培优专题4 特殊平行四边形的最值问题
中考数学培优(含解析)之平行四边形含答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.2.如图1,正方形ABCD的一边AB在直尺一边所在直线MN上,点O是对角线AC、BD 的交点,过点O作OE⊥MN于点E.(1)如图1,线段AB与OE之间的数量关系为.(请直接填结论)(2)保证点A始终在直线MN上,正方形ABCD绕点A旋转θ(0<θ<90°),过点 B作BF⊥MN于点F.①如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样的数量关系?请说明理由.②如图3,当点O、B两点分别在直线MN两侧时,此时①中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.③当正方形ABCD绕点A旋转到如图4的位置时,线段AF、BF与OE之间的数量关系为.(请直接填结论)【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF ﹣AF=2OE,【解析】试题分析:(1)利用直角三角形斜边的中线等于斜边的一半即可得出结论;(2)①过点B作BH⊥OE于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;②过点B作BH⊥OE交OE的延长线于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;③同②的方法可证.试题解析:(1)∵AC,BD是正方形的对角线,∴OA=OC=OB,∠BAD=∠ABC=90°,∵OE⊥AB,∴OE=12 AB,∴AB=2OE,(2)①AF+BF=2OE证明:如图2,过点B作BH⊥OE于点H∴∠BHE=∠BHO=90°∵OE⊥MN,BF⊥MN∴∠BFE=∠OEF=90°∴四边形EFBH为矩形∴BF=EH,EF=BH∵四边形ABCD为正方形∴OA=OB,∠AOB=90°∴∠AOE+∠HOB=∠OBH+∠HOB=90°∴∠AOE=∠OBH∴△AEO≌△OHB(AAS)∴AE=OH,OE=BH∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.②AF﹣BF=2OE证明:如图3,延长OE,过点B作BH⊥OE于点H∴∠EHB=90°∵OE⊥MN,BF⊥MN∴∠AEO=∠HEF=∠BFE=90°∴四边形HBFE为矩形∴BF=HE,EF=BH∵四边形ABCD是正方形∴OA=OB,∠AOB=90°∴∠AOE+∠BOH=∠OBH+∠BOH∴∠AOE=∠OBH∴△AOE≌△OBH(AAS)∴AE=OH,OE=BH,∴AF﹣BF=AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE③BF﹣AF=2OE,如图4,作OG⊥BF于G,则四边形EFGO是矩形,∴EF=GO,GF=EO,∠GOE=90°,∴∠AOE+∠AOG=90°.在正方形ABCD中,OA=OB,∠AOB=90°,∴∠AOG+∠BOG=90°,∴∠AOE=∠BOG.∵OG⊥BF,OE⊥AE,∴∠AEO=∠BGO=90°.∴△AOE≌△BOG(AAS),∴OE=OG,AE=BG,∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE,∴BF﹣AF=2OE.3.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,EF=23,AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=33,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=12PF=1,HF=3,OH=2﹣3,∴OP=()2212362+-=-.如图4中,点P在线段OC上,当PO=PF时,∠POF=∠PFO=30°,∴∠BOP=90°,∴OP=33OE=33,综上所述:OP6223.【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.4.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E 是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形ADBC的面积.【答案】(1)见解析;(2)S平行四边形ADBC=32.【解析】【分析】(1)在Rt△ABC中,E为AB的中点,则CE=12AB,BE=12AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD//BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;【详解】解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=12AB,BE=12AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33∴S平行四边形BCFD=3×3393,S△ACF=12×3×3332,S平行四边形ADBC=32.【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.5.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)43;(3)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形AECF﹣S△AEF=﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.6.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度7.(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)【答案】见解析【解析】试题分析:探究:由四边形ABCD 、四边形CEFG 均为菱形,利用SAS 易证得△BCE ≌△DCG ,则可得BE=DG ;应用:由AD ∥BC ,BE=DG ,可得S △ABE +S △CDE =S △BEC =S △CDG =8,又由AE=3ED ,可求得△CDE 的面积,继而求得答案.试题解析:探究:∵四边形ABCD 、四边形CEFG 均为菱形,∴BC=CD ,CE=CG ,∠BCD=∠A ,∠ECG=∠F .∵∠A=∠F ,∴∠BCD=∠ECG .∴∠BCD-∠ECD=∠ECG-∠ECD ,即∠BCE=∠DCG .在△BCE 和△DCG 中,BC CD BCE DCG CE CG ⎧⎪∠∠⎨⎪⎩=== ∴△BCE ≌△DCG (SAS ),∴BE=DG .应用:∵四边形ABCD 为菱形,∴AD ∥BC ,∵BE=DG ,∴S △ABE +S △CDE =S △BEC =S △CDG =8,∵AE=3ED ,∴S △CDE =1824⨯= , ∴S △ECG =S △CDE +S △CDG =10∴S 菱形CEFG =2S △ECG =20.8.