第十三章 非晶态聚合物材料X射线散射
聚合物的凝聚态结构

Z为单位晶胞中单体(即链构造单元)旳数目;
单位晶胞中所含链数
V为晶胞体积; NA为阿佛加德罗常数
PE:以z=2代入上式可得 ρc =1.00g/ml, 而实测旳聚乙烯密度, ρ= 0.92~0.96g/cm3。
2.2.2聚合物旳结晶形态
•结晶形态:由微观构造堆砌而成旳晶体外形,尺寸可达几十 微米旳。 •单晶:即结晶体内部旳微观粒子在三维空间呈有规律地、周 期性地排列。 特点:一定外形、长程有序。 •多晶:是由无数微小旳单晶体无规则地汇集而成旳晶体构造。
(2)球晶 Spherulite
• 球晶是聚合结晶旳一种常见旳特征形式; • 形成条件:从浓溶液析出,或从熔体冷结晶时,在不
存在应力或流动旳情况下形成。 • 特征:外形呈圆球形,直径0.5~100微米数量级。 • 在正交偏光显微镜下可呈现特有旳黑十字消光图像和
消光同心环现象。 • 黑十字消光图像是聚合物球晶旳双折射性质是对称性
2.2.4 结晶度旳测定
结晶聚合物旳物理和机械性能、电性能、光性能在相当旳程 度上受结晶程度旳影响。
实际晶态聚合物,是晶区和非晶区同步存在旳。
高分子结晶度旳概念缺乏明确旳物理意义,其数值随测定措 施不同而不同。
Buoyancy method 密度法
密度结晶度
X-ray diffraction X射线衍射法
(Vc Va ) cVc aVa
X
v c
Vc V
a c a
X
w c
Wc W
W cWc aWa W Wc Wa
(Wc Wa ) cWc aWa
X
w c
Wc W
c( a ) (c a )
(2) X射线衍射法 Wide-angle X-ray diffraction (WAXD)
东华大学《高分子物理》各章选择判断题

1. 氯乙烯聚合时存在头—尾、头-头或尾—尾键接方式,它们被称为:(a) 旋光异构体 (b) 顺序异构体 (c ) 几何异构体 (d ) 无规立构体2. 1,4—丁二烯聚合可以形成顺式和反式两种构型,它们被称为:(a) 旋光异构体 (b) 几何异构体 (c) 间同异构体 (d) 无规立构体3。
下列哪些因素会使聚合物的柔性增加:(a) 结晶 (b) 交联 (c) 主链上引入孤立双键 (d) 形成分子间氢键4. 下列哪个物理量不能描述聚合物分子链的柔性:(a ) 极限特征比 (b ) 均方末端距 (c ) 链段长度 (d ) 熔融指数5. 高分子内旋转受阻程度增加,其均方末端距:(a ) 增加 (b ) 减小 (c ) 不变 (d ) 不能确定6. 如果不考虑键接顺序,线形聚异戊二烯的异构体数为:(a) 6 (b ) 7 (c ) 8 (d) 97. 比较聚丙烯(PP)、聚乙烯(PE )、聚丙烯腈(PAN )和聚氯乙烯(PVC )柔性的大小,正确的顺序是:(a ) PE 〉PP> PAN 〉 PVC (b ) PE 〉PP 〉PVC>PAN(c) PP 〉 PE >PVC 〉PAN (d ) PP 〉 PE 〉 PAN > PVC8. 同一种聚合物样品,下列计算值哪个最大:(a ) 自由结合链的均方末端距 (b) 自由旋转链的均方末端距(c ) 等效自由结合链的均方末端距 (d ) 一样大9.聚合度为1000的PE ,键长为0.154nm ,则其自由结合链的均方末端距为:(a) 23.7 nm 2 (b ) 47.4nm 2 (c) 71。
1 nm 2 (d ) 94。
8 nm 210。
PE 的聚合度扩大10倍,则其自由结合链的均方末端距扩大:(a ) 10倍 (b ) 20倍 (c) 50倍 (d) 100倍11。
PE 自由结合链的根均方末端距扩大10倍,则聚合度需扩大:(a ) 10倍 (b ) 100倍 (c ) 50倍 (d) 20倍三、判断题:1. 聚合物和其它物质一样存在固态、液态和气态。
高分子物理---第二章 高分子凝聚态

The Aggregation State of Polymers
凝聚态(聚集态)与相态
凝聚态:物质的物理状态, 是根据物质的分 子运动在宏观力学性能上的表现来区分的, 通常包括固、液、气体(态),称为物质 三态 相态:物质的热力学状态,是根据物质的 结构特征和热力学性质来区分的,包括晶 相、液相和气相(或态) 一般而言,气体为气相,液体为液相,但 固体并不都是晶相。如玻璃(固体、液相)
R O H O R H R O H
O H C
O H O
» ô µ ª¶ Å Ú Á õ · ¬® «¸ Í «¬¶ Á ¶ ° ² ¸ È £ Ì ©¸ Í · ² ° µ Ê Á ß Ê Ð Í ä â ÷ ¾ ß Û ê ©µ ã ß Ê É ß ¾ ö ° ¹ ± ´ ¾ Â Ê £  ¾ » ° ¡ Â Ç Ç Î © ç ® ö  £
2.1.3 聚合物的结晶形态
Crystalline Polymer Morphology
结晶形态学研究的对象:单个晶粒的大小、 形状以及它们的聚集方式。 单晶体与多晶体
单晶体:具有一定外形, 长程有序 多晶体:由很多微小单晶无规则地聚集而成 单晶、球晶、树枝状晶、纤维晶、串晶、伸 直链晶等
PE的晶胞结构 Planar zigzag conformation
PP的晶胞结构
碳链的各种构象
Nylon-66 Extended
Poly-peptide Helical PET, kinked
晶胞密度
MZ c N AV
其中: M----结构单元分子量
Z----单位晶胞中单体(即链结构单元)的数目 V----晶胞体积 NA----为阿佛加德罗常数
高分子物理模拟考试题含参考答案

高分子物理模拟考试题含参考答案一、单选题(共50题,每题1分,共50分)1、下列方法中,不能提高IPP透明性的是A、迅速冷却B、增大球晶尺寸C、与非晶的PVC共混正确答案:B2、应力可以松弛到零的是( )。
A、交联高聚物B、线形高聚物C、所有高聚物正确答案:B3、同一聚合物的下列三种不同的黏度,最大的是( )A、表观黏度B、无穷剪切黏度C、零剪切黏度正确答案:C4、无规共聚物的玻璃化温度( )。
