入、输出,通过逻辑门、存储器等数字元器件完成逻辑运算和信息处理的电路。

数字电路是实现数字逻辑功能的基本组成单元,包括组合逻辑电路和时序逻辑电路两种类型。

1.1 组合逻辑电路组合逻辑电路是由若干逻辑门进行组合而成的电路,其输出仅取决于当前输入的组合,不受到电路内过去的状态的影响。

组合逻辑电路主要包括门电路(与门、或门、非门等)、编码器、译码器、多路选择器、加法器、减法器等。

常用的集成逻辑门有 TTL、CMOS、ECL、IIL 四种族类。

常见的集成逻辑门有 TTL、 CMOS、 ECL、 IIL 四种。

1.2 时序逻辑电路时序逻辑电路是组合电路与触发器相结合,结构复杂。

时序逻辑电路主要包括触发器、寄存器、计数器、移位寄存器等。

在传统的 TTL 集成电路中,触发器主要有 RS 触发器、 JK触发器、 D 触发器和 T 触发器四种。

在 CMOS 集成电路中一般用 T 触发器,D 触发器和 JK 触发器等。

2. 数字信号处理数字信号处理(DSP)是利用数字计算机或数字信号处理器对连续时间的信号进行数字化处理,包括信号的采样、量化和编码、数字滤波、谱分析、数字频率合成等基本处理方法。

