第三章、聚合物的非晶态

合集下载

东华大学《高分子物理》各章选择判断题

东华大学《高分子物理》各章选择判断题

东华大学《高分子物理》各章选择判断题第一章高分子链的结构二、单项选择题:1. 氯乙烯聚合时存在头—尾、头—头或尾—尾键接方式,它们被称为:(a) 旋光异构体 (b) 顺序异构体 (c) 几何异构体 (d) 无规立构体2.1,4—丁二烯聚合可以形成顺式和反式两种构型,它们被称为:(a) 旋光异构体 (b) 几何异构体 (c) 间同异构体 (d) 无规立构体3. 下列哪些因素会使聚合物的柔性增加:(a) 结晶 (b) 交联 (c) 主链上引入孤立双键 (d) 形成分子间氢键4. 下列哪个物理量不能描述聚合物分子链的柔性:(a) 极限特征比 (b) 均方末端距 (c) 链段长度 (d ) 熔融指数5. 高分子内旋转受阻程度增加,其均方末端距:(a) 增加 (b) 减小 (c) 不变 (d ) 不能确定6. 如果不考虑键接顺序,线形聚异戊二烯的异构体数为:(a) 6 (b) 7 (c) 8 (d) 97. 比较聚丙烯(PP )、聚乙烯(PE )、聚丙烯腈(PAN )和聚氯乙烯(PVC )柔性的大小,正确的顺序是:(a) PE>PP> PAN > PVC (b) PE>PP>PVC>PAN(c) PP > PE >PVC>PAN (d) PP > PE > PAN > PVC8. 同一种聚合物样品,下列计算值哪个最大:(a) 自由结合链的均方末端距 (b) 自由旋转链的均方末端距(c) 等效自由结合链的均方末端距 (d) 一样大9.聚合度为1000的PE ,键长为0.154nm ,则其自由结合链的均方末端距为:(a) 23.7 nm 2 (b) 47.4nm 2 (c) 71.1 nm 2 (d) 94.8 nm 210. PE 的聚合度扩大10倍,则其自由结合链的均方末端距扩大:(a) 10倍 (b) 20倍 (c) 50倍 (d) 100倍11. PE 自由结合链的根均方末端距扩大10倍,则聚合度需扩大:(a) 10倍 (b) 100倍 (c) 50倍 (d) 20倍三、判断题:1. 聚合物和其它物质一样存在固态、液态和气态。

3-非晶态合金

3-非晶态合金

(稳定相)
(亚稳相)
(亚稳相)
E
A


D
(稳定相)
E:结晶过程;C:非晶形成过程 ;D:非晶晶化过程
与结晶相比,非晶态形成过程有以下特点:
(1)从熔体中形成非晶态的过程是:ABC 即:过热熔体 过冷熔体 非晶固相
(2)非晶形成是亚稳相之间相互转变,即: 稳定过热液相 亚稳过冷液相 亚稳固相
晶体
非晶
3、电性能 与晶态合金相比,非晶态合金的电阻率显著增高
(2~3倍),例如非晶态的Cu0.6Zr0.4合金的电阻率可 达 350cm , 而 晶 态 高 电 阻 合 金 的 电 阻 率 仅 为 100cm左右。这是由于非晶态合金原子的无序排 列而导致电子的附加散射所致。
非晶态合金的电阻温度系数( 1 d )比晶态合金的
• 非晶态结构:原子排列没有周期性,即原子的排 列从总体上是无规则的(长程无序),但是,近邻 原子的排列是有一定规律的(短程有序)
晶态和非晶态材料的X-射线衍射谱
晶态和非晶态材料的电子衍射图
晶体衍射花样
非晶合金衍射花样
2.亚稳定性
非晶态是一种亚稳态,其结构具有相对的稳定性,这种稳定 性直接关系非晶态材料的应用及使用寿命。
非晶合金发展及研究现状
• 1934年,德国人克雷默采用蒸发沉积法制备出非晶态合金。 • 1950年,布伦纳用电沉积法制备出了Ni-P非晶态合金。 • 1960年,DUWEZ等人从熔融金属急冷制成了金属玻璃并开
始进行研究。
• 1969年,美国人庞德和马丁研究了生产非晶态合金带材的 技术,为规模生产奠定了技术基础。 1976年,美国联信公司生产出10mm宽的非晶态合金 带材,到1994年已经达到年产4万吨的能力。目前美国能 生产出最大宽度达217mm的非晶带材。 2000年9月20日,在钢铁研究总院的非晶带材生产线 上成功地喷出了宽220mm、表面质量良好的非晶带材,它 标志着我国在该材料的研制和生产上达到国际先进水平。