A、介于两相应均聚物之间B、比相应的均聚物都高C、比相应的均聚物都低正确答案:A5、下列条件中适于制备单晶的是( )A、稀溶液B、熔体C、高温高压正确答案:A6、高分子的特性黏数随相对分子质量愈大而(A、不确定B、增大C、不变D、降低正确答案:B7、下列聚合物中,熔点最高的是A、聚乙烯B、聚苯撑C、聚对二甲苯撑正确答案:B8、非晶态聚苯乙烯的X射线图是A、弥散环B、圆弧C、德拜环正确答案:A9、下列条件中适于制备单晶的是A、熔体B、高温高压C、稀溶液正确答案:C10、大多数聚合物熔体的流动指数n( )。
A、大于lB、等于1C、小于l正确答案:C11、增加聚合物分子的极性,则黏流温度将( )。
A、基本不变B、升高C、降低正确答案:B12、熔融指数的单位是( )。
A、秒B、泊C、克正确答案:C13、处于玻璃态下的高聚物,运动被冻结的是( )。
A、链段B、侧基C、链节正确答案:A14、晶片的厚度增加导致晶体的熔点A、减小B、不变C、增大正确答案:C15、拉伸使聚合物的结晶度A、不变B、增大C、减小正确答案:B16、光散射实验中,若入射光是非偏振光,分别在90°~180°的散射角范围测定小粒子散射光强,所测得的散射光强随散射角的增大而( )A、不确定B、增大C、降低D、不变正确答案:B17、按照自由体积理论,在玻璃态时,高聚物的自由体积分数为( )。
A、0.25%B、2.5%C、0.025%正确答案:B18、Voigt 模型可以用来描述( )A、松弛过程B、线形高聚物的蠕变过程C、交联高聚物的蠕变过程正确答案:C19、理想高弹体是指( )。
第7章 X射线法

(3)典型聚集态衍射谱图的特征 衍射谱图是记录仪上绘出的衍射强度(I) 与衍射角(2)的关系图
晶态试样 固态非晶试样
半晶态试样
半晶态试样
图7-10 四种典型聚集态衍射谱图的特征示意图
a—晶态试样衍射,特征是衍射峰尖锐, 基线缓平。同一样品,微晶的择优取向只 影响峰的相对强度。 b—固态非晶试样散射,呈现为一个(或 两个)相当宽化的“隆峰”。 c、d—半晶样品的谱图。 –c有尖锐峰;且被隆拱起,表明试样中晶 态与非晶态“两相’’差别明显。 –d呈现为隆峰之上有突出峰,但不尖锐; 这表明晶相很不完整。
各狭缝大小 信号处理系统各参数 b. 实验参数 入射线波长及其单色性 其他 空气散射 电源稳定性 c. 环境 其他
7.1.3 多晶X射线衍射在高聚物中的应用 作为一种考察物质微观结构形态的方法, 无论在小分子领域,还是在大分子领域,多晶X 射线所分析和测定的内容基本是相同的。高聚 物在结构形态上有其自身的复杂性和特殊性, 因此,用X射线衍射考察高聚物时,必须结合具 体情况进行分析,以获得对真实情况恰当、准 确的理解。 目前,在实际中,多晶照相法的大部分工 作已被多晶衍射仪法取代,下面要介绍的四种 应用均基于衍射仪法。它们依次是:物相分析、 结晶度测定、取向测定、晶粒尺寸测定 。
德拜相机结构简单,主要由相机圆筒、 光阑、承光管和位于圆筒中心的试样架构成。 相机圆筒上下有结合紧密的底盖密封,与圆 筒内壁周长相等的底片,圈成圆圈紧贴圆筒 内壁安装,并有卡环保证底片紧贴圆筒。
(2)制样 平板照相样品要制成细窄片 条,长约 10 mm,宽为 2~3 mm,厚以 0.5 ~ l mm为宜。板材需用刀片片切制样。 薄膜可剪制,不够厚时,将几层叠粘在一起, 各层保持原拉伸方向一致。纤维样品财要缠 绕在适当大小的框子上。 Derby照相试样成细丝状,径向尺寸 0.5 ~ l mm,长10 ~ 15mm。测试中样品 可随样品轴转动,以增加晶面族产生衍射的 几率。对高聚物材料,试样有时制成细窄片 条,类似平板照相试样,这种情况下,样品 轴在照相过程中要保持不动,以确保样品在 光路上。
材料加工工程-1.3 塑料材料的微观结构

璃态(Tg 玻璃化温度)、高弹态、黏流态(Tf 黏流温度)
高弹态形变100%~1000%远远大于玻璃态形变0.01%~0.1%
1-熔融纺丝 2-注射 3-薄膜吹塑 4-挤出成形 5-压延成形 6-中空成形 7-真空和压力成形 8-薄膜和纤维热拉伸 9-薄膜和纤维冷拉伸
小分子晶体:当物质内部的质点(原子、分子、离子)在
三维空间周期性重复排列时,该物质为晶体
晶态高聚物:由晶粒组成,内部具有三维有序结构,但呈
周期性排列的质点不是原子,分子或离子,而是结构单元
晶胞:在空间格子中划分出余割大小和形状完全一样的平
行六面体以代表晶体结构的最小重复单位
余割:直角三角形某个锐角的斜边与对边的比,叫做该锐
晶的结晶度只有75%~85%
17 / 44
多层片晶的折叠链模型
聚乙烯与石蜡分子一起结晶,然后用溶剂萃取石蜡,在电
镜下发现PE晶片之间存在许多联结链,说明分子可以链跨 层折叠 联结链随分子量增加而增加,随结晶温度的降低而增加
石蜡被萃取后 PE的电镜照片
18 / 44
隧道折叠链模型
实际聚合物大多是晶相与非晶相共存,Hosemann综合了
向列型
近晶型
胆甾型
溶致液晶是由两种或两种以上的组分形成的液晶,将一种
溶质溶于一种溶剂而形成的液晶态物质,如肥皂水,洗衣 粉溶液,表面活化剂溶液等
26 / 44
液晶的应用
液晶具有双折射、旋光性、光干涉和光散射等特殊的光学
性质,可作为光存储材料 电光效应:液晶在电场、磁场作用下,分子排列状态改变, 引起其光学性质随之变化
塑料为基体(连续相) 橡胶为分散相 分散相中又包含着塑料
材料化学作业题答案

材料化学作业第一章1、晶体的一般特点是什么?点阵和晶体的结构有何关系?晶态固体具有长程有序的点阵结构,即其中组成单元是处于一定格式空间排列的状态。
1、晶体的周期性:晶体是一种内部粒子或粒子集团在空间按一定规律周期性重复排列而成的固体。
结构基元和大小方向为二个要素。
2、点阵结构与点阵:将晶体结构中的每个结构基元抽象成一个点,将这些点按照周期性重复的方式排列,就可构成点阵。