(1)问题发现:如图①,在等边三角形ABC 中,点M 为BC 边上异于B 、C 的一点,以AM 为边作等边三角形AMN ,连接CN ,NC 与AB的位置关系为 ; (2)深入探究:如图②,在等腰三角形ABC 中,BA=BC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作等腰三角形AMN ,使∠ABC=∠AMN ,AM=MN ,连接CN ,试探究∠ABC 与∠ACN 的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC 中,AD=AC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作正方形AMEF ,点N 为正方形AMEF 的中点,连接CN ,若BC=10,CN=2,试求EF 的长.【答案】(1)NC ∥AB ;理由见解析;(2)∠ABC=∠ACN ;理由见解析;(3)241;【解析】分析:(1)根据△ABC ,△AMN 为等边三角形,得到AB=AC ,AM=AN 且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM ,即∠BAM=∠CAN ,证明△BAM ≌△CAN ,即可得到BM=CN .(2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论; (3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC=,得到BM=2,CM=8,再根据勾股定理即可得到答案. 详解:(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°,∴∠BAM=∠CAN ,在△ABM 与△ACN 中, AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩, ∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下: ∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN ∴AB AC AM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN , ∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN ,∵AB AM BC AN == ∴AB AC AM AN=, ∴△ABM ~△ACN ∴BM AB CN AC =,∴CN AC BM AB ==cos45°=2,∴=, ∴BM=2,∴CM=BC ﹣BM=8,在Rt △AMC ,==,∴EF=AM=241.点睛:本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.9.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC(1)求证:AC 是⊙O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30. 【解析】【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.【详解】(1)证明:∵CD 与⊙O 相切于点E ,∴OE CD ⊥,∴90CEO ∠=︒,又∵OC BE ,∴COE OEB ∠=∠,∠OBE=∠COA∵OE=OB ,∴OEB OBE ∠=∠,∴COE COA ∠=∠,又∵OC=OC ,OA=OE ,∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒,又∵AB 为⊙O 的直径,∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形,∴OF=OB=BF=EF ,∴OE=OB=BE ,∴OBE ∆为等边三角形,∴60BOE ∠=︒,而OE CD ⊥,∴30D ∠=︒.故答案为30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.10.如图1,若分别以△ABC 的AC 、BC 两边为边向外侧作的四边形ACDE 和BCFG 为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C =90°时,求证:△ABC 与△DCF 的面积相等.(2)引申:如果∠C ≠90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC 的三边为边向外侧作的四边形ACDE 、BCFG 和ABMN 为正方形,则称这三个正方形为外展三叶正方形.已知△ABC 中,AC =3,BC =4.当∠C =_____°时,图中阴影部分的面积和有最大值是________.【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.【解析】试题分析:(1)因为AC=DC ,∠ACB=∠DCF=90°,BC=FC ,所以△ABC ≌△DFC ,从而△ABC 与△DFC 的面积相等;(2)延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .得到四边形ACDE ,BCFG 均为正方形,AC=CD ,BC=CF ,∠ACP=∠DCQ .所以△APC ≌△DQC .于是AP=DQ.又因为S△ABC=12 BC•AP,S△DFC=12FC•DQ,所以S△ABC=S△DFC;(3)根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.所以S阴影部分面积和=3S△ABC=3×12×3×4=18.(1)证明:在△ABC与△DFC中,∵{AC DCACB DCFBC FC∠∠===,∴△ABC≌△DFC.∴△ABC与△DFC的面积相等;(2)解:成立.理由如下:如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.∴∠APC=∠DQC=90°.∵四边形ACDE,BCFG均为正方形,∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ.∴{APC DQCACP DCQAC CD∠∠∠∠===,△APC≌△DQC(AAS),∴AP=DQ.又∵S△ABC=12BC•AP,S△DFC=12FC•DQ,∴S△ABC=S△DFC;(3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,∴当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.∴S阴影部分面积和=3S△ABC=3×12×3×4=18.考点:四边形综合题。
初中数学微课 特殊四边形的最值问题

特殊四边形的最值问题
1.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,如果直角三角形斜边的平方等于两条直角边的平方和,那么是否可求出△BEQ周长的最小值.