非晶态聚合物的三种力学状态

非晶态聚合物的三种力学状态

非晶态聚合物是一种具有高度无序结构的材料,其力学性能取决于材料的微观结构和分子链的排列方式。

非晶态聚合物的力学状态通常可以分为三种:玻璃态、高弹态和黏流态。

玻璃态是非晶态聚合物在低温下的一种力学状态,此时分子链之间的运动受到限制,材料表现出高硬度和脆性。

玻璃态的非晶态聚合物在受到外力作用时容易发生断裂,因此不适合作为结构材料。

然而,玻璃态聚合物在光学和电子领域具有广泛的应用,例如制作光学纤维和液晶显示器等。

高弹态是非晶态聚合物在较高温度下的一种力学状态,此时分子链之间的运动较为活跃,材料表现出高弹性和韧性。

高弹态的非晶态聚合物在受到外力作用时能够发生较大形变,并且能够在外力消失后恢复原状。

因此,高弹态聚合物广泛应用于制造橡胶制品、弹性体和减震材料等领域。

黏流态是非晶态聚合物在高温下的一种力学状态,此时分子链之间的运动非常活跃,材料表现出类似流体的性质。

黏流态的非晶态聚合物在受到外力作用时能够发生流动,并且能够在外力消失后保持变形后的形状。

因此,黏流态聚合物广泛应用于制造塑料制品、薄膜和涂层等领域。

非晶态聚合物的力学状态与其微观结构和分子链的排列方式密切相关。

通过改变材料的化学成分、分子量和加工条件等参数,可以调节非晶态聚合物的力学状态,从而满足不同应用场景的需求。

此外,非晶态聚合物的力学状态也与材料的老化和降解过程密切相关,因此需要关注材料的储存和使用条件,以确保材料的性能和寿命。

高分子物理第三章习题及解答

高分子物理第三章习题及解答

高分子的溶解溶解与溶胀例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。

这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。

整个过程往往需要较长的时间。

高聚物的聚集态又有非晶态和晶态之分。

非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。

晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。

非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。

例3-2.用热力学原理解释溶解和溶胀。

解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合:上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。

焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。

对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。

但一般来说,高聚物的溶解过程都是增加的,即>0。

显然,要使<0,则要求越小越好,最好为负值或较小的正值。

极性高聚物溶于极性溶剂,常因溶剂化作用而放热。

因此,总小于零,即<0,溶解过程自发进行。

根据晶格理论得=(3-1)式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。

的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。

而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式:=(3-2)式中是体积分数,是溶度参数,下标1和2分别表示溶剂和溶质,是溶液的总体积。

第三章 (1) 高分子材料的物理化学性质

第三章 (1) 高分子材料的物理化学性质
热胀温度敏感型水凝胶指水凝胶的体积在某一温度附近随温度升高而突然增加这一温度叫做较高临界溶解温度ucstuppercriticalsolutiontemperatureucst以上大分子链亲水性增加因水合而伸展使水凝胶在ucst以上突然体积膨热缩温度敏感型水凝胶则是随温度升高大分子链疏水性增强发生卷曲使水凝胶体积急剧下降体积发生突变的温度叫较低临界溶解温度lcstlowercriticalsolutiontemperature
19
(ii)pH敏感水凝胶 :pH敏感性水凝胶是体积随环境pH值、 离子强度变化的高分子凝胶。这类凝胶大分子网络中具有可解 离成离子的基团,其网络结构和电荷密度随介质pH值的变化而 变化,并对凝胶的渗透压产生影响;同时因为网络中添加了离 子,离子强度的变化也引起体积变化。 一般来说,具有pH值响应性的水凝胶都是含有酸性或碱性侧 基的大分子网络,即聚电解质水凝胶。随着介质pH值、离子强 度的改变,酸、碱基团发生电离,导致网络内大分子链段间氢 键的解离,引起不连续的溶胀体积变化。
18
热可逆性水凝胶 有些聚合物水溶液在室温下呈自由流动的液态 而在体温下呈凝胶态,即形成热可逆性水凝胶(TGR)。这一体系 能够较容易地对特定的组织部位注射给药,在体内环境下很快形 成凝胶。而且这种给药系统的制备较简单,只需将药物与聚合物 水溶液进行简单地混合。 如:聚环氧乙烷(PEO)与聚环氧丙烷(PPO)嵌段共聚物是已被批 准用于药用辅料的高分子,商品名叫普流罗尼(Pluronic)或泊洛沙 姆(Poloxamer),依据其结构和浓度,这类聚合物存在两个临界相 转变温度,即溶液-凝胶转变温度(相当于LCST)和凝胶-溶液转变 温度,在这两个温度之间其水溶液呈现凝胶状态。利用这类共聚 物水溶液低温溶液状态混合药物,尤其是生物类药物,注人体内 形成凝胶,从而实现控制药物释放同时保护药物活性的功能。