2、什么是同质多晶?什么是类质同晶?一些组成固定的化合物,由于其内部微粒可以以不同的方式堆积,因而产生不同种类的晶体,我们把这种同一化合组成存在两种或两种以上晶体结构形式的现象为同质多晶现象。
同种化合物的不同晶型,在其物理、化学性质上可能差别很大,如金刚石与石墨。
3、产生晶体缺陷的原因是什么?晶体缺陷对晶体的物理化学性质的影响如何?(1)实际晶体中的微粒数量是有限的;(2)晶体中所有的微粒并非处在晶格中相应位置静止不动,而是在其平衡位置附近不停的振动;(3)实际晶体中多少存在一定的缺陷。
这些缺陷是指偏离理想的点阵结构情况。
晶体的结构缺陷包括点缺陷、线缺陷、面缺陷和体缺陷等情况。
在实际晶体中缺陷和畸变的存在使正常的点阵结构受到了一定程度的破坏或扰乱,对晶体的生长,晶体的力学性能、电学性能、磁学性能和光学性能等到都有很大的影响,在生产和科研中非常重要,是固体物理、固体化学和材料科学等领域的重要内容。
第二章1、晶体的结构特性是什么?这些特性是什么原因引起的?答1、晶体的均匀性、2、晶体的各向异性、3、晶体的自范性、4、晶体的熔点、5、晶体的对称性。
晶态物质有别于气体、液体的最典型特征是具有点阵结构,正是由于本身结构的特殊性,使晶体呈现出与其它物质完全不同的特殊性质。
2、简述产生非整比化合物的原因,当二元氧化物AB中某原子被氧化,则此原子的组成系数将向什么方向变化?当晶体中出现空位或填隙原子,从而使化合物的成份偏离整数比,这在晶体中是很普遍的现象。
第2讲 晶态与非晶态

萤石的八面体解理块
⑵许多晶体,如石英,不能破碎成几何 多面体。 ⑶最小的平行六面体并不是“分子”。
惠更斯:认为晶体中质点的有序排列导 致晶体具有一定的多面体外形。
布拉维(A.Bravais) 推导出32种对称型和14种空间格子,提 出晶体结构的空间格子理论。 劳埃(Max Von Laue),德国科学家。
⑹定熔性 指晶体具有固定熔点的性质。
熔 点 熔 点
t 非晶质体的加热曲线 非晶质体的加热曲线 晶体的加热曲线 晶体的加热曲线
t t
原子堆积与晶体中的缺陷 实际的晶体可以看作一些一定尺寸的硬球的堆积: 尺寸大的原子或离子尽量靠近,为了使自由能最小,它们作最紧 密堆积(ccp或hcp);在形成密堆积时,还有四面体空位和八面体 空位,小尺寸原子或离子就进入这些空位 金属结构大部分由等原子半径的金属元素面心密积或六方密堆积 化合物中通常由离子半径大的离子作密堆积,半径小的离子占空位
传导电子、空穴、极化子、陷阱 杂质、空位、位错
√
晶体的许多性质因缺陷改变,控制缺陷可以控制晶体的性能
点缺陷(零维缺陷):填隙原子、空位、杂质和空位对等
Frenkel
Schottky
纯度:99%, 99.9%, 99.99%, 99.999%, 99.9999% 铁 + 碳 ZnS + 10-4 钢 % (原子)AgCl 45号钢(0.45% C)
NaC1晶体的抗拉强度的异向性 (单位:g/mm2)
⑶均一性 同一晶体任何部位的物理性质和化学组 成均相同。 如何理解晶体异向性和均一性的统一?
⑷对称性 所有的晶体都是对称的。晶体的对称 不但表现在外形上,其内部构造和物 理性质也是对称的。 ⑸稳定性 在相同的热力学条件下,晶体与同种成 分的非晶质体、液体、气体相比,以晶 体最为稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章非晶态聚合物材料 X 射线散射§13.1 非晶态聚合物什麽是“聚合物非晶态”和“非晶态聚合物”?从聚集态结构角度看, 聚合物非晶态包括玻璃态、橡胶态、结晶聚合物中的非晶部分, 以及结晶熔融态; 非晶态聚合物则是指完全不能结晶的聚合物. 从分子结构角度看, 非晶态聚合物包括:(1)无规立构聚合物(如无规立构聚苯乙烯(a-PS)、无规立构聚甲基丙烯酸甲酯(a-PMMA)), 它们的分子链结构规则性很差, 以致根本不能形成任何可观的结晶. 当它们从熔体冷却结晶时,仅能形成玻璃态;(2)有一类聚合物, 如聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)等, 其链结构虽具有一定的规整性, 可以结晶, 但由于结晶速度非常缓慢, 以致其熔体在通常冷却速度下得不到可观的结晶, 常呈玻璃态结构; (3)有些聚合物, 链结构虽然具有规整性(如顺式-1,4 聚丁二烯), 由于分子链扭折不易结晶, 常温下为橡胶态结构, 低温时可形成结晶. 非晶态聚合物的结构亦与温度有关, 当温度低于玻璃化温度Tg 时, 聚合物呈玻璃态; 高于Tg 时聚合物呈橡胶态乃至粘流态, 每种结构状态各有其结构特性. 晶态聚合物, 当升温至完全熔融以及由熔融态淬冷至玻璃态均可形成非晶态结构. 非晶态聚合物和结晶聚合物中的非晶部分-非晶态, 两者在结构和性质上有所不同. 鉴于本章讨论问题的性质, 对聚合物非晶态和非晶态聚合物不加以区分, 统称为非晶态聚合物; 且仅讨论用X 射线散射方法研究非晶态聚合物的理论、实验方法和结果。
非晶态聚合物的结构研究, 是凝聚态物理中一个十分活跃的研究领域, 是材料科学的重要分支之一. 同晶态聚合物结构研究相比, 人们对非晶聚合物结构研究远不如对结晶聚合物结构认识的那样深入, 无论是在基础理论, 微观结构或宏观特性方面, 均有大量问题有待人们投入更多的热情和精力去探索解决.非晶态聚合物材料是否具有近程有序结构, 是高分子科学中长期以来存在不同观点争论的问题. 50年代Flory 提出非晶态聚合物是由无规线团链构象的大分子构成, 认为非晶态聚合物在熔融状态下与在 溶剂中具有相同的廻转半径或均方末端距, 并且这些无规线团形态的分子链聚集, 其分布呈Gaussian 型函数状, 服从Gaussian 分布, 其链构象可用格子模型表征. 后来Kargin 根据电子衍射和X 射线衍射实验结果得出, 非晶态聚合物存在局部有序结构. 