2015中考数学复习指导:圆的基础性质公式定理
圆所有定理初中

初中数学中的圆及其定理在我们日常生活中,圆形无处不在。
无论是太阳、月亮,还是车轮、钟表,都呈现出完美的圆形。
而在数学的世界中,圆也是基本的几何图形之一。
本文将详细解读初中阶段关于圆的基本概念和主要定理。
首先,我们需要了解什么是圆。
根据定义,圆是一个平面内到一个固定点(称为圆心)的距离相等的所有点的集合。
这个固定距离被称为半径。
通过圆心并且两端都在圆上的线段叫做直径,它是半径的两倍。
连接圆上任意两点的线段叫做弦,经过圆心的弦是圆的直径。
接下来,我们将介绍几个与圆相关的基础定理。
1. 圆周角定理:圆周角等于它所对弧度的一半。
这意味着如果你知道一个圆周角的度数,你可以直接计算出对应弧度的度数。
2. 同弧等角定理:在一个圆中,如果两个弧对应的圆周角相等,那么这两个弧也相等。
3. 弧长公式:弧长L等于圆的半径r乘以弧度θ,即L= rθ。
这里的θ是以弧度为单位的弧度值。
4. 扇形面积公式:扇形面积A等于圆的半径r与弧度θ的乘积除以2,即A= 0.5r²θ。
5. 勾股定理在圆中的应用:直角三角形斜边的平方等于两腰的平方之和。
在这个定理中,如果我们有一个90度的圆周角,我们可以把它的两条边看作是半径,然后使用勾股定理来求解未知量。
6. 切线定理:从圆外一点向圆引切线和割线,这点和切点之间的线段长度平方等于这点到割线两交点距离的乘积。
7. 相交弦定理:圆内的两弦相交于圆心,则这两条弦分别被分成的线段的乘积相等。
理解和掌握这些知识,不仅可以帮助我们更好地理解日常生活中的圆形物体,还可以提升我们的逻辑思维能力和问题解决能力。
在学习过程中,我们应该注意理论联系实际,多做练习题,加深对定理的理解和运用。
只有这样,我们才能真正掌握这些知识,将其转化为自己的技能。
中考数学圆知识点总结

中考数学圆知识点总结一、圆的基本概念1.1 圆的定义圆是由平面上到定点到距离等于定值的所有点的集合。
这个定点叫做圆心,这个定值叫做圆的半径。
1.2 圆的元素圆的元素有圆心、半径、直径、弦、弧、扇形等。
1.3 圆的相关概念圆周率π:定圆的周长与直径的比值。
圆心角:以圆心为顶点的角。
圆周角:角的顶点在圆周上,并且角的两边都是圆上的弧。
1.4 圆的性质圆的性质有很多,比如半径相等的圆,直径相等的圆,弦长相等的圆等等。
二、圆的计算2.1 圆的周长圆的周长又叫做圆周长,也叫做圆的周长,通常用字母C表示。
圆的周长等于圆的直径乘以圆周率π。
C=πd2.2 圆的面积圆的面积是圆内部的所有点的集合,通常用字母A表示。
圆的面积等于圆心角的正弦值乘以半径的平方再乘以圆周率π。
A=πr²2.3 圆的相关角和弧长的求解在圆中,角和弧是密切相关的。
圆心角的度数等于它所对的弧所代表的圆周的长度所占整个圆周的比例。
所以我们可以利用这个性质来求解圆的相关问题。
三、圆的相关定理3.1 圆的切线与切点圆的切线与切点是圆的一个重要定理,它的性质有点多。
比如一个圆与直线相切,与圆外一点两切线为公切线或两切线的交点到原圆的距离相等。
3.2 圆的相交定理圆的相交定理也是圆的一个重要定理。
比如两个圆相交于两个不同的点,那么连接这两个交点和两个圆心就组成了一个四边形,并且它的对角线相交于一点。
3.3 圆的正接弦定理圆的正接弦定理是圆的一个重要定理。
它表示一个圆内部的一个锐角与它所对的正切弦之间的关系,这个定理在圆的相关计算中是非常重要的。
四、圆的应用圆在现实生活中有很多应用,比如钟面就是一个圆,轮胎也是一个圆,圆锥形的灯泡和圆球等等都是圆的应用。
而在数学中,圆也是几何图形中的一个重要内容,比如在三角函数中,圆和三角函数是密切相关的。
在平面几何中,圆与直线相交的问题也是经常出现的。
所以掌握圆的知识对于学生来说是非常重要的。
总之,圆是中考数学中的一个重要知识点。
中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习【基础知识回顾】一、圆的定义:1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径】3、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类4、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴.⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】5、垂径定理及推论:(1)垂径定理:垂直于弦的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .(2)推论:平分弦()的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别几何语言:∵在圆O中,_______∴ , .∵在圆O中,________∴ , .∵在圆O中,________∴ , .