第三章、聚合物的非晶态

第三章、聚合物的非晶态

为什么有以上情况? 外界温度改变了,使分子运动的状 况不同,因而表现出的宏观性能也 不同。
结构是决定分子运动的内在条件 性能是分子运动的宏观表现
不同物质,结构不同,在相同外界条件下,分子 运动不同,从而表现出的性能不同。 相同物质,在不同外界条件下,分子运动不同, 从而表现出的性能也不同。
学习聚合物分子运动的规律,了解聚合物在不同温度下呈现 的力学状态、热转变与松弛以及玻璃化温度和熔点的影响因 素,对于合理选用材料、确定加工工艺条件以及材料改性等 等都是重要的。
即由于构象的改变, 长链分子可以在外力作用 下伸展(或卷曲),因此 弹性模量迅速下降3~4个 数量级,形变迅速增加。
玻 璃 态
Tg
形变 高 弹 态
粘流 态
Tf
温度
形 (三)高弹态(橡胶-弹性平台区) 变 高 弹 态
Tg
Tg<T<Tf
温 运动单元:链段。τ减小到与测量时间同一数量级,可观 度
3、利用力学性质变化——动态力学法
测量聚合物的动态模量和力学损耗随温度的变化
动态模量-温度曲线与相应的静态曲线相似 力学损耗温度曲线出现若干损耗峰 通常从最高损耗峰的峰位置确定Tg值。
测量方法有:
自由振动(如扭摆法和扭辫法) 强迫振动共振法(如振簧法) 强迫振动非共振法(如动态粘弹谱仪)等, Tg
非晶态结构包括玻璃态、橡胶态、粘流态(或熔融态) 及结晶聚合物中的非晶区。
由于对非晶态结构的研究比对晶态结构的研究要困难的 多,因而对非晶态结构的认识还较粗浅。目前主要有两种 理论模型,即两相球粒模型和无规线团模型,两者尚存争 议,无定论。
2、非晶态聚合物的结构模型
Flory的无规线团模型 Yeh的折叠链缨状胶束粒子模型

非晶态聚合物的力学状态.

非晶态聚合物的力学状态.

高弹态
蜷曲
伸展
T增加,虽然整个分子的移动不可能,但是当T=Tg 时,分子 热运动的能量足以克服内旋转的位垒,链段开始运动,可以通过 单键的内旋转改变构象,甚至可以使部分链段产生滑移。也就是 说当温度升高到某一温度,链段运动的 减少到与实验测量时间 同一个数量级时,我们便可以观察到链段运动,聚合物便进入了 高弹态。
常温下处于玻璃态的高聚物通常用作塑料 常温下处于高弹态的高聚物通常用作橡胶 粘流态是高聚物成型的最重要的状态
3.分子量对温度-形变曲线的影响
当分子量很低时,整个分子链不够一个链段长度,运 动单元只是整个分子,因而Tg与Tf重复,不出现高弹 态,但随M增大,Tg增大
当分子量增加到一定值,如图中M3<M4<M5,就出现了 第二运动单元-链段,此时曲线上Tg与Tf不再重合,出 现高弹平台,由于链段大小主要决定于分子链的柔顺性 和邻近分子间的影响,与整个分子长度关系不大,所以 Tg不再随分子量增加而改变。
力学性能:受力后,形变ε很小,模量E很高;形变与所受的 力大小成正比σ=Eε(符合虎克定律);当外力除去后,形变立 刻恢复(可逆普弹形变)。
应用:处于玻璃态的聚合物可作为塑料,如PS、PMMA、 PVC等
5
形 变
玻 璃
A 玻璃态
化 转