数字信号处理已广泛应用于通信、音频、视频、雷达、医学影像等领域。

2.1 信号采样和量化信号采样是将连续时间信号转换为离散时间信号的过程,采样频率必须高于信号频率的两倍才能保证信号的完全重构。

信号量化是将采样得到的连续幅度信号转换为一个有限数目的离散的幅度值的过程,量化误差会引入信号失真。

2.2 数字滤波数字滤波是利用数字计算机对数字信号进行特定频率成分的增益或者衰减的处理过程。

数电 知识点总结

数电 知识点总结

数电知识点总结数电(数字电子技术)是电子信息科学与技术领域的一门基础学科,它研究数字信号的产生、传输、处理和应用。

数电主要涉及数字电路的设计、逻辑运算、组合逻辑、时序逻辑、存储器设计等方面的内容。

以下是对数电常见知识点的总结,共计1000字。

一、数字电路基础1. 二进制:介绍二进制数表示、二进制与十进制的转换、二进制加减法运算等。

2. 逻辑门电路:介绍与门、或门、非门、异或门等基本逻辑门的实现及其真值表。

3. 真值表和卡诺图:介绍真值表和卡诺图的作用,以及如何利用卡诺图简化布尔函数。

二、组合逻辑电路1. 组合逻辑的基本概念:介绍组合逻辑电路的基本概念和逻辑功能的表示方法。

2. 组合逻辑电路设计:介绍组合逻辑电路的设计方法,包括常见逻辑门的设计、多路选择器的设计、编码器和解码器的设计等。

3. 多级逻辑电路:介绍多级逻辑电路的设计原理,包括选择器、加法器、减法器等。

三、时序逻辑电路1. 时序逻辑电路的基本概念:介绍时序逻辑电路的基本概念和时序逻辑元件的特点,如锁存器、触发器等。

2. 触发器:介绍RS触发器、D触发器、JK触发器的工作原理、真值表和特性方程。

3. 时序逻辑电路设计:介绍时序逻辑电路的设计方法,包括计数器、移位寄存器等。

四、存储器设计1. 存储器的分类:介绍存储器的分类,包括RAM(随机访问存储器)和ROM(只读存储器)。

2. RAM:介绍RAM的基本工作原理和特点,包括静态RAM (SRAM)和动态RAM(DRAM)。

3. ROM:介绍ROM的分类和工作原理,包括PROM、EPROM和EEPROM。

五、数字系统设计1. 数字系统的层次结构:介绍数字系统的层次结构,包括数字系统组成元件和模块的概念。

2. 数据流图:介绍数据流图的绘制方法和用途。

3. 状态图:介绍状态图的绘制方法和应用,用于描述有限状态机的行为。

六、数字信号处理1. 数字信号的采样和量化:介绍数字信号的采样和量化方法,以及采样定理的原理。

数电知识点汇总

数电知识点汇总

数电知识点汇总一、数制与编码。

1. 数制。

- 二进制:由0和1组成,逢2进1。

在数字电路中,因为晶体管的导通和截止、电平的高和低等都可以很方便地用0和1表示,所以二进制是数字电路的基础数制。

例如,(1011)₂ = 1×2³+0×2² + 1×2¹+1×2⁰ = 8 + 0+2 + 1=(11)₁₀。

- 十进制:人们日常生活中最常用的数制,由0 - 9组成,逢10进1。

- 十六进制:由0 - 9、A - F组成,逢16进1。

十六进制常用于表示二进制数的简化形式,因为4位二进制数可以用1位十六进制数表示。

例如,(1101 1010)₂=(DA)₁₆。

- 数制转换。

- 二进制转十进制:按位权展开相加。

- 十进制转二进制:整数部分采用除2取余法,小数部分采用乘2取整法。

- 二进制与十六进制转换:4位二进制数对应1位十六进制数。

将二进制数从右向左每4位一组,不足4位的在左边补0,然后将每组二进制数转换为对应的十六进制数;反之,将十六进制数的每一位转换为4位二进制数。

2. 编码。

- BCD码(Binary - Coded Decimal):用4位二进制数来表示1位十进制数。

常见的有8421 BCD码,例如十进制数9的8421 BCD码为(1001)。

- 格雷码(Gray Code):相邻的两个代码之间只有一位不同。

在数字系统中,当数据按照格雷码的顺序变化时,可以减少电路中的瞬态干扰。

例如,3位格雷码的顺序为000、001、011、010、110、111、101、100。

二、逻辑代数基础。

1. 基本逻辑运算。

- 与运算(AND):逻辑表达式为Y = A·B(也可写成Y = AB),当A和B都为1时,Y才为1,否则Y为0。

在电路中可以用串联开关来类比与运算。

- 或运算(OR):逻辑表达式为Y = A + B,当A和B中至少有一个为1时,Y为1,只有A和B都为0时,Y为0。

大学数电知识点总结

大学数电知识点总结

大学数电知识点总结一、数电基本概念1. 数字电子学的概念和发展历史- 数字电子学是指以电子技术为基础进行数字电路设计和数字系统分析的一门学科。

它是传统的电子技术与计算机技术的结合,是先进的信息技术的一部分。

- 数字电子学的起源可以追溯到20世纪40年代,随着计算机和通信技术的发展,数字电子学逐渐发展成熟。

目前,数字电子学已经成为电子信息类专业的一门重要基础课程。

2. 数字电子学的基本概念- 数字电子学主要研究数字电路的设计、分析和实现技术,包括数字电路的原理与设计方法、数字系统的组成结构、数字信号的处理与传输等内容。

- 数字电子学的基本概念包括数字信号与模拟信号的区别、数字电路的基本原理、数字逻辑门的种类与功能等内容。

3. 数字信号与模拟信号的区别- 数字信号是离散的,表示离散的数值,其数值是以二进制形式表示。

而模拟信号是连续的,表示连续的数值,其数值可以是任意的实数。

- 数字信号与模拟信号在传输、处理和存储方面有着不同的特点和应用场景,数字电子学主要研究数字信号的处理、传输与存储技术。

4. 数字电路的基本原理- 数字电路是由数字逻辑门连接而成的电路,可以实现逻辑运算、数据存储和信号处理等功能。

数字电路的基本原理包括布尔代数、数字逻辑门、数字电路的组合与时序等内容。

5. 数字逻辑门的种类与功能- 数字逻辑门是数字电路的基本组成单元,根据不同的逻辑功能可以分为与门、或门、非门、异或门等,每种门电路具有不同的逻辑功能与应用场景。