进入70 年代是非晶态聚合物结构是否具有近程有序性讨论最活跃的时期, 一些研究者提出: 宏观上非晶态聚合物可以用无规线团链构象模型表示, 然而在2 ~ 5nm 尺度上分子链间存在不同程度的近程有序结构, 其范围可大于低分子量液体具有的尺寸. 之后, 由广角X 射线径向分布函数计算结果, 进一步确定了非晶态聚合物在~ 5nm 内存在近程有序结构.晶态聚合物的结晶部分分子链是有序排列, 其分子、原子排布具有周期性, 称长程有序. 非晶态聚合物由于原子或分子间的相互作用, 仅发生在几个原子或单个分子大小的尺寸上, 即每个原子在一定距离和一定方向上, 均拥有固定的邻近原子配位, 存在某种程度的有序性. 由于其原子, 分子的空间排列不呈现周期性和平移对称性, 致使分子链的排列杂乱无章, 链互相穿插交缠, 缺乏任何宏观结构的规律性, 是无序组合, 至多仅在几个链节范围内有某种有序性, 其分子链排列是长程无序,短程有序. 当用X 射线辐照非晶态聚合物样品时, X射线衍射图只呈现较宽的晕或弥散环, 没有表征晶态聚合物的衍射条纹或斑点; X 射线衍射强度曲线呈现单一馒头包形; 少数聚合物的X 射线衍强度曲线呈现双馒头包形(图13.1 (a), (b), (c)).(a)2θ/o(b)2θ/o(c)图13.1 非晶态聚合物的X 射线衍射图(a) 典型非晶态聚合物的X 射线衍射图(b) 非晶态聚丙烯的X 射线衍射强度曲线(c) 非晶态聚戊烯-1 的X 射线衍射强度曲线对非晶态物质的研究, 目前常采用两种办法. 其一是衍射数据分析法: 通过由实验获得的衍射强度, 计算出原子分布, 从而得到材料的结构. 然而依目前的实验技术、设备和方法, 从实验得到的数据, 用现有的处理办法去获得数量众多的各原子精确位置和材料的确切结构是不可能的. 目前普遍采用描述非晶态物质结构的方法, 是借助统计物理学的分布函数法, 其中最常用的是径向分布函数(RDF ), 它是研究非晶态聚合物的重要方法之一. 30年代 Warrern 根据 X 射线衍射强度数据的Fourier 变换, 计算了未拉伸天然橡胶的径向分布函数. 由于实验条件、方法和数据处理技术的不完善, 此后相当长的一段时间对非晶态聚合物材料结构的研究几乎处于停滞状态. 自 60 年代以来, 为改善 RDF 的计算精度和消除假峰影响, Kaplow 等提出了一种改善截断误差的修正方法, 使 RDF 结果的可靠性大大提高; 同时对于多原子体系的 RDF 理论也日臻完善. 近年来, 非晶态聚合物的 RDF 研究有了较大发展, 已先后研究了聚苯乙烯(PS )、聚碳酸酯(PC )、聚对苯二甲酸乙二醇酯(PET )、天然橡胶(NR )、聚乙烯熔体、聚丁二烯、聚三氟氯乙烯、丁腈橡胶及涤纶等. 非晶态聚合物样品通过求算 RDF 可以表征其分子链内和分子链间的原子排布短程有序畴及近邻原子配位数目等. 其二是模型法: 由原子间的相互作用和其它约束条件, 给出一种可能的原子结构排布模型, 然后由所设模型得出的性质 (如径向分布函数等) 同实验值加以比较, 判断模型的可靠程度. 模型的径向分布函数如与实验结果一致, 这仅表明了所用模型成立的必要条件; 此外,还应将所用模型的计算密度同实际样品密度进行比较; 再有还要求所用模型边界条件与同它类似的模型边界条件一致, 并被其它结构分析手段所佐证, 所有这些条件均被满足后, 所提出的模型方是可行的.对于诸如非晶态金属, 非晶态半导体, 非晶态玻璃和非晶态聚合物等均提出了多种非晶态材料的结构模型, 尽管这些模型的适用性存在这样或那样限制, 但不失其应用性. 目前大多使用的模型主要有微晶结构模型、硬球无规密堆模型和连续无规网络模型等. 实际上, 非晶态样品原子分布是三维的, 而 RDF 提供的仅是一维信息, 所以直接由 RDF 完全确定非晶态材料的结构是不可能的. 为此, 根据实验得到的某样品的 RDF 结果, 通过合理的实验数据处理, 应用现有的结构和化学知识及其它条件, 给出尽可能多的原子间距, 并应用该物质的晶体结构数据, 以便确定与由 RDF 结果得到的原子间距相连的是哪些原子, 藉以建立合宜的非晶态结构模型; 然后计算此模型的 RDF, 并与实验得到的 RDF 相比较, 从而确定一个比较合理的非晶态结构模型.对于非晶态聚合物结构分析的实验研究常采用 X 射线衍射分析 (XRD) 法, 扩展 X 射线吸收分析精细结构 (EXAFS), 小角中子散射 (SANS), 反常 X 光散射, 高分辨电子显微镜 (HREM), 核磁共振 (NMR) 等.§13.2 普适X 射线散射强度方程选取分子链为无序分布的非晶态聚合物, 设这种聚合物样品中含有多种不同类原子及其数目. 设在 t 时刻第 m 个原子位于 m r 位置, 第 n 个原子位于 n r位置, 则以电子单位表示的整个系统的全部原子所产生的散射振幅与其相位之积构成的散射强度为:I eu =∑∑⋅-λπ-⋅-λπmnn 0n m 0m]r )h h )(/i 2exp[(f ]r )h h )(/i 2exp[(f(13.1)式中, f m , f n 为 m 原子和 n 原子的散射因子, 它是化学结构重复单元中含有的原子数及散射角的函数; h , 0h分别为入射波和反射波单位矢量; h =4πsin θ/λ; λ 是 X 射线波长; θ 是散射角.式(13.1)形式上与晶体散射强度的表达式是一样的, 但在晶体散射强度表达式中, 矢量 r是有序的, 双重求和是可计算的; 对非晶态物质, 矢量 r 是随意的, 各 r之间没有一个简单的关系可表达. 为了简化式(13.1),我们定义 m r — n r =mn r, 则式(13.1)化为:I eu = mn mnn m r h h i f f⋅-∑∑))(/2exp(0λπ(13.2)注意到 0h h-=2sin θ 见式(12—1)和图 13.2 则有:I eu =∑∑mnmn n m ihr f f )cos exp(α (13.3)式中,α 是矢量 0h h- 和 mn r之间的夹角.