2.小敏在研究最值问题时遇到了这样的一个问题:如图1,在矩形ABCD中,AB=6,AD =8,E、F、G、H分别在矩形ABCD的边AD、AB、BC、CD上,则四边形EFGH的周长是否存在最小值?她决定按照老师讲的由特殊到一般逐步化归的思路去研究,请你帮助她完成下面的探究过程.
探究1:如图2,在AF=2,DH=5的条件下,请在图2中画出周长最小的四边形EFGH,并求出周长的最小值;
探究2:在探究1的启发下,小敏画出了图3:作F关于AD的对称点F1,作F关于BC 的对称点F2,作F1关于CD的对称点F3,连接F2F3交CD于H,交BC于点G,连接F1H交AD于E,连接EF、FG,借助图3,他发现四边形EFGH的周长有最小值,并顺利解决了遇到的这个问题.请求出四边形EFGH的周长的最小值.
3.如图,以矩形OABC的边长OA、OC所在直线为x轴、y轴建立直角坐标系,OA=8,OC=4,点E、F是OA、BC上两动点,它们以每秒1个单位的速度分别从O点、B点出发,当点E运动到点A时,运动停止,设运动时间为t.
(1)四边形CEAF是什么特殊四边形,请说明理由;
(2)当t为何值时,四边形CEAF为菱形;
(3)在(2)的条件下,点G是OA边上的中点,在矩形对角线AC上有一点P,使得PG+PE的值最小,求P点坐标.。
特殊平行四边形培优-(精)

1、在平行四边形 ABC [中, AC BD 交于点Q 过点O 作直线EF 、GH 分别交平行四边形的四条边于 点,连结EG GF FH HE(1)(2)(3) (4) 如图①,试判断四边形 EGFH 勺形状,并说明理由; 如图②,当EFl GH 时,四边形 如图③,在(2) 如图④,在(3) 的条件下,若 的条件下,若 EGFH 勺形状是 ___________ ; AC=BD 四边形EGFH 勺形状是 ___________ ; AC L BD 试判断四边形 EGF 啲形状,并说明理由• E 、GF 、H 四 D H F\ C A E A H B O 图①F C 图② D 2、正方形ABC [中,点O 是对角线DB 的中点,点 (1)当点P 与点O 重合时(如图①),猜测AP 与EF 的数量及位置关系,并证明你的结论; ⑵ 当点P 在线段DB 上 (不与点D O B 重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程; 若不成立,请说明理由; (3)当点P 在DB 的长延长线上时,请将图③补充完整,并判断 (1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论 P 是DB 所在直线上的一个动点, PEL BC 于 E PF 丄 DC 于 F . A B C (12, 0)。
已知点 P 发沿CO 路线向点O 运动,运动速度都是每秒一个单位长度,运动时间为t秒。
(1)当四边形OPBC是等腰梯形时,求t值。
(2)当四边形AQCB是平行四边形时,求t值。
(3)连接PQ,当四边形APQO是矩形时,求t值。
4、如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB=PE连接PD, O为AC中点.(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法) 并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.團1@2图3。
数学平行四边形的专项培优练习题含详细答案

F 点移动到 F'的距离是 10 t,
在 Rt△ F'NF 中, NF = 1 , NF 3
∴ FN=t,F'N=3t, ∵ MH'=FN=t, EM=NG'=15﹣F'N=15﹣3t,
在 Rt△ DMH'中,
MH 4 , EM 3
∴ t 4, 15 3t 3
∴ t=4,
∴ EM=3,MH'=4,
CD DM
设 AM=x,则 x a , a bx
整理得:x2﹣bx+a2=0, ∵ b>2a,a>0,b>0, ∴ △ =b2﹣4a2>0, ∴ 方程有两个不相等的实数根,且两根均大于零,符合题意, ∴ 当 b>2a 时,存在∠ BMC=90°, (3)不成立. 理由:若∠ BMC=90°, 由(2)可知 x2﹣bx+a2=0, ∵ b<2a,a>0,b>0, ∴ △ =b2﹣4a2<0, ∴ 方程没有实数根, ∴ 当 b<2a 时,不存在∠ BMC=90°,即(2)中的结论不成立. 考点:1、相似三角形的判定与性质;2、根的判别式;3、矩形的性质
(1)试猜想 AE 与 GC 有怎样的关系(直接写出结论即可);
(2)将正方形 DEFG 绕点 D 按顺时针方向旋转,使点 E 落在 BC 边上,如图 2,连接 AE 和
CG.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.