【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是2、作直弦所对的圆周角是圆中常作的辅助线】3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做性质:圆内接四边形的对角【名师提醒:圆内接平行四边形是圆内接梯形是】考点一:垂径定理例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 8例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________考点二:圆心角定理例3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________对应训练2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于().A.55° B.60°C.65° D.70°考点三:圆周角定理例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB= .例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于_____________对应训练6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C(1)求证:CB∥MD;(2)若BC=4,sinM= ,求⊙O的直径.考点四:圆内接四边形的性质例3 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3对应训练【聚焦中考】1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为(A)2 (B)3 (C)4 (D)62.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A. B. C. D.3.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.4.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°6.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=______7.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D.112.5°8.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.9.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.10.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.11.AB是圆O的直径,BC是圆O的切线,连接AC交圆O于点D,E为弧AD上一点,连接AE、BE,BE交AC于点F,且AF²=EF.EB(1)求证:CB=CF (2)若点E到弦AD的距离为1,cos角C=3/5,求圆O的半径12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.【备考真题过关】一、选择题1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为__________2.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4 B.等于4 C.等于6 D.随P点位置的变化而变化3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 D.44.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.C.∠D=∠AEC D.△ADE∽△CBE6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°二、填空题8.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.9.如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,0C=1,则半径OB的长为.10.如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.111314.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;15.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是.三、解答题16.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)17.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.18.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.19.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.21.如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=2,求证:△ACD∽△OCB.。