二、数字逻辑门的基本应用1. 与门(AND Gate)- 与门是英特尔公司制造的一种逻辑门,它具有两个或两个以上输入,一个输出。

只有当所有输入均为1时,输出为1,否则输出为0。

- 与门的基本应用包括逻辑乘法器、数据选择器、移位寄存器等。

2. 或门(OR Gate)- 或门是一种逻辑门电路,它具有两个或两个以上输入,一个输出。

只要有一个输入为1,输出就为1;当所有输入均为0时,输出为0。

数电基本知识点总结

数电基本知识点总结数字电子学是现代电子技术的基础,涵盖了诸多重要的知识点。

本文将对数电基本知识进行总结,包括布尔代数、逻辑门、编码与译码、计数器和触发器等方面的内容。

一、布尔代数布尔代数是数电的基石,用于描述逻辑关系。

它包括与运算、或运算和非运算三种基本逻辑运算,分别用符号∧(AND)、∨(OR)和¬(NOT)表示。

通过这些运算,我们可以构建各种逻辑表达式和逻辑函数。

其中,布尔恒等式是布尔代数中的重要定律之一,用于简化逻辑表达式,减少电路中的门数量,提高电路的性能。

二、逻辑门逻辑门是数字电子电路的基本组成单元,实现了不同的逻辑运算。

常见的逻辑门有与门、或门、非门、与非门、或非门、异或门和同或门等。

逻辑门通过输入信号的不同组合,产生特定的输出信号。

通过设计和组合不同的逻辑门,可以实现各种复杂的数字电路。

三、编码与译码编码与译码是数字电子中常见的数据处理方式。

编码器将多个输入信号转换成少量的输出信号,常用的编码器有BCD编码器和优先编码器。

译码器则是编码器的逆过程,将少量的输入信号转换成多个输出信号。

常见的译码器有二-四译码器和三-八译码器等。

编码与译码在信息处理和传输中起到了重要作用。

四、计数器计数器是用于计数的电路。

常见的计数器分为同步计数器和异步计数器两种。

同步计数器在所有输入时钟脉冲到达时进行计数,而异步计数器则是在每个时钟脉冲到达时进行计数。

计数器可以用于各种场景,如时钟频率分频、事件计数等。

同时,通过组合不同类型的计数器,也可以实现更复杂的计数功能。

五、触发器触发器是一种用于存储和延迟信号的电路。

常见的触发器有RS 触发器、D触发器、JK触发器和T触发器等。

触发器通过输入控制信号,使得输出信号在特定条件下发生变化。

它们可以用于存储和传递数据,在数字电路设计中扮演着重要的角色。

同时,触发器的状态转换和时序行为也是数字电路中的研究重点。

在数字电子学的学习过程中,不仅需要掌握以上基本知识点,还需要学习和了解更多的相关内容,如多路复用器、解复用器、时序逻辑、组合逻辑、存储器等。

数电的知识点总结

数电的知识点总结数电的基本概念与原理数字电子技术是一门研究数字信号处理、存储和传输的学科,它是借助符号逻辑(位逻辑)和数字信号理论来进行数字信息的处理。

数字电子技术的基本概念与原理包括逻辑门、布尔代数、数字逻辑电路等。

逻辑门是数字电子技术的基础组成单元,逻辑门主要有与门、或门、非门、异或门、与非门、或非门、同或门等。

逻辑门是根据布尔代数的原理构建的,布尔代数是一种数学体系,用来描述由逻辑变量和逻辑运算构成的表达式的代数系统,它包含了与、或、非等逻辑运算。

数字电子技术的逻辑门和布尔代数的知识是数电的基本概念。

数字逻辑电路是由逻辑门按照一定的连接方式经过布局和布线形成的电路,它能够执行特定的逻辑功能。

数字逻辑电路一般包括组合逻辑电路和时序逻辑电路两种类型,组合逻辑电路的输出仅依赖于当前的输入,时序逻辑电路的输出还受到时钟信号的影响。

数电的基本原理是基于二进制的储存和传输信息。

在数电中,信息是以二进制形式表示和操作的,二进制是一种用0和1来表示量的编码形式。

数电使用二进制编码可以实现高效的信息处理和传输,二进制编码可以更好地利用现代计算机、通信系统等机器和设备,提高处理速度和数据传输的可靠性。

数电的应用数电技术广泛应用于数字电路、数字通信、计算机体系结构、数字信号处理、嵌入式系统、通信网络等领域。

在数字电路方面,数电技术主要应用于设计数字逻辑电路和数字系统。

数字逻辑电路通过逻辑门、触发器、寄存器、计数器等器件的组合,实现了从简单非线性函数到复杂算法运算的功能。

数字系统是数字电路的扩展和延伸,它是由数字信号处理器、存储器、接口电路、控制器等器件构成的一个相互关联并协同工作的系统。