图13.2 两个原子的相干散射示意图假定 mn r在整个空间中各位置出现的几率相同, 即原子在整个空间中取任何位置, 角 α 则为空间的全部值. 由此式(13.3)的指数部分则为:⎰π40mnΩd )αcos ihrexp(⎰π40Ωd = ⎰⋅π0mn π4/αd αsin π2)αcos ihr exp(=[]⎰----=αα-11mnmnmnmnmnmn)ihrexp()ihrexp(ihr21)cos ihr(d )cos ihrexp(ihr21=mnmn hr hr )sin( (13.4)所以式(13.3)变为:I eu = ∑∑mnmnmn nm hr hr f f )sin( (13.5)式 (13.5) 是著名的 Debye 散射方程, 它既适用於晶态聚合物亦适用於非晶态聚合物, 常称普适 X 射线散射强度方程. 由式(13.5)可知原子散射强度与原子的结构因子、散射角、X 射线波长和原子间的距离有关, 与其间的方向无关.§13.3 非晶态材料径向分布函数 (RDF)§13.3.1 单种原子非晶态材料径向分布函数式(13.5)的双重求和是对整个体系的全部原子对, 且假定原子是沿整个空间无取向排列. 通过Fourier 积分可由实验数据直接求出径向分布函数. 对于所考虑的物质仅含有一种原子, 且其原子总数为 N 时, 如果此系统中任何原子均具有相同的条件, 则式(13.5)化为:I eu = 2Nf mnmn nm hr hr )sin(,∑(13.6)对具有 N 个原子的体系, 在对上式求和时, 将该体系中任一原子依次作为参考原子并与其它原子相互作用, 可见其中有 N 项是原子的自身相互作用, 即 m=n, 亦即 mn r →0, 1)sin(→mnmn hr hr ,故式(13.6)化为:I eu = 2Nf⎥⎦⎤⎢⎣⎡+∑≠n m mn mn hr hr )sin(1 (13.7)式(13.7)的求和不包括位于原点的原子.令距参考原子为 r 处的单位体积内的平均原子密度为 ρ(r), 那么在半径为 r , 厚度为 dr的球壳中所含原子数为 4πr 2)(r ρdr , 这个值也称为原子的径向密度. 在此假设下, 处于某参考原子周围的原子分布可视为连续函数, 则式(13.7)的求和可写为积分形式:I eu = 2Nf ⎥⎦⎤⎢⎣⎡+⎰∞2dr hr)hr sin()r (ρr π41 (13.8)取 0ρ 为样品的平均原子密度, 式(13.8)改写为:I eu =2Nf {1+()[]⎰⎰∞∞+-020244dr hrhr r dr hrhr r r )sin()sin(ρπρρπ}上式最后一项为:∞∞⎥⎦⎤⎢⎣⎡-=⎰232)hr cos(hr )hr sin()hr (ρr π4dr hr)hr sin(ρr π4可以看出, 当 r = 0 上式为 0;当 r ∞→时, 此值亦为 0, 除非 h 很小; 然而当 h 很小时,散射角 θ 很小, 此时散射光束不可能同原光束分开, 即被透射的原光束覆盖. 如果我们仅限于研究实验中可观察到的强度, 则式(13.8)可写成下述形式:I eu = 2Nf []⎭⎬⎫⎩⎨⎧-+⎰∞0241dr hrhr r r)sin()(ρρπ (13.9)式(13.9)既未考虑非相干散射, 亦未计及吸收、偏振、多重散射等影响.令, )(h i =2NfI eu , )(r g =)(ρρr 则式(13.9)改为:[]dr)hr sin()r (r 41]-)h (i [h 0⎰∞ρ-ρπ= (13.10.1)及 []⎰∞-+=002141dr hrhr r g r h i )sin()()(ρπ (13.10.2)应用 Fourier 积分变换, 式(13.10)变化为:[]⎰∞-=-020121dh hr h i h r r )sin(])([)(πρρ (13.11.1)⎰∞-+=021211dh hr h i h r r g )sin(])([)(ρπ (13.11.2)或 =)(r R D F ⎰∞-+=00221244dh hr h i h rr r r )sin(])([)(πρπρπ (13.11.3)式(13.11.2)最先由 Zernicke 和 Prins 导出;Debye 和 Menke 应用这一方程研究了单原子组成的非晶态物质—液汞. )(h i 通常称为散射干涉函数, 它是平均每个原子的相干散射强度与单一原子的相干散射强度之比; )(r g 称为双体分布函数. )(h i 可由 X 射线散射强度求得, 从而由式(13.11.3)得到径向分布函数 )(42r r ρπ. 原子的径向分布函数 )(42r r ρπ 表示了球面上的总原子数, 根据)(r r ρπ24 曲线可以了解非晶态材料原子间距离及配位数等. )(42r r ρπ 随 r 增加, 在 024ρπr 曲线附近上下振荡. 由径向分布函数定义, dr r r )(42ρπ 为与平均原子中心相距为 r , 厚度为 dr 的球壳中所含原子平均数目. 因此在 )(42r r ρπ 曲线的第一个峰下面的面积就是最邻近原子壳层内原子的数目, 即最邻近配位数; )(42r r ρπ 曲线的第二个峰和第三个峰下面的面积就是第二和第三原子壳层内原子的数目, 等等. 配位数是非晶态材料结构的一个重要参数, 通过计算径向分布函数 )(42r r ρπ 值, 就可以得到原子的配位数. 非晶态结构的另一个重要参数是各原子壳层的平均距离, 它可由 )(r ρ 的峰位求出. 由式(13.11.2), 可以得到双体分布函数 )(r g , 则由 )(r g =0)(ρρr可知, 通过 )(r g 曲线的峰位, 即可获得各原子壳层距中心原子的平均距离.非晶态结构分析中也常用约化径向分布函数 )(r G . 设 []04ρρπ-=)()(r r r G 则由式(13.11.1)有: []⎰∞-=012dh hr h i h r G )sin()()(π(13.12)由式(13.11.2)、式(13.11.3)和式(13.12)可以得到对非晶态材料结构研究中三个重要的不同形式的分布函数, 即 )(r g 、)(42r r ρπ 和 )(r G . 