初中数学圆知识点总结

初中数学圆知识点总结圆是数学中的一个重要几何图形,它是由一个平面上到一个固定点距离相等的所有点组成的集合。
在初中数学中,学习圆的知识是非常重要的。
下面是关于初中数学圆知识点的总结:1.圆的定义:圆是平面上一点到另一点的距离是一定值的所有点的集合。
2.圆的元素:(1)圆心:圆上所有点到圆心的距离相等,也就是圆心是圆的对称中心。
(2)半径:圆心到圆上任意一点的距离称为半径,用字母r表示。
(3)直径:通过圆心的一条线段,且两端点在圆上,称为直径。
直径的长度等于两倍半径的长度。
3.圆的性质:(1)圆的内切正多边形的边数越多,其面积越接近圆的面积。
(2)相交弧的性质:对于相交弧AB和CD,它们所对应的圆心角相等,弧所对应的弧长也相等。
(3)切线与半径的垂直关系:切线与半径的垂直关系性质是指切线和半径在交点处垂直。
(4)切线切割大圆形成的弦相等:切线切割大圆的弦,那么这些弦相等。
4.圆的计算公式:(1)圆的周长:周长是指圆的边界长度,计算公式为C=2πr,其中r为半径。
(2)圆的面积:面积是指圆所占的平面的大小,计算公式为S=πr²,其中r为半径。
5.圆的相关定理:(1)圆的切线定理:切线与半径垂直。
(2)切线定理:如果一条直线与圆相切,那么切点和圆心以及切线组成的直角三角形。
(3)弧与弦的关系:圆上的弧和弦相等才能相等。
(4)切割定理:当两条弦相交时,两个交点所确定的小弧相等。
(5)圆内切正多边形关系:一个圆内切于一个正多边形,那么该正多边形的边数越多,其内切圆的半径越小。
以上就是初中数学圆的知识点总结。
掌握这些重要的知识点,对于解决圆相关的问题、计算圆的周长和面积等都会很有帮助。
希望对你的学习有所帮助!。
初三数学圆知识点归纳公式

初三数学圆知识点归纳公式哎呀呀,初三数学里的圆,可真是个让我又爱又恨的家伙!圆的定义,这可得好好记住。
圆就是平面内到定点的距离等于定长的点的集合。
这就好比我们一群小伙伴围坐在一起,那个定点就像是圆心,定长就是半径,我们每个人到圆心的距离都一样长,这不就组成了一个圆嘛!圆的周长公式,那就是C = 2πr 或者C = πd 。
这里的“C”代表周长,“r”是半径,“d”是直径。
你说这像不像我们跑步,跑一圈的长度就是周长。
如果半径或者直径变长了,那周长不就也跟着变长啦?还有圆的面积公式,S = πr² 。
这面积就好比是一块圆形的大披萨,半径越大,披萨就越大,面积也就越大。
想象一下,要是半径翻倍,那面积可就变成原来的四倍啦!在圆的相关计算中,弧长和扇形面积的公式也很重要呢!弧长公式L = nπr/180 ,这里的“n”是圆心角的度数。
扇形面积公式S = nπr²/360 。
这就好像是从圆这个大蛋糕上切下来的一块,圆心角越大,切下来的就越大。
在做题的时候,经常会碰到圆和直线的位置关系。
要是圆心到直线的距离小于半径,那直线和圆就是相交的,就好像两个小伙伴靠得太近,都碰到一起啦。
要是距离等于半径,那就是相切,刚好挨上。
要是距离大于半径,那就是相离,离得远远的。
还有圆和圆的位置关系,外离、外切、相交、内切、内含,这就像两个小伙伴之间的距离变化,一会儿离得老远,一会儿又凑得很近。
总之,初三数学里圆的这些知识点和公式,虽然有时候让我头疼,但只要认真理解,多做几道题,也就没那么难啦!我相信,只要我努力,一定能把圆的知识掌握得牢牢的,在考试中取得好成绩!你们觉得呢?。
中考数学复习指导:圆及有关概念公式定理

11 圆周角等于弧所对的圆心角的一半。
字母表示
圆 半径r或R(在环形圆中外环半径表示的字母); 弧 直径
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
扇形弧长 周长 面积S。
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
干货:圆的相关定理,性质,公式盘点
干货:圆的相关定理,性质,公式盘点不要害怕拒绝他人,如果自己的理由出于正当。
当一个人开口提出要求的时候,他的心里根本预备好了两种答案。
所以,给他任何一个其中的答案,都是意料中的。
——三毛1、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.∵CD是圆O的直径,CD⊥AB∴AP=BP,弧AC=弧BC,弧AD=弧BD2、弧,弦,圆心角(1)在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等.(2)在圆中,如果弧相等,那么它所对的圆心角相等,所对的弦相等.(3)在一个圆中,如果弦相等,那么它所对的弧相等,所对的圆心角相等.∵ ∠COD =∠AOB∴AB=CD,弧AB=弧CD3、圆周角定理及推论在同圆或等圆中,同弧所对的圆周角等于它所对的圆心角的一半。
∠A =1/2∠O在同圆或等圆中,同弧或等弧所对的所有的圆周角相等。
相等的圆周角所对的弧相等。
∠C=∠D=∠E=1/2∠AOB半圆或直径所对的圆周角都相等,都等于90°(直角)。