在数字通信领域,数电技术用于设计数字通信系统、数字调制解调器、数字信号处理器等设备。

数字通信系统和数字调制解调器利用数电技术可以实现高速传输和高可靠性的数字通信,数字信号处理器可以对数字信号进行滤波、解码、频谱分析、数据压缩等处理。

数电基本知识点总结

数电基本知识点总结随着现代电子技术的快速发展和广泛应用,数字电子技术已经成为新时代中不可或缺的重要组成部分。

数字电子技术作为电子技术的一个分支,已经成为电子科学研究的主要方向之一,在现代应用中也扮演着重要的角色。

数字电子技术的基本知识点包括数字电路、数字信号处理等。

本文将对这些基本知识点进行总结。

一、数字电路数字电路是计算机硬件、通信系统以及灯胆等各种电子器件的基本组成部分,是数字电子技术的基础。

数字电路包括组合逻辑电路和时序逻辑电路两种。

组合逻辑电路根据输入信号产生输出信号,其中不需要考虑时序。

时序逻辑电路则是由组合逻辑模块和时钟模块组成的,处理输入信号时需要考虑时序。

数字电路有以下基本知识点:1.逻辑运算数字电路中的逻辑运算包括与、或、非、异或等逻辑运算。

其中与运算是指各输入信号同时为1时,输出为1;或运算是指各输入信号中有一个或多个为1时,输出为1;非运算是指输入信号为1时,输出为0,反之亦然;异或运算是指各输入信号不相同时输出为1,否则输出为0。

2.编码器编码器是将不同的输入信号映射为不同的输出信号的电路。

常用的编码器有BCD编码器、八位编码器和十六位编码器等。

3.译码器译码器是将不同的输入信号转换为不同的输出信号,按照特定的规则进行转换。

译码器是数字电路的重要组成部分。

常用的译码器有BCD译码器、八位译码器和十六位译码器等。

4.计数器计数器是可以计数的电路,也是数字电路中经常使用的模块之一。

计数器可以按照一定的规则计数,并可以将计数结果反馈给其他电路模块使用。

计数器包括同步计数器和异步计数器等。

5.时序电路时序电路是根据特定的时序要求来设计的数字电路。

时序电路有微处理器、时钟电路等。

二、数字信号处理数字信号处理是应用数字电子技术的一个重要方向,将模拟信号转换为数字信号,并对其进行数字处理和分析。

数字信号处理有以下几个基本知识点:1.采样定理采样定理是数字信号处理中最基本的知识点之一。

其核心思想是:一个信号能够以完全的方式重构,只需要一定的采样频率。

数电知识点总结

数电知识点总结数字电子技术(简称数电)是电子信息类专业的一门重要基础课程,它主要研究数字信号的传输、处理和存储。

下面为大家总结一些关键的数电知识点。

一、数制与码制数制是指用一组固定的数字和一套统一的规则来表示数的方法。

常见的数制有十进制、二进制、八进制和十六进制。

十进制是我们日常生活中最常用的数制,它由 0、1、2、3、4、5、6、7、8、9 这十个数字组成,遵循“逢十进一”的原则。

二进制则只有 0 和 1 两个数字,其运算规则简单,是数字电路中最常用的数制,遵循“逢二进一”。

八进制由0、1、2、3、4、5、6、7 这八个数字组成,“逢八进一”。

十六进制由 0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F 这十六个数字和字母组成,“逢十六进一”。

码制是指用不同的代码来表示不同的信息。

常见的码制有BCD 码、格雷码等。

BCD 码用四位二进制数来表示一位十进制数,有 8421 BCD 码、5421 BCD 码等。

格雷码的特点是相邻两个编码之间只有一位发生变化,这在数字电路中可以减少错误的产生。

二、逻辑代数基础逻辑代数是数字电路分析和设计的数学工具。

基本逻辑运算包括与、或、非三种。

与运算表示只有当所有输入都为 1 时,输出才为 1;或运算表示只要有一个输入为 1,输出就为 1;非运算则是输入为 1 时输出为 0,输入为 0 时输出为 1。

逻辑代数的基本定律有交换律、结合律、分配律、反演律和吸收律等。

这些定律在逻辑函数的化简和变换中经常用到。

逻辑函数的表示方法有真值表、逻辑表达式、逻辑图、卡诺图等。

真值表是将输入变量的所有可能取值组合及其对应的输出值列成的表格;逻辑表达式是用逻辑运算符将输入变量连接起来表示输出的式子;逻辑图是用逻辑门符号表示逻辑函数的电路图;卡诺图则是用于化简逻辑函数的一种图形工具。