(3)在(2)中,若 E 是 BC 的中点,且 BC=2,则 C,F 两点间的距离为
(2)将正方形 EFGH 沿射线 FB 的方向以每秒 10 个单位的速度匀速平移,得到正方形
E1F1G1H1,在平移过程中边 F1G1 始终与 y 轴垂直,设平移的时间为 t 秒(t>0). ①当点 F1 移动到点 B 时,求 t 的值; ②当 G1,H1 两点中有一点移动到直线 DE 上时,请直接写出此时正方形 E1F1G1H1 与△ APE 重叠部分的面积.
专题05解题技巧专题:特殊平行四边形中定值、最值、中点四边形问题原卷版重点突围

专题05 解题技巧专题:特殊平行四边形中定值、最值、中点四边形问题【考点导航】目录【典型例题】 (1)【考点一 定值问题】 (1)【考点二 最小值问题】 (3)【考点三 最大值问题】 (5)【考点四 中点四边形问题】 (6)【典型例题】【考点一 定值问题】例题:(2022秋·山东枣庄·九年级校考阶段练习)如图,在矩形ABCD 中,3AB =,4=AD ,M 是AD 上异于A 和D 的任意一点,且ME AC ^于E ,MF BD ^于F ,则ME MF +为_____.【变式训练】1.(2023秋·吉林长春·八年级长春外国语学校校考期末)如图,菱形ABCD 的周长为20,面积为24,P 是对角线BD 上一点,分别作P 点到直线AB 、AD 的垂线段PE 、PF ,则PE PF +等于______2.(2022春·四川成都·九年级成都市第二十中学校校考阶段练习)如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD ,DC 延长线的垂线,垂足分别为点E ,.F 若120ABC Ð=°,2AB =,则PE PF -的值为______.(1)当点G在边DC上运动时;探究:点F到边DC的距离【考点二最小值问题】A.5【变式训练】1.(2023秋·吉林长春在AD上,点Q在BCA.5B.3.(2022秋·江西新余·九年级新余四中校考阶段练习)如图,矩形分别是直线BC,AB上的两个动点,5.(2022秋·山东潍坊·AC=,点P为AC上一动点,求86.(2022秋·重庆大渡口·九年级校考期末)如图,在矩形=,连接F在边BC上,且AE CF8.(2022春·江西赣州·八年级统考期末)如图所示,在菱形菱形的边BC,CD上滑动,满足(1)求证:不论E,F在BC,CD上如何滑动,总有BE=CF;(2)当点E,F在BC,CD上滑动时,分别探讨四边形AECF的面积和△CEF的周长是否发生变化?如果不变,求出这个定值;如果变化,求出最小值.【考点三最大值问题】A.42A.5102-B.5.(2021秋·浙江宁波·八年级校考期中)如图,在长方形纸片使顶点C落在边AD的点G(1)求证:△GEF是等腰三角形(2)求△GEF面积的最大值.【考点四中点四边形问题】例题:(2022春·安徽合肥·八年级校考期中)如图,E、F、G、H分别是四边形ABCD四条边的中点,顺次连接E 、F 、G 、H 得四边形EFGH ,连接AC 、BD ,下列命题不正确的是( )A .当四边形ABCD 是矩形时,四边形EFGH 是菱形B .当四边形ABCD 是菱形时,四边形EFGH 是矩形C .当四边形ABCD 满足90BAD ABC Ð=Ð=°时,四边形EFGH 是菱形D .当四边形ABCD 满足AB AD =,CB CD =时,四边形EFGH 是矩形【变式训练】1.(2022秋·广东佛山·九年级统考期中)若顺次连接四边形ABCD 四边中点所得的四边形是正方形,则四边形ABCD 一定满足( )A .是正方形B .AB =CD 且AB ∥CDC .是矩形D .AC =BD 且AC ⊥BD 2.(2022春·北京西城·八年级校考期中)四边形ABCD 的对角线AC ,BD 交于点O ,点M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 的中点.