其间的关系为:)(42r r ρπ==)(r RDF 024ρπr +)(r rG (13.13) )(r g =1+4)(ρπr r G (13.14)非晶态材料结构分析中, 由于约化径向分布函数 )(r G 计算最简便, 因此一般先算出 )(r G , 再求出其它二个分布函数, )(42r r ρπ 和 )(r g .§13.3.2 多种原子非晶态材料径向分布函数设所研究非晶态体系的样品是由 n 种原子组成, 每种原子具有 N 1, N 2……N n 个原子数, 且总原子数为 ∑=niN N ; 总体积为 V ; 0ρ 为该非晶态体系所含原子的平均数密度; i ρ 为第 i 种原子平均数密度; i C 为第 i 种原子在该体系中所占分数, 则:NN C V N VN i i i i ///00===ρρ故, ∑=ni00ρρ; 00ρρi i C =根据上述定义, 将式(13.9)推广到 n 种原子体系, 则其以电子单位表示的相干散射强度为:[]∑∑∑⎰=∞-+=ni ninjj ijji i i i eu dr hr r hr ff N f N h I 1024)sin()()(ρρπ=[]⎥⎦⎤⎢⎣⎡-+∑∑∑⎰=∞ni n injjij ji i i i dr hr r hr ff C f C N 1024)sin()(ρρπ所以平均每个原子产生的相干散射强度为: []∑∑∑⎰=∞-+=ni ninjj ijji i i i eu dr hr r r hf f C f C Nh I 1024)sin()()(ρρπ (13.15)或 []∑∑∑⎰=∞-+=n i n injijji j i i i eu dr hr r gr hff C C f C Nh I 12)sin(1)(4)(πρ(13.16)式中, j ij ij r r g 0/)()(ρρ=, 并注意到 00ρρj j C =, 称 )(r g ij 为偏双体分布函数.令, Nh I h I eu coh )()(=,22⎪⎭⎫ ⎝⎛=∑n i i f C f,∑=ni if Cf22, 则式(13.16)化为:[]∑∑⎰∞-++-=n injijji j i coh dr hr r gr ff C C hfffh I )sin(1)(4)(0222πρ=[]⎥⎥⎦⎤⎢⎢⎣⎡-++-∑∑⎰∞n injij ji j i dr hr r g r ff f C C h ff f )sin(1)(4102222πρ=)(222h I fff +- (13.17)这里, =)(h I1+[]⎥⎥⎦⎤⎢⎢⎣⎡-∑∑⎰∞n injij ji j i dr hr r g r fff C C h )sin(1)(402πρ=[]∑∑⎰∞-+ninjijji j i dr hrhr r g rfff C C )sin(1)(41022πρ (13.18)令, )(1)(h i h I =-, 上式则化为:[]∑∑⎰∞-=ninjijji j i dr hr r gr fff C C h hi )sin(1)(4)(02πρ(13.19)令,2)(ff f C C h W ji j i ij =称它为权重因子.显然,∑∑∑∑==ninj2ninjji j iij1ff f C C)h (W(13.20)如此, 式(13.18)化为:∑∑=ninjij ijh I h Wh I )()()( (13.21)这里, []dr hr r gr hh I ijij )sin(1)(41)(0⎰∞-+=πρ (13.22))(h I ij 称偏干涉函数; )(h I 称全干涉函数. 可见)(h I 是)(h I ij 权重和. 由式(13.21)可知, 多种原子成份聚合物非晶态材料结构分析是比较复杂的, 这是由于权重函数 )h (W ij 是随 h 变化,且对不同种类原子其)h (W ij 随 h 变化亦不同. 将式(13.22)中的 )(h I ij 化为:[][]⎰∞-⋅=-00141dr hr r g r h I h ij ij )sin()()(ρπ (13.23)对上式进行 Fourier 变换: [][]dh )hr sin(1)h (Ih 211)r (g r 0ij2ij 0⎰∞-π=-ρ[]112102+-=⎰∞dh hr h I h rr g ijij )sin()()(ρπ=[]⎰∞-+0012411dhhr h Ih r ij)sin()(πρπ所以, )(411)(0r G r r g ij ij ρπ+= (13.24)其中, []⎰∞-=012dh hr h Ih r G ijij )sin()()(π(13.25)则, =⎥⎦⎤⎢⎣⎡+===)()()()(r G r r r g r r r r RDF ij j j ij ij ij 002022411444ρπρπρπρπ)(r G rC r ij j j +=024ρπ (13.26))(r G ij 和 )(r RDF ij 分别称为偏约化分布函数和偏径向分布函数. 通常可由实验测定干涉函数 )(h I , 由式(13.17)知:[]222)()(fffh I h I c o h --= (13.27)设对非单一原子系统式(13.12)仍成立, 即:[]⎰∞-=012dh hr h I h r G )sin()()(π注意到式(13.20)并将式(13.21)代入上式则有:=⎥⎦⎤⎢⎣⎡-=⎰∑∑∞dh hr h I h W h r G n i n j ij ij )sin(})(){()(012π={}∑∑⎰∞-ninjij ijdh hr h I h h W12)sin()()(π(13.28)假定各种原子的散射因子与 h 的关系相同, 即 )(h W ij 与 h 无关, 则上式为:[]∑∑⎰∞-=n injijijdh hr h Ih W r G 012)sin()()(π(13.29)即, ∑∑=ninjijij)r (GW )r (G (13.30)令, ∑∑=ninjij ijr g Wr g )()( (13.31)并将式(13.24)和式(13.30)代入上式且注意到式(13.20)有:41ρπr r G r g )()(+= (13.32)称 )(r g , )(r G 为全双体分布函数和全约化分布函数.