二次函数综合题训练题型汇总

二次函数综合题训练题型汇总
二次函数综合题训练题型汇总

1、(06年海南省中考)如图

1,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与

该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;

(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次

函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 的取值范围;

(3)D 为直线AB 得四边形DCEP 是平行四边形若存在,请求出此时P 理由

2、(07年河北中考)如图2,已知二次函数24y ax x c =-+的图像经过点A 和点B .

(1)求该二次函数的表达式;

(2)写出该抛物线的对称轴及顶点坐标;

(3)点P (m ,m )与点Q 均在该函数图像上(其中m >0),且这两点关于抛物线的对称轴对称,

求m 的值及点Q 到x 轴的距离

3、(07年海口模拟一)如图3,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C.

(1) 求这条抛物线的函数关系式.

(2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S.

① 求S 与t 的函数关系式;

② 当t 为何值时,S 有最大值,最大值是多少并指出此时△PQA 的形状;

③ 是否存在这样的t 值,使得△PQA 是直角三角形若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由. E

B A

C

P 图1

O x

y

D x y

O 3 9

1 1 A

B

图2

4、

S(万元)

S与t之间的关系).

根据图象提供信息,解答下列问题:

(1)公司从第几个月末开始扭亏为盈;

(2)累积利润S与时间t之间的函数关系式;

(3)求截止到几月末公司累积利润可达30万元;

(4)求第8个月公司所获利是多少元

5、(07年海口模拟二)如图5,已知抛物线c

a

+

=2的顶点坐标为E(1,0),与y轴

y+

x

b

x

的交点坐标为(0,1).

(1)求该抛物线的函数关系式.

(2)A、B是x轴上两个动点,且A、B间的距离为AB=4,A在B的左边,过A作AD⊥x轴交抛物线于D,过B作BC⊥x轴交抛物线于C. 设A点的坐标为(t,0),四边形ABCD 的面积为S.

①求S与t之间的函数关系式.

②求四边形ABCD的最小面积,此时四边形ABCD是什么四边形

③当四边形ABCD面积最小时,在对角线BD上是否存在这样的点P,使得△PAE的周

.

6、(07浙江中考)如图6,抛物线2

23y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2。

(1)求A 、B 两点的坐标及直线AC 的函数表达式;

(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;

(3)点G 抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由。

7、(07海南中考)如图7,直线43

4

+-

=x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B .

(1)求该二次函数的关系式;

(2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒

2

3

个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C →

A 的路线运动,

当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ?的面积为S .

①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由;

②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围;

③设0S 是②中函数S 的最大值,那么0S = .

图6

C

A

M

y

B

O

x

图7

8、(05海南中考)如图8,抛物线c bx x y ++=2与x 轴交于 A(-1,0),B(3,0) 两点. (1)求该抛物线的解析式;

(2)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上 滑动到什么位置时,满足S △PAB =8,并求出此时P 点的坐标;

(3)设(1)中抛物线交y 轴于C 点,在该抛物线的对称轴上

是否存在点Q ,使得△QAC 的周长最小若存在,求出Q 点的坐标; 若不存在,请说明理由.

9、(04海口中考)如图9、已知抛物线y=x 2+(2n-1)x+n 2

-1 (n 为常数). (1)当该抛物线经过坐标原点,并且顶点在第四象限时, 求出它所对应的函数关系式;

(2)设A 是(1)所确定的抛物线上位于x 轴下方、且在对称轴左侧

的一个动点,过A 作x 轴的平行线,交抛物线于另一点D , 再作AB ⊥x 轴于B ,DC ⊥x 轴于C. ①当BC=1时,求矩形ABCD 的周长;

②试问矩形ABCD 的周长是否存在最大值如果存在,请求出这个最大值, 并指出此时A 点的坐标;如果不存在,请说明理由. 10、(07本校模拟一)如图10,已知点A(0,8),在 抛物线221x y =上,以A 为顶点的四边形ABCD 是平行四边形,

且项点B ,C ,D 在抛物线上,AD ∥x 轴,点D 在第一象限. (1)求BC 的长;

(2)若点P 是线段CD 上一动点,当点P 运动到何位置时, △DAP 的面积是7.