有下列四个推断:①对于任意四边形ABCD ,四边形MNPQ 都是平行四边形;②若四边形ABCD 是平行四边形,则MP 与NQ 交于点O ;③若四边形ABCD 是矩形,则四边形MNPQ 也是矩形;④若四边形MNPQ 是正方形,则四边形ABCD 也一定是正方形.所有正确推断的序号是( )A .①②B .①③C .②③D .③④3.(2022春·陕西西安·八年级西北大学附中校考期末)如图,点E 、F 、G 、H 分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC ⊥BD ,则四边形EFGH 为矩形;②若AC =BD ,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .44.(2022秋·九年级课时练习)如图,在四边形ABCD 中,E ,F 分别是AD ,BC 的中点,G ,H 分别是对角线BD ,AC 的中点,依次连接E ,G ,F ,H ,连接EF ,GH .(1)求证:四边形EGFH是平行四边形;=时,EF与GH有怎样的位置关系?请说明理由;(2)当AB CD5.(2021春·上海长宁·八年级统考期末)如图,BD、AC是四边形ABCD的对角线,点E、F、G、H分别是线段AD、DB、BC、AC上的中点(1)求证:线段EG、FH互相平分;^?证明你得到的结论.(2)四边形ABCD满足什么条件时,EG FH6.(2021秋·陕西宝鸡·九年级统考期末)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、EFGH即四边形ABCD的中点四边形).H,顺次连接EF、FG、GH、HE,得到四边形((1)四边形EFGH的形状是______,请证明你的结论;(2)当四边形ABCD 的对角线满足______条件时,四边形EFGH 是菱形;(3)你学过的哪种特殊的平行四边形的中点四边形是菱形?请写出一种.7.(2021春·河北石家庄·八年级统考期中)四边形ABCD 中,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 边的中点,顺次连接各边中点得到的新四边形EFGH 称为中点四边形.(1)我们知道:无论四边形ABCD 怎样变化,它的中点四边形EFGH 都是平行四边形.特殊的:①当对角线AC BD =时,四边形ABCD 的中点四边形为__________形;②当对角线AC BD ^时,四边形ABCD 的中点四边形是__________形.(2)如图:四边形ABCD 中,已知60B C Ð=Ð=°,且BC AB CD =+,请利用(1)中的结论,判断四边形ABCD 的中点四边形EFGH 的形状并进行证明.8.(2023·全国·八年级专题练习)如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG ,GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形).(1)四边形EFGH的形状是______,当四边形ABCD的对角线满足______(填入位置关系或数量关系)时,四边形EFGH是矩形.(2)当AC=BD时,四边形EFGH的形状是______.(3)若AC⊥BD且AC=BD,求证:四边形EFGH为正方形.9.(2022春·山东济宁·八年级统考期中)如图,已知在四边形ABCD中,点E,F,G,H分别为AB,BC,CD,DA上的点(不与端点重合).(1)若点E,F,G,H分别为AB,BC,CD,DA的中点,求证:四边形EFCH是平行四边形;(2)在(1)的条件下,四边形ABCD的对角线AC和BD满足什么条件时,四边形EFGH是菱形,请说明理由;(3)在(2)的条件下,请直接写出四边形ABCD的对角线AC和BD再满足什么条件时,四边形EFGH是正方形.(1)如图1,在四边形ABCD中,点E,F,G。
中考数学平行四边形(大题培优)附答案解析

OE OD OH OG 2OC .