90°的圆周角所对的弦是圆的直径。
∵AB是⊙O的直径∴∠C=∠D=∠E=90°(∵∠C=90°,∴AB是⊙O的直径)4、点与圆,直线与圆的位置关系一、(1)点在圆外,d>r;(2)点在圆上,d =r;(3)点在圆内,d<r.二、 (1)当直线与圆相离时d>r;(2)当直线与圆相切时d =r;(3)当直线与圆相交时d<r.三、切线的判定与性质判定:经过半径的外端且垂直于这条半径的直线是圆的切线。
∵OA是⊙O的半径,OA⊥ l∴直线l是⊙O的切线.性质:圆的切线垂直于经过切点的半径.∵直线l是⊙O的切线,切点为A∴ OA⊥ l切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;这点与圆心的连线平分这两条切线的夹角。
∵PA、PB为⊙O的切线∴PA=PB,∠APO= ∠BPO5、三角形的外心是三角形各边垂直平分线的交点.三角形的内心是三角形各角平分线的交点.6、弧长,扇形面积,圆锥侧面积计算公式S侧面积=πra。
圆有关的知识点总结公式
圆有关的知识点总结公式一、圆的定义圆的定义是平面上到一个定点距离恒定的点的集合。
这个定点称为圆心,到圆心的距离称为半径。
圆的边界称为圆周。
圆可以用圆心和半径来描述,也可以用圆周上的点的坐标来描述。
圆的定义在数学中是基础性的概念之一。
二、圆的性质1. 圆的直径是圆周上任意两点之间的最长线段,它恰好等于圆周的两倍。
圆的半径是圆心到圆周上任意一点的距离。
2. 圆的周长公式为:C=2πr,其中C表示圆的周长,r表示圆的半径,π是一个数学常数,约等于3.14159。
3. 圆的面积公式为:A=πr²,其中A表示圆的面积。
4. 圆的内切和外切问题:一个图形是否能内切于圆,或外切于一个圆,是几何中一个重要的问题。
5. 圆的相关角度问题:圆周角、圆心角等概念与性质。
三、圆的公式1. 圆的周长公式:C=2πr这个公式表示了圆的周长与半径之间的关系,即周长等于半径的两倍乘以π。
2. 圆的面积公式:A=πr²这个公式表示了圆的面积与半径之间的关系,即面积等于半径的平方乘以π。
3. 圆的弧长公式:L=θr这个公式表示了圆的弧长与圆心角的大小以及半径的关系,即弧长等于圆心角的大小乘以半径。
4. 圆的扇形面积公式:A=1/2θr²这个公式表示了圆的扇形面积与圆心角的大小以及半径的关系,即扇形面积等于圆心角的大小乘以半径的平方再除以2。
5. 圆的相似性公式:S₁/S₂=r₁/r₂这个公式表示了两个相似圆的面积与半径的关系,即两个相似圆的面积之比等于它们半径的平方之比。
四、圆的应用圆在生活和工作中有许多应用,其中包括但不限于以下几个方面:1. 圆的几何学应用:圆的几何性质是几何学中的重要内容,它们在建筑、绘图、地理等领域都有广泛的应用。
2. 圆的工程应用:在工程中,圆形轮胎、圆形齿轮、圆形管道等都是圆的应用场景。
3. 圆的数学模型应用:在数学建模中,圆常常被用来描述一些现实中的问题,如行星轨道、电子轨道等。
初中圆知识点总结
初中圆知识点总结
一、圆的定义
圆是一个平面上所有离圆心距离相等的点的集合。
圆由圆心O和半径r确定,圆心是平面内离圆最近的点,半径是从圆心到圆上任意一点的距离。
二、圆的性质
1. 圆心角:圆内的两条弦所对的圆心角相同。
2. 圆的周长:圆的周长等于直径的长度乘以π(π≈
3.14)。
3. 圆的面积:圆的面积等于半径的平方乘以π。
4. 圆的切线:与圆相交的直线与圆相切的直线是两种情况。
三、相关公式
1. 圆的周长公式:C=2πr(C表示周长,r表示半径,π≈3.14)。
2. 圆的面积公式:S=πr²(S表示面积,r表示半径,π≈
3.14)。
四、解题技巧
1. 计算圆的周长和面积时,要根据给定的半径或直径使用相应的公式进行计算。
2. 在解题过程中,应灵活运用圆的相关性质,如圆心角的性质、切线与圆的性质等。
3. 在应用题中,需注意将问题中的条件转化成数学表达式,并根据问题的要求求解出所需的答案。
4. 在解题过程中,要注意计算时的单位问题,如需要将结果转换成具体的长度单位或面积单位。
通过以上总结,相信初中阶段的学生能够更好地掌握圆的相关知识,并能够在解题过程中更加灵活地运用圆的性质和相关公式。
希望本文对初中学生学习圆有所帮助,让他们能够更加轻松地应对数学课上的学习和考试。
初中圆的定理和公式汇总
初中圆的定理和公式汇总1不在同向来线上的三点确立一个圆。
①圆:由定点到定长点的会集叫做圆。
符号⊙0A B② 弦:连接圆上任意两点的线段叫做弦。
弦:⌒经过圆心的弦叫直径③半径不同样,圆心同样的两个圆叫做齐心圆同圆、等圆或半径同样的叫做等圆两个完满重合的弧叫等弧④ 经过平面上一点可画无数个圆;经平面上二点可画无数个圆;⑤ 在三角形外画一个圆的圆心叫做此三角形的外心,此圆为三角形的外接圆。
⑥ 外心:三角形三条中垂线的交点。
⑦ 三角形三个极点在圆上,这个三角形叫圆的内接三角形。
