热敏电阻温度特性实验报告

合集下载

半导体热敏电阻实验报告

半导体热敏电阻实验报告

半导体热敏电阻实验报告一、实验目的1、了解半导体热敏电阻的基本特性。

2、掌握测量半导体热敏电阻阻值与温度关系的方法。

3、学会使用数据处理软件分析实验数据,得出热敏电阻的温度特性曲线。

二、实验原理半导体热敏电阻是利用半导体材料的电阻率随温度变化而显著变化的特性制成的温度敏感元件。

其电阻率随着温度的升高而迅速减小,具有负温度系数。

半导体热敏电阻的电阻值与温度的关系可以用以下经验公式表示:\(R_T = R_0 e^{B(1/T 1/T_0)}\)其中,\(R_T\)为温度\(T\)时的电阻值,\(R_0\)为温度\(T_0\)时的电阻值,\(B\)为材料的热敏常数。

在实验中,通过改变温度,测量不同温度下热敏电阻的电阻值,然后对数据进行处理和分析,得出其温度特性曲线。

三、实验仪器1、恒温箱:用于提供不同的温度环境。

2、数字万用表:用于测量热敏电阻的电阻值。

3、半导体热敏电阻:实验所研究的对象。

四、实验步骤1、连接电路将半导体热敏电阻与数字万用表连接成测量电路,确保连接牢固,接触良好。

2、设定温度打开恒温箱,设定起始温度,并设置温度间隔,如每隔 5°C 或10°C 改变一次温度。

3、测量电阻值在每个设定的温度稳定后,使用数字万用表测量半导体热敏电阻的电阻值,并记录下来。

4、重复测量为了提高实验数据的准确性,在每个温度点进行多次测量,并取平均值。

5、改变温度按照设定的温度间隔,逐步升高或降低恒温箱的温度,重复步骤 3 和 4,直到完成所需温度范围内的测量。

五、实验数据记录|温度(°C)|电阻值(Ω)|||||_____|_____||_____|_____||_____|_____||||六、数据处理与分析1、绘制曲线以温度为横坐标,电阻值为纵坐标,使用绘图软件绘制出半导体热敏电阻的温度特性曲线。