【详解】
解:(1)∵ AOB 90 , MCN 90, CD OA , ∴ 四边形 ODCE 为矩形. ∵ OP 是 AOB 的角平分线, ∴ DOC EOC 45 ,
∴ OD CD ,
∴ 矩形 ODCE 为正方形,
∴ OC 2OD , OC 2OE .
【答案】(1)D(1,3);(2)①详见解析;②H( 17 ,3);(3) 5
30 3 34 ≤S≤ 30 3 34 .
4
4
【解析】
【分析】
(1)如图①,在 Rt△ ACD 中求出 CD 即可解决问题;
(2)①根据 HL 证明即可;
②,设 AH=BH=m,则 HC=BC-BH=5-m,在 Rt△ AHC 中,根据 AH2=HC2+AC2,构建方程求出
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图,△ ABC 是等边三角形,AB=6cm,D 为边 AB 中点.动点 P、Q 在边 AB 上同时从 点 D 出发,点 P 沿 D→A 以 1cm/s 的速度向终点 A 运动.点 Q 沿 D→B→D 以 2cm/s 的速度 运动,回到点 D 停止.以 PQ 为边在 AB 上方作等边三角形 PQN.将△ PQN 绕 QN 的中点旋 转 180°得到△ MNQ.设四边形 PQMN 与△ ABC 重叠部分图形的面积为 S(cm2),点 P 运 动的时间为 t(s)(0<t<3). (1)当点 N 落在边 BC 上时,求 t 的值. (2)当点 N 到点 A、B 的距离相等时,求 t 的值. (3)当点 Q 沿 D→B 运动时,求 S 与 t 之间的函数表达式. (4)设四边形 PQMN 的边 MN、MQ 与边 BC 的交点分别是 E、F,直接写出四边形 PEMF 与四边形 PQMN 的面积比为 2:3 时 t 的值.
专题05解题技巧专题:特殊平行四边形中定值、最值、中点四边形问题解析版重点突围

专题05 解题技巧专题:特殊平行四边形中定值、最值、中点四边形问题【考点导航】目录【典型例题】 (1)【考点一定值问题】 (1)【考点二最小值问题】 (7)【考点三最大值问题】 (16)【考点四中点四边形问题】 (24)【典型例题】【考点一定值问题】【答案】125##2.4【分析】根据矩形的性质,24【考点二最小值问题】A.5【答案】A【分析】连接EC交BD 的长即可.【详解】连接EC,交【点睛】本题主要考查了正方形的性质和两点之间线段最短,这是一个将军饮马模型质并且能够识别出将军饮马模型是解题的关键【变式训练】1.(2023秋·吉林长春·八年级长春外国语学校校考期末)如图,在矩形ABCD 中,12AB =,10AD =,点P 在AD 上,点Q 在BC 上,且AP CQ =,连接CP 、QD ,则PC QD +的最小值为( )A .22B .24C .25D .26【答案】D 【分析】连接BP ,则PC QD +的最小值转化为PC PB +的最小值,在BA 的延长线上截取12AE AB ==,连接PE 、CE ,则PC QD PC PB PC PE CE +=+=+³,再根据勾股定理求解.【详解】解:如图,连接BP ,在矩形ABCD 中,AD BC ∥,10AD BC ==,AP CQ =Q ,AD AP BC CQ \-=-,DP QB \=,DP BQ ∥,\四边形DPBQ 是平行四边形,A.5B.【答案】B【分析】要求PD PA+和的最小值,∵再直角OCD V 中,90COD Ð=°,【答案】3【分析】解直角三角形求出CD AB ^时,CD 有最小值,此时【详解】解:∵ACB Ð=∵DF AC ^,ACB Ð=∴DFC FCE DEC Ð=Ð=Ð∴四边形CFDE 是矩形,【答案】4【分析】连接DE,BD,PD,对角线相交于点+=+,故当点DPB PE PD PE定和性质即可求解.【详解】解:连接DE,BD,∵四边形ABCD是菱形,∴AC是BD的垂直平分线,AB∴PB PD=,+=+,∴PB PE PD PE∴当点D、E、P三点共线时,PD【答案】13【分析】连接CF、AF+=+,故当EF MN EF AF为AE的长,由12AB=【详解】解:连接CF、,∵【考点三最大值问题】A.42==,设BF DF x ∵10BC=,∴10=-,CF x∵2CD=,则1,ON ON PN PN ¢¢===,2,CN OC ON PM PN PM ¢¢\=-=-=23BM BC =Q ,6BC =,123CM BC \==,CMN ¢\V 是等边三角形,【答案】 6 934【分析】(1)连接AC ,证明(2)利用ABE ACF △≌△的面积减去△AEF 的面积,当(2)∵ABE ACF△≌△∴四边形AECF 的面积=S △∴CEF ABC AEF S S S =-△△△,∴当AEF S △最小时,CEF S △最大,∵ABC V 为等边三角形,∴当AE BC ^时,12BE BC ==22==33AE AB BE -,∴163393S =´´=,(1)求证:△GEF 是等腰三角形(2)求△GEF 面积的最大值.