2 垂径定理:垂直于弦的直径均分这条弦而且均分弦所对的两条弧推论 1 ①均分弦(不是直径)的直径垂直于弦,而且均分弦所对的两条弧② 弦的垂直均分线经过圆心,而且均分弦所对的两条弧③ 均分弦所对的一条弧的直径,垂直均分弦,而且均分弦所对的另一条弧推论 2 圆的两条平行弦所夹的弧相等3圆是以圆心为对称中心的中心对称图形4圆是定点的距离等于定长的点的会集5圆的内部可以看作是圆心的距离小于半径的点的会集6圆的外面可以看作是圆心的距离大于半径的点的会集7同圆或等圆的半径相等8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10推论在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其他各组量都相等11定理圆的内接四边形的对角互补,而且任何一个外角都等于它的内对角12①直线 L 和⊙ O 订交 d<r②直线 L 和⊙ O 相切 d=r③直线 L 和⊙ O 相离 d>r13 切线的判判断理:经过半径的外端而且垂直于这条半径的直线是圆的切线14 切线的性质定理圆的切线垂直于经过切点的半径15 推论 1 经过圆心且垂直于切线的直线必经过切点16 推论 2 经过切点且垂直于切线的直线必经过圆心17 切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线均分两条切线的夹角18 圆的外切四边形的两组对边的和相等19 弦切角定理弦切角等于它所夹的弧对的圆周角20 推论假如两个弦切角所夹的弧相等,那么这两个弦切角也相等30 订交弦定理圆内的两条订交弦,被交点分成的两条线段长的积相等31 推论假如弦与直径垂直订交,那么弦的一半是它分直径所成的两条线段的比率中项32 切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比率中项33 推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等34假如两个圆相切,那么切点必定在连心线上35 ①两圆外离d>R+r②两圆外切 d=R+r③ 两圆订交R-r<d<R+r(R >r)④ 两圆内切d=R-r(R >r)⑤两圆内含 d<R-r(R >r)36 定理订交两圆的连心线垂直均分两圆的公共弦37定理把圆分成 n(n ≥3):⑴挨次连接各分点所得的多边形是这个圆的内接正n 边形⑵ 经过各分点作圆的切线,以相邻切线的交点为极点的多边形是这个圆的外切正 n 边形38 定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆39正 n 边形的每个内角都等于( n-2)×180°/n40定理正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形41正 n 边形的面积 Sn=pnrn /2 p 表示正 n 边形的周长42正三角形面积√3a/4 a 表示边长43假如在一个极点四周有 k 个正 n 边形的角,由于这些角的和应为360°,所以 k×(n-2)180 /°n=360°化为( n-2 )(k-2)=444 弧长计算公式: L=n 兀 R/18045扇形面积公式: S 扇形 =n 兀 R^2/ 360=LR /246内公切线长 = d-(R-r) 外公切线长 = d-(R+r)47定理一条弧所对的圆周角等于它所对的圆心角的一半48推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等49推论 2 半圆(或直径)所对的圆周角是直角; 90°的圆周角所对的弦是直径50正弦定理 a/sinA=b/sinB=c/sinC=2R 注:此中 R 表示三角形的外接圆半径51余弦定理 b2=a2+c2-2accosB注:角 B 是边 a 和边 c 的夹角52圆的标准方程(x-a)2+(y-b)2=r2注:( a,b)是圆心坐标53圆的一般方程x2+y2+Dx+Ey+F=0注: D2+E2-4F>054 弧长公式 l=a*r a 是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的基础性质
⑴垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有
一组量相等,那么他们所对应的其余各组量都分别相等。
②一条弧所对的圆周角等于它所对的圆心角的一半。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式: =(L/2r)360=180L/r=L/r(弧度)
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2
倍。
⑶有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交
点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△L(R:内切圆半径,S:三角形面积,L:三角形周长)
④两相切圆的连心线过切点(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则
M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比长方形、正方形、三角形的面积大。
圆的知识要领不仅常考公式,又是也会直接出一些关于定理的试题。