B 高弹态



变 区
C 粘流态

Tb
Tg
Tf
Td 温度
二个转变区
玻璃化转变区 粘流转变区
玻璃态
运动单元:温度较低(T<Tg),分子运动的能量很低,不 能克服单键内旋转的位垒,链段被冻结,只有小运动单元(侧 基,链节,支链)能运动,因此不能实现构象转变。即链段运 动的松弛时间为无穷大,大大超过实验测量的时间范围。因此 此时受外力时,链段运动被冻结,只能使链的键长键角发生微 小的改变。

聚合物结晶态与非晶态

聚合物结晶态与非晶态

(1)中子散射技术观测拉伸聚合物相同伸长、 不 同松弛时间的结构变化。
(2)同步辐射SAXS /WAXS和介电谱技术可以用 来研究结晶高分子非晶区的结构及其动力学松弛行 为。
(3)结晶高分子中柔性非晶相和刚性非晶相的比 例可以根据示差扫描量热( DSC ) 结果进行估算。
完 毕! 谢 谢!
聚合物
非结晶性 聚合物
结晶性聚 合物
结条 晶件
非晶 态
晶态
结晶能力是内因,条件外 因。具有结晶能力的聚合 物,即可是晶形的,也可 是非晶形的。
分子链的对称 性与规整性
温度、时间
(1)缨束状模型
Hale Waihona Puke (2)折叠链模型实际高聚物结晶大 多 是晶相与非晶相 共存的, 而各种结 晶模型都有其片 面 性,R.Hosemann 综合了各种结晶模 型,提出了一种折 衷的模型,称为隧 道-折叠链模型。 这个模型综合了在 高聚物晶态结 构中
聚合物
玻璃化转变温度85℃,
熔点285℃,长期使用
温度为200℃-220℃。
6. 结晶度与材料性能
提 非晶区高弹态 高 结 晶 度 非晶区玻璃态
弹性模量 硬度 拉伸强度 断裂伸长率 冲击强度
~ 弹性模量
变脆 拉伸强度 断裂伸长率 冲击强度
相同结晶度时,晶体尺寸越大,脆性越大,力学性能越差。
6. 结晶度与材料性能
6. 结晶度与材料性能
例如:聚醚醚酮(poly
ether ether ketone, PEEK)
Tm
树脂结晶度间于
结晶性聚 合物
15%~35%,玻璃化转变 温度143℃,熔点334℃, 可在250℃下长期使用;
Tg
聚苯硫醚 (polyphenylene sulfide,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
松弛时间的大小取决于材料的固有性质以 及温度、外力的大小。
高聚物的 不是一单一数值,运动单元越大, 运动所需时间越长,则 大,运动单元越小, 则 小,由于高聚物的运动单元具有多重性, 所以高聚物的 严格地讲是一个分布,称为
“松弛时间谱”
当观察时间的标度与聚合物中某种运动单元 (例如链段)的 值相当时,我们才能观察到 这种运动单元的松弛过程,但仍然观察不到其 它运动单元的松弛过程。
§2.1 高聚物分子运动的特点
Characters of the polymer molecular movements
1、运动单元的多重性
2、分子运动的时间依赖性 3、分子运动的温度依赖性
(1)运动单元的多重性
Varieties of molecular movements
由于高分子的长链结构,分子量不仅高,还具有多分散 性,此外,它还可以带有不同的侧基,加上支化,交联,结 晶,取向,共聚等,使得高分子的运动单元具有多重性,或 者说高聚物的分子运动有多重模式。
多种运动单元:如侧基、支链、链节、链段、整个分子链等
运动形式多样:可以是振动、转动、平动(平移)
分子运动单元
•链段的运动——主链中碳-碳单键的内旋转,使得高
分子链有可能在整个分子不动,即分子链质量中心不变 的情况下,一部分链段相对于另一部分链段而运动。
•链节的运动——比链段还小的运动单元 •侧基的运动——侧基运动是多种多样的,如转动,内
两种典型的聚合物非晶态结构模型 (a)无规线团模型 (b)折叠链缨状胶束粒子模型
第 二节 非晶态聚合物的力学状态和热转变 §2.1 高聚物分子运动的特点
§2.2
非晶态聚合物的力学状态和热转变
先看二个例子:
PMMA:室温下坚如玻璃,俗称有机玻璃, 但在100℃左右成为柔软的弹性体 结构材料橡胶:室温下是柔软的弹性体, 但在100℃左右为坚硬的玻璃体
玻 璃 态
粘 流 态
Tf
察到链段运动了,可以实现高聚物的构象改变。 高弹态的弹性模量只有0.1~10Mpa 。在温度-形变曲线 上出现平台区,受较小的力就可以发生很大的形变(100~ 1000%),而且当除去外力后,形变可以恢复。 高弹态是聚合物特有的力学状态。高弹形变是链段运动使 卷曲的分子链发生伸展运动的宏观表现,因此高弹性是一 种熵弹性。
第三章 聚合物的非晶态
第三章 聚合物的非晶态
第 一节 第 二节 变 第 三节 第 四节 第 五节 非晶态聚合物的结构模型 非晶态聚合物的力学状态和热转 非晶态聚合物的玻璃化转变 非晶态聚合物的黏性流动 聚合物的取向态
第 一节 非晶态聚合物的结构模型
1、聚合物的非晶态结构
非晶态结构是一个比晶态更为普遍存在的聚集形态,不 仅有大量完全非晶态的聚合物,而且即使在晶态聚合物中 也存在非晶区。
即由于构象的改变, 长链分子可以在外力作用 下伸展(或卷曲),因此 弹性模量迅速下降3~4个 数量级,形变迅速增加。
玻 璃 态
Tg
形变 高 弹 态
粘流 态
Tf
温度
形 (三)高弹态(橡胶-弹性平台区) 变 高 弹 态
Tg
Tg<T<Tf
温 运动单元:链段。τ减小到与测量时间同一数量级,可观 度
§2.2非晶态聚合物的力学状态和热转变 Characters of the polymer molecular movements
采用加热的方法并对高聚物试样施 加一恒定的力,观察试样发生的形变 与温度的关系,即采用热机械曲线 (温度形变曲线)的方法来考察这个 问题。
形变
高弹态
粘流态
玻璃态
Tg
Tf
旋转,端基的运动等
•高分子的整体运动——高分子作为整体呈现质量中
心的移动
•晶区内的运动——晶型转变,晶区缺陷的运动,晶
区中的局部松弛模式等
(2) 分子运动的时间依赖性 Time dependence
在一定的温度和外力作用下,高聚物分子从一种 平衡态过渡到另一种平衡态需要一定的时间。
x x0 e
(3) 分子运动的温度依赖性 Temperature dependence
Arrhenius Equation 阿累尼乌斯方程
0e
T T
E / RT
E - 松弛所需的活化能 activation energy