如令, 0)()(ρρr g r =, 将式中 )(r g 以式 (13.31) 及 )(/)()(0r r r g j ij ij ρρ= 和 00)(ρρj j C r = 代入则得:∑∑∑∑==n in jn injjij ijij ijC r r Wr g r Wr )()()()()(0ρρρ (13.33)所以全径向分布函数为:∑∑+===ninjjij ij r rG r C r RDF r W r r r RDF )()()()()(02244ρπρπ (13.34)式中, )(4)(2r r r R D F ij ijρπ= 式 (13.32) 和式 (13.34) 是分析非晶态材料常用的公式. 偏原子分布函数和全原子分布函数间的密切关系可由式 (13.30), 式 (13.31), 式 (13.33) 和式 (13.34) 明确地表达出. 聚合物为多种原子体系,全径向分布函数 )(r RDF 是不同种原子的偏径向分布函数 )(r RDF ij 的叠加, 因此对全径向分布函数 )(r RDF 的解释要复杂得多; 目前主要还是计算全径向分布函数 )(r RDF .)(r RDF 分布函数曲线中的峰值是与聚合物化学结构重复单元和链构象有关, 是由分子链内的原子间距所决定; 同时这一峰值也反映了链段堆砌和链段排列的有序性, 它是由分子链间的原子间距所决定.进行非晶态材料 X 射线散射强度实际测量时,辐射源一般采用 MoK α, X 射线散角不可能为无限大,对于 MoK α辐射源, 此时 ≈max h 17Å-1, 式(13.12)的积分上限则为 max h , 即 X 射线散射强度实际测量在 max h 处截止, 造成截止效应. 从式(13.12)可知, 在 max h 处, 尽管 )(h I 明显减少, 但它扩大了 h 倍, 因此 []1)(-h I h 仍具有较大值, 致使式(13.12)的积分曲线在 max h处不趋于 0, 从而使 4)(2r r ρπ 曲线出现假峰, 给出错误信息. 以 max h 去取代积分上限 ∞, 将造成真峰两侧产生一对假峰, 这一对假峰位置为maxh r r j 38π±=. 式中, j r 为第 j 个真峰的峰位. 因此在采用式(13.12)进行数据处理时, 为了使被积函数加快收敛, 避免出现假峰, 一般在 []1)(-h I h 项后乘以一个收敛因子 ()22exp h α-, 其 α 是常数. 通常收敛因子 ()22exp h α-1.0≈(当max h h =). 如此, 式(13.12)化为:[]dh hr h h I h r G )sin()exp()()(22012απ--=⎰∞(13.35)这样做的目的, 一方面因为在大 h 区域, )(h I 的测量精度较低, 使得 []1)(-h I h 误差较大, 当它乘以收敛因子 ()22exp h α- 后, 由于在大 h 区和小 h 区乘以不同的权重, 因此可以降低大h 区处测量误差造成的影响; 另一方面, 可以减小在 max h 后 []1)(-h I h 突变为零, 造成4)(2r r ρπ 曲线出现假峰, 给出错误信息. 假峰的出现是误差存在的主要表征, 计算结果表明, 在整个 4)(2r r ρπ 曲线上均存在假峰, 但在小 r 范围会出现振幅较大的假峰, 假峰更显著, 影响更大些. 分析表明, 引入收敛因子 ()22h α-exp 后, 使分布函数曲线的峰变宽和变矮, 这对分辨率有些影响,但对样品的主要结构参数(如峰位,配位数等)并无影响. 图13.3(a )表明, 当不加入收敛因子时, )(r g 曲线的第一个峰附近两边均出现假峰(图13.3(a 1)); 引入收敛因子 =2α—0.012 后, 假峰消失了(图13.3(a 2)). 图 (13.3(b)) 是表明经过收敛因子和误差处理对 )(r RDF 曲线的影响; 图中所标注的误差处理, 系指对截断效应, 归一化因子逐次逼近的选定(至少以在小 r 范围不出现)(r RDF 曲线中假峰为准)和为降低大 r 范围产生的高频振荡对收敛因子中 α 值的选取等造成的影响进行处理. 当然, 实验测定散射强度时,min h 也不可能为 0, 也会造成误差, 但 min h 不为 0 造成的误差要比maxh 不趋于 ∞ 小得多. 一般为降低 min h 不为 0 的影响, 通常是把实验散射强度值外推到 h =0.(a 1)(a2)图13.3(a)收敛因子对)(rg分布函数影响(a1) 未作收敛因子修正(a2)引入收敛因子=2α—0.012图13.3 (b) 收敛因子对)RDF分布函数的影响(r(1)未做收敛因子修正和误差处理(2)未做误差处理, 已做收敛因子修正(3)经过收敛因子和误差处理§ 13.4 非晶态材料的 X 射线散射实验方法§ 13.4.1 实验要求由于非晶态聚合物不同于结晶聚合物, 它在所有角度都产生散射. 当计算径向分布函数时,散射角的测量范围应使h 上限尽可能的大,对于常用的 MoK α 和 AgK α 大致在 17Å-1 和 22Å-1 ,即各自相应于散射角 2θ=1480 和 1580. 实际上, 由式(13.7)可知, 当 h 足够大时, 相干散射强度趋近于 2Nf , 亦即式(13.9)中的积分项趋近于 0. 散射强度的干涉函数 )(h I (式(13.27))曲线如图 13.4. 从图中可以看到, 只要测定的角度足够大, 即 h 够大, 则: 1)(→h I .图 13.4 干涉函数 )(h I 曲线采用衍射法测定非晶态聚合物结构, 就是由实测散射强度曲线推算出样品 RDF . 