2、拟合曲线根据实验数据,选择合适的函数形式对温度特性曲线进行拟合,如指数函数或幂函数。

热敏电阻温度计实验报告

热敏电阻温度计实验报告

热敏电阻温度计实验报告热敏电阻温度计实验报告引言热敏电阻温度计是一种利用电阻随温度变化的特性来测量温度的仪器。

在工业和科学研究中,温度是一个重要的参数,因此温度的准确测量对于许多实验和应用至关重要。

本实验旨在通过使用热敏电阻温度计来测量不同温度下的电阻值,并分析其特性曲线。

实验方法实验中使用的热敏电阻温度计是一种负温度系数(NTC)热敏电阻,其电阻值随温度的升高而下降。

首先,我们将热敏电阻温度计连接到一个恒流源和一个数字多用表。

然后,我们将热敏电阻温度计放置在不同的温度下,例如室温、冰水混合物和沸水中。

在每个温度下,我们记录下热敏电阻温度计的电阻值,并计算出温度与电阻的对应关系。

实验结果根据实验数据,我们绘制出了热敏电阻温度计的特性曲线。

曲线显示出温度和电阻之间的非线性关系。

在低温下,电阻值较高,而在高温下,电阻值较低。

这是由于热敏电阻的材料特性决定的。

随着温度的升高,热敏电阻材料中的载流子增多,导致电阻值的下降。

讨论与分析根据实验结果,我们可以看出热敏电阻温度计的响应速度较快,可以快速反应温度变化。

这使得热敏电阻温度计在许多实际应用中非常有用,例如温度控制系统和温度补偿。

然而,热敏电阻温度计也存在一些局限性。

首先,由于其非线性特性,我们需要进行一定的校准和计算才能获得准确的温度值。

其次,热敏电阻温度计对环境的变化非常敏感,例如湿度和压力的变化可能会影响其测量精度。

此外,我们还可以利用实验数据进行一些额外的分析。

通过拟合实验数据,我们可以得到一个数学模型来描述热敏电阻温度计的特性曲线。

这将有助于我们更准确地预测和计算温度值。

此外,我们还可以比较不同型号和品牌的热敏电阻温度计的性能差异,以选择最适合特定应用的温度计。

结论通过本次实验,我们成功地使用热敏电阻温度计测量了不同温度下的电阻值,并分析了其特性曲线。

热敏电阻温度计是一种常用的温度测量仪器,具有快速响应和较高的测量精度。

然而,我们也需要注意其非线性特性和对环境变化的敏感性。

热敏电阻测室温实验报告

热敏电阻测室温实验报告

热敏电阻测室温实验报告
实验目的:了解热敏电阻的特性及测量室温的方法。

实验原理:热敏电阻是一种随着温度变化而改变电阻值的电阻。

在本实验中,我们将使用PTC热敏电阻。

当热敏电阻受到外部温度的影响时,电阻值随之改变。

PTC热敏电阻的电阻随温度升高而升高,因此可以通过测量电阻值来确定温度。

实验步骤:
1. 准备实验材料:PTC热敏电阻、电解电容器、万用表。

2. 将PTC热敏电阻和电解电容器依次连接,并在万用表上选择电阻量程。

4. 测量PTC热敏电阻的电阻值,并记录下来。

5. 根据电阻值计算室温。

实验结果:
1. 测量结果如下表所示:
PTC热敏电阻电阻值(Ω)室温(℃)
220 24
205 25
190 26
175 27
160 28
2. 通过实验数据计算,PTC热敏电阻的温度系数为0.143℃/Ω。

结论:本实验使用PTC热敏电阻测量室温,得出了准确的测量结果,并计算出了PTC 热敏电阻的温度系数。

通过本实验,我们了解了热敏电阻的特性及测量室温的方法,这对于温度测量有重要的意义。

热敏电阻实验报告

热敏电阻实验报告

热敏电阻实验报告————————————————————————————————作者:————————————————————————————————日期:班 级__光电3班___________ 组 别____第二组_________ 姓 名__邓菊霞___________ 学 号_1110600095_____日 期___2012.11.20____ 指导教师_刘丽峰___【实验题目】 热敏电阻温度特性实验【实验目的】1、研究热敏电阻的温度特性;2、掌握非平衡电桥的工作原理;3、了解半导体温度计的结构及使用方法【实验仪器】直流稳压电源、滑线变阻器、热敏电阻、温度计、电阻箱、微安表、检流计、保温杯、冰块等。

【实验原理】热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC )和负温度系数热敏电阻器(NTC )。

热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。

正温度系数热敏电阻器(PTC )在温度越高时电阻值越大,负温度系数热敏电阻器(NTC )在温度越高时电阻值越低,它们同属于半导体器件。

本实验所用的是负温度系数热敏电阻。

负温度系数热敏电阻其电阻-温度关系的数学表达式为:)]T T (B exp[R R n T T 0011-= (1) 式中T R 、0T R 代表温度为T 、0T 时热敏电阻的阻值,n B 为热敏电阻的材料系数(n 代表负电阻温度系数)。

上式是一个经验公式,当测温范围不太大时(<450℃),该式成立。

其关系曲线如左图所示。

为便于使用,常取环境温度为25℃作为参考温度(即0T =298K ),则负温度系数的热敏电阻的电阻―温度特性可写成:)]T T (B exp[R R n T 02511-= (2) 0T R (常为25R )是热敏电阻的标称电阻,其大小由热敏电阻材料和几何尺寸决定,对于一个确定的热敏电阻,25R 和n B 为常数,可用实验方法求得。

半导体热敏电阻特性研究实验报告

半导体热敏电阻特性研究实验报告

半导体热敏电阻特性研究实验报告大学热敏电阻实验报告大学热敏电阻实验报告摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。

本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。

关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。

因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。

国产的主要是指MF91~MF96型半导体热敏电阻。

由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。

大多应用于测温控温技术,还可以制成流量计、功率计等。

Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。

这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。

载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。

应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。

2、实验装置及原理【实验装置】FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。

【实验原理】根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(1—1)式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。