【答案】(1)见详解(2)7.5【分析】(1)在长方形ABCD∵在长方形ABCD 中,CD AD ^∴GE CD ^,∴△GEF 的面积为:12S GE =´´∵CD =AB =3,∴△GEF 的面积的大小取决于GE 当点G 与点A 重合时,GEF △面积最大,由折叠的性质可知,GF =FC ,∠AFE 在Rt △ABF 中,222AF AB BF =+∴229(9)AF AF =+-,解得:AF =5,【考点四中点四边形问题】当四边形ABCD 是矩形时,BD AC =,HG EF FG EH \===,\四边形EFGH 是菱形,故A 正确,不符合题意;当四边形ABCD 是菱形时,AC BD ^,//HG AC Q ,//FG BD ,90HGF \Ð=°,\四边形EFGH 是菱形,故B 正确,不符合题意;当四边形ABCD 满足90BAD ABC Ð=Ð=°时,不能证明四边形EFGH 是菱形,故C 错误,符合题意;当四边形ABCD 满足AB AD =,CB CD =时,∵AB AD =,CB CD =,∴AC 是BD 的垂直平分线,即AC BD^∵////EF AC EF ,////FG BD EH∴∠HEF =∠EFG =∠DGH =∠GHE =90°∴四边形EFGH 是矩形,故D 正确,不符合题意.故选:C .【点睛】本题主要考查了中点四边形,灵活利用矩形、菱形的判定定理是解答本题的关键【变式训练】四边形ABCD 的各边中点分别是(1)我们知道:无论四边形ABCD 怎样变化,它的中点四边形EFGH 都是平行四边形.特殊的:①当对角线AC BD =时,四边形ABCD 的中点四边形为__________形;②当对角线AC BD ^时,四边形ABCD 的中点四边形是__________形.(2)如图:四边形ABCD 中,已知60B C Ð=Ð=°,且BC AB CD =+,请利用(1)中的结论,判断四边形ABCD 的中点四边形EFGH 的形状并进行证明.【答案】(1)①菱;②矩;(2)菱形,菱形见解析【分析】(1)①连接AC 、BD ,根据三角形中位线定理证明四边形EFGH 都是平行四边形,根据邻边相等的平行四边形是菱形证明;②根据有一个角是直角的平行四边形是矩形证明;(2)分别延长BA 、CD 相交于点M ,连接AC 、BD ,证明ABC DMB △≌△,得到AC =DB ,根据(1)①证明即可.【详解】(1)解:(1)①连接AC 、BD ,∵点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 边的中点,∴EH ∥BD ,FG ∥BD ,∴EH ∥FG ,同理EF ∥HG ,∴四边形EFGH 都是平行四边形,∵对角线AC =BD ,∴EH =EF ,∴四边形ABCD 的中点四边形是菱形;②当对角线AC ⊥BD 时,EF ⊥EH ,∴四边形ABCD 的中点四边形是矩形;故答案为:菱;矩;(2)四边形ABCD 的中点四边形EFGH 是菱形.理由如下:分别延长BA 、CD 相交于点M ,连接AC 、BD,∵60ABC BCD Ð=Ð=°,∴BCM V 是等边三角形,∴MB BC CM ==,60M Ð=°,∵BC AB CD =+,∴MA AB AB CD CD DM +=+=+,∴MA CD =,DM AB =,在ABC V 和DMB V 中,AB DM ABC M BC BM =ìïÐ=Ðíï=î,∴ABC DMB △≌△,∴AC DB =,∴四边形ABCD 的对角线相等,中点四边形EFGH 是菱形.【点睛】本题考查的是矩形、菱形的判定、中点四边形的定义,掌握中点四边形的概念、矩形的判定定理、菱形的判定定理是解题的关键.8.(2023·全国·八年级专题练习)如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG ,GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是______,当四边形ABCD 的对角线满足______(填入位置关系或数量关系)时,四边形EFGH 是矩形.