实测的散射强度含有相干散射、非相干散射、空气散射和其它寄生散射以及不同实验条件等的影响, 所有这些必须经过适当处理、修正并把实测散射强度数据转化为以电子单位表示的数据, 之后方可进行干涉函数, 径向分布函数的计算.§ 13.4.2 X 射线散射实验X 射线散射法测定非晶态聚合物结构, 通常采用的实验装置如图 13.5 所示. 对薄膜样品则应用透射法(图13.5(a )); 对具有一定厚度的样品应用对称反射法(图13.5(b )). 当然, 为增加散射强度, 最好在低角度采用透射法, 在高角度采用反射法. 使用这两种方法时, 应注意测量中要保有两种测量方法角度的叠合区, 以便通过角度叠合区的散射强度进行比例换算, 使之成为统一的测量强度.(a) (b) 图 13.5 实验布置:(a) 透射法 (b) 对称反射法对上述两种方法, 实验时一般采用对称反射法. 为降低非相干散射和荧光效应, 采用晶体单色器. 目前常用的是石墨单色器; 由于这种单色器具有较宽的通频带, 故在低角处的非相干散射仍可通过, 但可阻止高角处的非相干散射. 同时要求 X 射线源具有足够大的功率和良好的稳定性, 以提高数据采集的精度. 为尽量扩大测量范围, 减少截断误差, 一般选用短波长辐射材料作靶, 如 Mo, Ag 等. 这两种靶材料的辐射上限为 max h ~λπ4 可达 17Å-1 和 22 Å-1. 采用闪烁计数器和步进定时扫描.扫描步长 h ∆ 大小的选择, 决定于样品条件和测试的精度要求. h ∆ 过大虽然可缩短测量时间, 但会造成散射强度 )(0h I m 的测量误差; h ∆ 太小又造成测量时间的加长. 一般步长应为⎪⎭⎫⎝⎛=θ∆λθπ∆sin 4h =0.15~0.5Å-1之间比较合宜. 另外, 由于在大 h 区散射强度弱, 为提高散射强度, 一般采取增大狭缝宽度的办法. 进行 X 射线散射强度测量时, 在大 h 区的变化部分, 即狭缝由窄变宽处, 应有一个狭缝变换重合区域, 由重合区域测量的宽狭缝和窄狭缝的散射强度, 求出比例关系, 然后以此比例关系去除宽狭缝(即大 h )区的散射强度值, 再将两部份的散射强度转化为同一实验条件下的散射强度值. 为改善样品均匀性, 消除样品的取向影响, 测量数据时, 采用旋转样品架为宜.§ 13.5 X 射线散射强度的数据处理实验测定的非晶态材料的 X 射线散射强度(0m I ), 需经过偏振(P )、吸收(A )校正以及空气散射强度(air I )、多重散射强度(ms I )和非相干散射强度(in I )的校正.§ 13.5.1 空气散射强度(a i r I )、多重散射强度(ms I )和荧光辐射大角度时的空气散射强度(air I ), 有时可达被测样品总散射强度的 10% 左右, 因此必须加以修正. 办法是, 选取与有样品时相同的实验条件, 包括温度、扫描速度、采样步长、靶材料、操作电流、电压等, 并在放有相同的样品架时, 测量无样品条件的散射强度即为空气散射强度(air I ), 再从总散射强度 0m I 中扣除.对于多重散射强度(ms I ), 由于非晶态样品的 X 射线散射强度较低, 多重散射(主要是二次散射), 一般予以忽略; 当然对于聚合物非晶态样品, 由于其组成主要是H 、C 、S 、O 等原子序数较低的一些元素所构成, 二次散射强度在总散射强度中占有一定比例(约为百分之几), 原则上应予以考虑. 按 Warren 给出的计算二次散射强度的表达式:∑=n i i m A J b q Q B I I )()2(),,2()1()2(2μθθ (13.36)式中,)2(),1(I I 分别为一次, 二次散射强度; ∑=niZB , Z 为原子序数;⎪⎭⎫ ⎝⎛+-+=θθ2sin 11)2(b q q B J ;i μ和 i A 是第 i 种原子的质量吸收系数和原子量. Q , q 与 b 值可查表. 由此可得到每个原子的多重散射强度 )2()(I h I ms ≈.由于在 X 射线散射实验装置的布置中, 通常是将单色器放在 X 射线的光路中, 因此荧光辐射对测试结果带来的影响可不考虑.§ 13.5.2 偏振(P )和吸收(A )校正1. 偏振(P )校正样品和单色器都可使散射的辐射产生偏振, 偏振后的辐射对强度是有影响的, 必须加以修正, 并以偏振因子表征影响程度:CB P ++=12c o s 12θ(13.37)式中, θ2 为散射角.当不采用单色器, 使用滤波片时, 1==C B . 实验中多采用理想嵌镶分光晶体单色器,此时 s B θ22cos =;对使用理想完整分光晶体单色器时, s B θ2cos =, 这里 s θ 为单色器的衍射角. 同时如果单色器置于衍射光路中, 1=C ; 如果单色器置于入射光路中 C B =.2. 吸收(A )校正样品引起的对 X 射线散射强度的吸收校正, 取决于样品的吸收系数和实验时样品的安排方式(图13. 6).对于实验安排如图 13.6(a) 为对称反射布置时, 当样品的厚度为 t μ>3 时, 吸收因子μ21=A与散射角无关; 式中, μ 是线吸收系数; t 是样品厚度(cm ). 但一般样品厚度不易满足 t μ> 3,如果样品较薄, 则吸收因子为:μθμ2)sin /2exp(1t A --= (13.38)对于实验安排如图 13. 6(b) 为垂直入射透射布置时,()[])2sec 1(12sec 1exp θμθμ---=t t A (13.39)对于实验安排如图 13. 6(c) 为对称透射布置时,[])sec (exp sec θμθ--=1t A (13.40)(a )对称反射 (b) 垂直透射 (c) 对称透射 图 13.6 实验布置图§ 13.5.3 非相干(Compton )散射(in I )物体的散射辐射主要是由两部分构成, 即相干散射和非相干散射. 相干散射的波长与入射波长相同; 非相干散射的波长大于入射波长且波长与散射角有关. 非相干散射亦称非弹性散射, 当在衍。