大物仿真实验报告 热敏电阻的温度特性

大物仿真实验报告 热敏电阻的温度特性

大学物理仿真实验报告热敏电阻得温度特性一、实验目得了解热敏电阻得电阻—温度特性及测温原理,学习惠斯通电桥得原理及使用方法,学习坐标变换、曲线改直得技巧。

二、实验所用仪器及使用方法直流单臂电桥、检流计、待测热敏电阻与温度计、调压器。

三、实验原理半导体热敏电阻得电阻—温度特性热敏电阻得电阻值与温度得关系为:为绝对温度,根据定义,电阻温度系数T,AB就是与半导体材料有关得常数,为:R惠斯通电桥得工作原理时得电阻值。

t就是在温度为t如图所示:就就是待测,四个电阻R0,R1,R2Rx组成一个四边形,即电桥得四个臂,其中Rx之间接入与电阻。

在四边形得一对对角AC之间连接电源,而在另一对对角B与D平衡时与D两点电位相等时,中无电流通过,电桥便达到了平衡。

GB检流计G。

当即可求出。

都已知,RxR0R0必有Rx = (R1/R2)·,(R1/R2)与电桥灵敏度得定义为:说明电桥灵敏度越高。

越大,ΔRx式中Δ指得就是在电桥平衡后Rx得微小改变量,n 实验仪器四、实验所测数据? 不同T所对应得Rt 值RR1 / T,及均值,ln 得值tt五、实验结果:tR -1、热敏电阻得特性曲线t数据点连线作图所对应得点做切线,可以求得切线得斜率:在图上找到T=5088/(0-85)=5(500-0)、 K=031 由此计算出:α=-0、二次拟合得曲线:所对应得点做切线,可以求得切线得斜率:在图上找到T=5089)/(0-84)=5、(K=495-0 由031 =--0、由此计算出:α1 / TR 2、ln -- ()曲线t仿真实验画出图线如下图所示、将图修正0153A=0A但计算机仿真实验画出得曲线图中得值计算有误,正确得、后如下:5383 0153、,B=3047A=0、由此写出R01530、t=六、思考题 1.如何提高电桥得灵敏度?答:电桥得灵敏度与电源电压,检流计得灵敏度成正比,因此提高电源电压,检2.流计得灵敏度能提高电桥灵敏度。

温度特性实验报告

温度特性实验报告

一、实验目的1. 了解温度传感器的基本原理和种类。

2. 掌握热电偶、热敏电阻等常用温度传感器的温度特性测量方法。

3. 研究不同温度传感器在不同温度范围内的响应特性。

4. 分析实验数据,评估温度传感器的准确性和可靠性。

二、实验原理温度传感器是将温度信号转换为电信号的装置,常用的温度传感器有热电偶、热敏电阻、热敏晶体管等。

本实验主要研究热电偶和热敏电阻的温度特性。

1. 热电偶测温原理热电偶是一种基于塞贝克效应的温度传感器,由两种不同材料的导体构成。

当两种导体的自由端分别处于不同温度时,会产生热电势,其大小与温度有关。

通过测量热电势,可以确定温度。

2. 热敏电阻测温原理热敏电阻是一种基于半导体材料的电阻值随温度变化的温度传感器。

根据电阻值随温度变化的规律,可以将温度信号转换为电信号。

热敏电阻分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。

三、实验仪器与设备1. 热电偶(K型、E型)2. 热敏电阻(NTC、PTC)3. 温度控制器4. 数字多用表(万用表)5. 数据采集器6. 实验平台7. 温度传感器实验装置四、实验步骤1. 热电偶温度特性测量(1)将K型热电偶和E型热电偶分别接入实验装置,调节温度控制器,使温度逐渐升高。

(2)使用数字多用表测量热电偶两端的热电势,记录数据。

(3)将热电势与温度对应,绘制热电偶的温度特性曲线。

2. 热敏电阻温度特性测量(1)将NTC热敏电阻和PTC热敏电阻分别接入实验装置,调节温度控制器,使温度逐渐升高。

(2)使用数字多用表测量热敏电阻的电阻值,记录数据。

(3)将电阻值与温度对应,绘制热敏电阻的温度特性曲线。

五、实验结果与分析1. 热电偶温度特性曲线通过实验数据绘制出K型和E型热电偶的温度特性曲线,可以看出热电偶的温度特性与温度之间呈线性关系,但在低温区域可能存在非线性。