(2)当AC =BD 时,四边形EFGH 的形状是______.(3)若AC ⊥BD 且AC =BD ,求证:四边形EFGH 为正方形.【答案】(1)平行四边形,AC ⊥BD(2)菱形(3)见解析【分析】(1)根据三角形的中位线定理和平行四边形判定定理可得EFGH 是平行四边形,当AC ⊥BD 时,由三角形的中位线定理易知EF ⊥EH ,结合EFGH 是平行四边形即可解答;(2)当AC =BD 时,由三角形的中位线定理易知EF =EH ,结合EFGH 是平行四边形即可得到四边形EFGH 是菱形;(3)当AC =BD 时,由(2)可得四边形EFGH 是菱形,由EF ⊥EH 和EFGH 是平行四边形即可得到四边形∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠DOC=90°,由(2)知中点四边形EFGH是菱形,∴菱形EFGH是正方形.【点睛】本题考查的是平行四边形的判定和性质、全等三角形的判定和性质、菱形的判定和性质、正方形的判定和性质,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线.。
八年级初二数学 数学平行四边形的专项培优练习题(含答案

(1)证明平行四边形 是菱形;
(2)若 ,连结 ,①求证: ;②求 的度数;
(3)若 , , ,M是 的中点,求 的长。
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)四边形 是菱形,理由见解析;(2)
(1)如图,当BE=CE时,求旋转角 的度数;
(2)当旋转角 的大小发生变化时, 的度数是否发生变化?如果变化,请用含 的代数式表示;如果不变,请求出 的度数;
(3)联结AF,求证: .
6.如图,点 的坐标为 , 轴,垂足为 , 轴,垂足为 ,点 分别是射线 、 上的动点,且点 不与点 、 重合, .
(1)当t为何值时,四边形BNMP为平行四边形?
(2)设四边形BNPA的面积为y,求y与t之间的函数关系式.
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.
3.如图,在正方形 中, 是边 上的一动点(不与点 、 重合),连接 ,点 关于直线 的对称点为 ,连接 并延长交 于点 ,连接 ,过点 作 交 的延长线于点 ,连接 .
(1)求证: ;
(2)用等式表示线段 与 的数量关系,并证明.
4.已知如图1,四边形 是正方形, .
如图1,若点 分别在边 上,延长线段 至 ,使得 ,若 求 的长;
如图2,若点 分别在边 延长线上且 ,请你直接写出 的长.
5.已知四边形ABCD是正方形,将线段CD绕点C逆时针旋转 ( ),得到线段CE,联结BE、CE、DE. 过点B作BF⊥DE交线段DE的延长线于F.
,
,
∵ ,
四边形 是平行四边形,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
培优专题(四) 特殊平行四边形的最值问题
【例】如图,正方形ABCD的边长为10 cm,E是AB上一点,BE=4 cm,P是对角线AC上一动点,求PB +PE的最小值.
1.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,求EP+FP的最小值
2.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,求这个最小值
3.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过点M作MD⊥AC于点D,过点M作ME⊥CB于点E,求线段DE的最小值.
4.如图,已知正方形ABCD的边长为3,点E在AB边上,且BE=1,点P,Q分别是边BC,CD上的动点(均不与顶点重合),求四边形AEPQ的周长的最小值为.
5.如图,在平行四边形ABCD中,AB=2,AD=1,∠ADC=60°,将平行四边形ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.
(1)求证:四边形BCED′是菱形;
(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.。