三、门电路门电路是实现基本逻辑运算的电子电路。

常见的门电路有与门、或门、非门、与非门、或非门、异或门和同或门等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档
精品文档
数电复习知识点
第一章
1、了解任意进制数的一般表达式、2-8-10-16进制数之间的相互转换;
2、了解码制相关的基本概念和常用二进制编码(8421BCD、格雷码等);

第三章
1、掌握与、或、非逻辑运算和常用组合逻辑运算(与非、或非、与或非、异或、同或)
及其逻辑符号;
2、掌握逻辑问题的描述、逻辑函数及其表达方式、真值表的建立;
3、掌握逻辑代数的基本定律、基本公式、基本规则(对偶、反演等);
4、掌握逻辑函数的常用化简法(代数法和卡诺图法);
5、掌握最小项的定义以及逻辑函数的最小项表达式;掌握无关项的表示方法和化简原则;
6、掌握逻辑表达式的转换方法(与或式、与非-与非式、与或非式的转换);

第四章
1、了解包括MOS在内的半导体元件的开关特性;
2、掌握TTL门电路和MOS门电路的逻辑关系的简单分析;
3、了解拉电流负载、灌电流负载的概念、噪声容限的概念;
4、掌握OD门、OC门及其逻辑符号、使用方法;
5、掌握三态门及其逻辑符号、使用方法;
6、掌握CMOS传输门及其逻辑符号、使用方法;
7、了解正逻辑与负逻辑的定义及其对应关系;
8、掌握TTL与CMOS门电路的输入特性(输入端接高阻、接低阻、悬空等);

第五章
1、掌握组合逻辑电路的分析与设计方法;
2、掌握产生竞争与冒险的原因、检查方法及常用消除方法;
3、掌握常用的组合逻辑集成器件(编码器、译码器、数据选择器);
4、掌握用集成译码器实现逻辑函数的方法;
5、掌握用2n选一数据选择器实现n或者n+1个变量的逻辑函数的方法;

第六章
1、掌握各种触发器(RS、D、JK、T、T’)的功能、特性方程及其常用表达方式(状态
转换表、状态转换图、波形图等);
2、了解各种RS触发器的约束条件;
3、掌握异步清零端Rd和异步置位端Sd的用法;
2、了解不同功能触发器之间的相互转换;

第七章
1、了解时序逻辑电路的特点和分类;
2、掌握时序逻辑电路的描述方法(状态转移表、状态转移图、波形图、驱动方程、状态
方程、输出方程);
3、掌握同步时序逻辑电路的分析与设计方法,掌握原始状态转移图的化简;
精品文档
精品文档
4、了解异步时序逻辑电路的简单分析;
5、掌握移位寄存器、计数器的功能、工作原理和实际应用等;
6、掌握集成计数器实现任意进制计数器的方法;
7、掌握用移位寄存器、计数器以及其他组合逻辑器件构成循环序列发生器的原理;

第八章
1、掌握门电路和分立元件构成的施密特触发器、单稳态触发器、多谐振荡器的电路组成
及工作原理,掌握相关参数的计算方法;
2、掌握用555电路构成施密特触发器、单稳态触发器、多谐振荡器的方法以及工作参数
的计算或者改变方法;

第九章
1、了解ROM和RAM的基本概念;
2、了解存储器容量的表示方法和扩展方法,了解存储容量与地址线、数据线的关系。

第一章数制和码制
1、什么是数制、码制
2、二进制、十进制、八进制、十六进制相互转换,不同数制数的的大小排列
3、求二进制数的反码、补码(包括无符号数、有符号数)
4、十进制数对应的8421BCD码、余三码、格雷码