Time-Temperature superposition 时温等效
温度
非晶态聚合物的温度-形变曲线(热-机械曲线)
(一)玻璃态
由于温度较低,分子热运动能低,链段的热运动能不足以 克服主链内旋转的势垒,因此,链段处于被“冻结”状态。 只有侧基、链节、短支链等小运动单元的局部振动及键长, 键角的变化,因此弹性模量很高(109Pa),形变很小 (0.1~1%)。
非晶的非晶区。
由于对非晶态结构的研究比对晶态结构的研究要困难的 多,因而对非晶态结构的认识还较粗浅。目前主要有两种 理论模型,即两相球粒模型和无规线团模型,两者尚存争 议,无定论。
2、非晶态聚合物的结构模型
Flory的无规线团模型 Yeh的折叠链缨状胶束粒子模型
为什么有以上情况? 外界温度改变了,使分子运动的状 况不同,因而表现出的宏观性能也 不同。
结构是决定分子运动的内在条件 性能是分子运动的宏观表现
不同物质,结构不同,在相同外界条件下,分子 运动不同,从而表现出的性能不同。 相同物质,在不同外界条件下,分子运动不同, 从而表现出的性能也不同。
学习聚合物分子运动的规律,了解聚合物在不同温度下呈现 的力学状态、热转变与松弛以及玻璃化温度和熔点的影响因 素,对于合理选用材料、确定加工工艺条件以及材料改性等 等都是重要的。
t /
Relaxation time ——形变量恢复到原长度的1/e时所 需的时间。
低分子, =10-8~10-10s, 可以看成是无松弛的瞬时过程。 高分子, =10-1~10+4 s或更大, 可明显观察到松弛过程。
高分子热运动是一个松弛过程。

——松弛时间,是一个表征松弛过程快慢的物 理量。
具有虎克弹性行为,质硬而脆,类似玻璃, 因而称为 形变 玻璃态。
高 弹 态 玻 璃 态
Tg
粘流 态
Tf
温度
(二)玻璃化转变区
在3~5℃范围内几乎所有性质都发生突变(例如热膨胀系 数、模量、介电常数、折光指数等)。 从分子运动机理看,在此温度链段已开始“解冻”,即 链段的运动被激发。
由于链段绕主链轴的旋转使分子的形态不断变化,
相关文档
最新文档