(3)连结AC ,E 为AC 上一动点,当点E 运动到何位置时, 直线OE 将 ABCD 分成面积相等的两部分并求此时E 点的 坐标及直线OE 的函数关系式. 11、(07本校模拟二)一座拱桥的截面轮廓为抛物线型(如 图11-1),拱高6米,跨度20米,相邻两支柱间的距离均为5米. (1)将抛物线放在所给的直角坐标系中(如图11-2所示),

其表达式是c ax y +=2的形式. 请根据所给的数据求出c a ,的值.(2)求支柱MN 的长度.

(3)拱桥下地平面是双向行车道(正中间DE 是一条宽2米 的隔离带),其中的一条行车道能否并排行驶宽2米、高3米的 三辆汽车(汽车间的间隔忽略不计)请说说你的理由.

二次函数综合题训练题型集合参考答案

图8

x

y

01

2

3

4

-1

-1-2-3

12A

B

C D

图9

A

B

C

D

O y x

图10

M N

10米

20米

6米

5米

D E O x

A

B C y

1、 (1) ∵ 点A(3,4)在直线y=x+m 上,

∴ 4=3+m. ………………………………(1分) ∴ m=1. ………………………………(2分)

设所求二次函数的关系式为y=a(x-1)2

. ………………………………(3分)

∵ 点A(3,4)在二次函数y=a(x-1)2

的图象上,

∴ 4=a(3-1)2

,

∴ a=1. ………………………………(4分)

∴ 所求二次函数的关系式为y=(x-1)2

.

即y=x 2

-2x+1. ………………………………(5分) (2) 设P 、E 两点的纵坐标分别为y P 和y E .

∴ PE=h=y P -y E ………………………………(6分)

=(x+1)-(x 2

-2x+1) ………………………………(7分)

=-x 2

+3x. ………………………………(8分)

即h=-x 2

+3x (0<x <3). ………………………………(9分) (3) 存在. ………………………………(10分)

解法1:要使四边形DCEP 是平行四边形,必需有PE=DC. …………………(11分) ∵ 点D 在直线y=x+1上, ∴ 点D 的坐标为(1,2),

∴ -x 2

+3x=2 .

即x 2

-3x+2=0 . ………………………………(12分) 解之,得 x 1=2,x 2=1 (不合题意,舍去) ………………………………(13分) ∴ 当P 点的坐标为(2,3)时,四边形DCEP 是平行四边形. ……………(14分) 解法2:要使四边形DCEP 是平行四边形,必需有BP ∥CE. ………………(11分) 设直线CE 的函数关系式为y=x+b. ∵ 直线CE 经过点C(1,0), ∴ 0=1+b, ∴ b=-1 .

∴ 直线CE 的函数关系式为y=x-1 .

∴ ???+-=-=1

21

2

x x y x y 得x 2-3x+2=0. ………………………………(12分)

解之,得 x 1=2,x 2=1 (不合题意,舍去) ………………………………(13分) ∴ 当P 点的坐标为(2,3)时,四边形DCEP 是平行四边形. ……………(14分)

2、解:(1)将x =-1,y =-1;x =3,y =-9分别代入c x ax y +-=42得

?

??+?-?=-+-?--?=-.3439,)1(4)1(122c a c a 解得 ???-==.6,1c a ∴二次函数的表达式为642

--=x x y .

(2)对称轴为2=x ;顶点坐标为(2,-10).

(3)将(m ,m )代入642--=x x y ,得 642--=m m m , 解得121,6m m =-=.∵m >0,∴11-=m 不合题意,舍去.

∴ m =6.∵点P 与点Q 关于对称轴2=x 对称,∴点Q 到x 轴的距离为6. 3、(1)∵ 抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3),

∴ ??

???==+=+03390

416c b a b a .解得 0,3

3

4,33==-=c b a . ………(2分) ∴ 所求抛物线的函数关系式为x x y 3

34332+-

=. ………………(3分) (注:用其它方法求抛物线的函数关系式参照以上标准给分.)

(2)① 过点B 作BE ⊥x 轴于E ,则BE=3,AE=1,AB=2.

由tan ∠BAE=

3=AE

BE

,得∠BAE =60°. …………(4分) (ⅰ)当点Q 在线段AB 上运动,即0<t ≤2时,QA=t ,PA=4-t .