第二章、逻辑代数
0、什么是逻辑代数,逻辑变量的取值特点
1、与、或、非、与非、或非、与或非、异或、同或运算,运算符号、逻辑符号、逻辑功
能、运算关系
2、逻辑代数基本公式:运算规则、运算法则、交换律、结合律、分配率、摩根定律公式
3、逻辑代数常用公式:吸收率I、II;冗余律;
4、逻辑代数基本定理:代入定理、反演定理、对偶定理,求反演式、对偶式
5、什么是逻辑函数
卡诺图化简逻辑函数式(最小项表达式)真值表6、逻辑函数的表示方法:真值表、
逻辑函数式、逻辑图、波形图以及相互之间的转换 逻辑问题抽象
7、逻辑函数化简(公式、卡诺图)

第三章
1、什么是门电路
2、正负逻辑的概念
3、二极管、三极管、MOS管开关特性:静态开关特性、动态开关特性(主要是结论)
4、二极管与门、或门原理,写表达式
5、CMOS反相器、CMOS与非门、CMOS或非门,认识电路写表达式
6、CMOS反相器阈值电压值、输入噪声容限值及其意义
7、CMOS门电路无输入特性,输出特性:输出低电平电流、输出高电平电流
精品文档
精品文档
8、CMOS门电路传输延迟时间意义
9、OD门、TS门给出逻辑符号电路会写表达式、分析功能;OD门输出并联使用功能。
10、CMOS传输门功能(根据逻辑符号分析)、双向模拟开关功能分析
11、CMOS门电路多于不用输入端的处理(不影响逻辑功能、不能悬空)
12、三极管反相器分析
13、TTL反相器:输入高、低电平各三极管的工作状态(导通、截止、饱和、倒置工作
情况)
14、TTL反相器阈值电压值、输入噪声容限电压值及其意义
15、TTL反相器输入特性曲线读出输入短路电流值(输入低电平电流值)、输入高电平
电流值、理解输出高电平电流、输出低电平电流(极限值);TTL反相器扇出系数的计算及
其意义。
16、TTL反相器输入负载特性:开门电阻(值)、关门电阻(值)
17、TTL反相器传输延迟时间的意义
18、TTL与非门(多发射极三极管实现的逻辑功能)、或非门,认识电路并写逻辑表达

19、普通TTL门、CMOS输出端能否并联使用
20、OC门、TS门逻辑符号给定电路分析逻辑功能并画波形图。

第四章 组合逻辑电路
1、组合逻辑电路、时序逻辑电路的概念区别,电路区别
2、组合逻辑电路分析(真值表分析逻辑功能)
3、组合逻辑电路设计(分立门电路器件设计、中规模集成电路设计译码器、数据选择器
等) 组合逻辑电路设计的步骤(最简与或表达式、与非-与非表达式、最简与或非表达式)

4、编码器:输入信号端与输出编码端的关系;互斥编码器、优先编码器区别
0100,其余全为1,则输出编码为Y2'Y1'Y0'' 74HC148功能,若输入I5
74HC147功能。
5、译码器:输入编码端与输出信号端的关系;
74HC138功能分析:基本功能、扩展功能;两片74HC138级联构成4线-16线译码器;
74HC138设计组合逻辑函数;
6、数据选择器:概念(含义);输入信号、输出端的关系;74HC153、74HC151基本功
能、扩展功能、级联;数据选择器设计组合逻辑函数。
7、加法器:全加器、半加器的概念,会设计;74HC283构成8421BCD码转余三BCD码。
8、数值比较器,输入、输出信号关系;数值比较器级联。
9、判断一个电路是否存在竞争冒险;消除竞争冒险的方法

第五章 触发器
1、触发器从逻辑功能上分为几种、从CLK信号控制方面(电路结构)分几种
精品文档
精品文档
2、SR锁存器、电平触发的SR触发器(D触发器),认识电路会分析功能。
3、各种触发器要认识逻辑符号,会画波形图。

4、主从SR触发器、主从JK触发器,CLK有效期间接收信号的特点(主从JK触发器的
一次变化现象)。

5、边沿触发器认识逻辑符号,注意异步清零端、异步置1端的逻辑控制(优先权最高)。
6、触发器逻辑功能表示形式(方法)有几种,给定触发器会给出其不同的表示形式。

相关文档
最新文档