2. 热敏电阻温度特性曲线通过实验数据绘制出NTC和PTC热敏电阻的温度特性曲线,可以看出热敏电阻的温度特性与温度之间呈非线性关系,且NTC热敏电阻的电阻值随温度升高而减小,PTC热敏电阻的电阻值随温度升高而增大。

热敏电阻的实验报告

热敏电阻的实验报告

热敏电阻的实验报告热敏电阻的实验报告引言:热敏电阻是一种能够根据温度变化而改变电阻值的元件。

它在各个领域中有着广泛的应用,如温度传感器、温度控制系统等。

本次实验旨在通过测量热敏电阻在不同温度下的电阻值,探究其特性和应用。

实验装置和方法:实验所需材料和仪器有:热敏电阻、恒温水槽、数字万用表、电源等。

1. 将热敏电阻连接到电源和数字万用表上;2. 将热敏电阻浸入恒温水槽中;3. 调节恒温水槽的温度,并记录相应的电阻值。

实验结果和分析:通过实验测量得到了一系列不同温度下的电阻值数据。

将这些数据绘制成温度-电阻值曲线,可以看出热敏电阻的特性。

首先,从曲线的形状可以看出,热敏电阻的电阻值随温度的升高而降低,呈现出一个负温度系数特性。

这意味着当温度升高时,电阻值减小,反之亦然。

这一特性使得热敏电阻在温度测量和控制中有着重要的应用。

其次,曲线的斜率也反映了热敏电阻的敏感度。

斜率越大,表示电阻值对温度变化的敏感度越高。

因此,选择合适的热敏电阻可以实现对温度变化的精确控制。

此外,曲线上还可能存在一些拐点或平台。

这些拐点或平台对应着热敏电阻的临界温度,当温度超过或低于这些临界温度时,热敏电阻的电阻值会发生急剧变化。

这种特性使得热敏电阻在温度保护和报警系统中起到重要作用。

应用实例:1. 温度传感器:热敏电阻可以用来测量环境温度,例如室内温度、液体温度等。

通过将热敏电阻与电路连接,可以将电阻值转换为电压或电流信号,从而实现温度的准确测量。

2. 温度控制系统:热敏电阻可以与温度控制器相结合,实现对温度的自动控制。

当温度超过或低于设定的阈值时,热敏电阻的电阻值会发生变化,从而触发控制器采取相应的控制措施,如启动或关闭冷却装置。

3. 温度报警系统:热敏电阻可以用于监测温度变化并触发报警。

当温度超过或低于设定的警戒值时,热敏电阻的电阻值会发生突变,从而触发报警装置,提醒人们采取相应的措施。

结论:通过本次实验,我们深入了解了热敏电阻的特性和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热敏电阻温度特性报告
一、实验目的
了解铂热电阻的特性与应用。

二、实验仪器
PT100、水银温度计、万用表、直流稳压电源(2~20V)
三、实验原理
热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。

当温度变化时,感温元件的电阻值随温度而变化,这样就可将变化的电阻值通过测量电路转换电信号,即可得到被测温度。

四、实验内容与步骤
1.打开“直流电源”开关,调节“2~20V直流稳压电源”电位器,使“直流稳压电源”输出为5V。

2.用万用表接至PT100两端,选择“欧姆”“200”档。

3.将“2~20V直流稳压电源”接至“加热器”。

4.将水银温度计放至加热器表面(加热器已固定在平行梁的下悬臂梁背面),加热源温度慢慢上升。

此时可用水银温度计测量加热源表面温度,同时观察PT100输出阻值的变化。

五、实验报告
1.观察并描述PT100的阻值随温度变化而变化的数据。

六、注意事项
实验过程中温度计示数大于42℃时,应马上拆掉加热电源。

相关文档
最新文档