过点Q 作QF ⊥x 轴于F ,则QF=t 2

3

∴ S=2

1PA ·QF t t 2

3)4(21?-=

t t 34

32

+-

=. ……(6分) (ⅱ)当点Q 在线段BC 上运动,即2≤t <4这时,S=3)4(2

1

?-t 3223+-=t ②(ⅰ)当0<t ≤2时,3)2(4

3

34322+--=+-

=t t t S . ∵ 04

3

<-

,∴ 当t =2时,S 有最大值,最大值S=3. ……(9分) (ⅱ)当2≤t <4时,322

3

+-=t S

∵ 02

3

<-

, ∴ S 随着t 的增大而减小. ∴ 当t =2时,S 有最大值,最大值33222

3

=+?-

=S . 综合(ⅰ)(ⅱ),当t =2时,S 有最大值,最大值为3.

△PQA 是等边三角形. ③ 存在.

当点Q 在线段AB 上运动时,要使得△PQA 是直角三角形,必须使得∠PQA =90°,

这时PA=2QA ,即4-t =2t ,∴ 3

4=t .

∴ P 、Q 两点的坐标分别为P 1(3

4,0),Q 1(310,332). ……(13分)

当点Q 在线段BC 上运动时,Q 、P 两点的横坐标分别为5-t 和t ,要使得△PQA

是直角三角形,则必须5-t =t ,∴ 2

5=t

∴ P 、Q 两点的坐标分别为P 2(25,0),Q 2(2

5,3). ………………(14分)

(注:用其它方法求解参照以上标准给分.)

4、(1)由图象可知公司从第4个月末以后开始扭亏为盈. ………………………(1分) (2)由图象可知其顶点坐标为(2,-2),

故可设其函数关系式为:y=a(t-2)2

-2. …………(2分 ∵ 所求函数关系式的图象过(0,0),于是得

a(t-2)2

-2=0,解得a=2

1 . ……(4分)

∴ 所求函数关系式为:S=21t-2)2-2或S=21t 2

-2t. …………(6分)

(3)把S=30代入S=21t-2)2-2,得2

1t-2)2

-2=30. …………(7分)

解得t 1=10,t 2=-6(舍去). ……………………(8分)

答:截止到10月末公司累积利润可达30万元. ………………………(9分)

(4)把t=7代入关系式,得S=2

1×72

-2×7= ……………………………(10分)

把t=8代入关系式,得S=2

1×82

-2×8=16

= …………(

答:第8个月公司所获利是万元. 5、(1)∵ 抛物线c x b x a y ++=2顶点为F (1,0)

∴ 2)1(-=x a y ………(1分) ∵ 该抛线经过点E (0,1) ∴ 2)10(1-=a

∴ 1=a

∴ 2)1(-=x y ,

即所求抛物线的函数关系式为122+-=x x y . ………(3分)

(2)① ∵ A 点的坐标为(t ,0), AB=4,且点C 、D 在抛物线上,

∴ B 、C 、D 点的坐标分别为(t +4,0),(t +4, (t +3)2

),(t ,(t -1)2

). …(5分)

∴ 20844])3()1[(2

1

)(21222++=?++-=?+=t t t t AB BC AD S .………(7分)

② 16)1(4208422++=++=t t t S . ………(8分) ∴ 当t =-1时,四边形ABCD 的最小面积为16, ………(9分)

此时AD=BC=AB=DC=4,四边形ABCD 是正方形. ………(10分) ③ 当四边形ABCD 的面积最小时,四边形ABCD 是正方形,

其对角线BD 上存在点P, 使得ΔPAE 的周长最小. ………(11分)

∵AE=4(定值),

∴要使ΔPAE 的周长最小,只需PA+PE 最小.

∵此时四边形ABCD 是正方形,点A 与点C 关于BD 所在直线对称,

∴由几何知识可知,P 是直线CE 与正方形ABCD 对角线BD 的交点. ∵点E 、B 、C 、D 的坐标分别为(1,0)(3,0)(3,4)(-1,4) ∴直线BD ,EC 的函数关系式分别为:y=-x+3, y=2x-2.

∴ P(35,3

4) ………(13分)

在Rt △CEB 中,CE=524222=+,

∴ △PAE 的最小周长=AE+AP+PE=AE+CP+PE=AE+CE=2+52. ………(14分)

6、解:(1)令y=0,解得11x =-或23x =(1分)

∴A (-1,0)B (3,0);(1分)

将C 点的横坐标x =2代入2

23y x x =--得y=-3,∴C (2,-3)(1分) ∴直线AC 的函数解析式是y=-x -1

(2)设P 点的横坐标为x (-1≤x ≤2)(注:x 的范围不写不扣分) 则P 、E 的坐标分别为:P (x ,-x -1),(1分) E (2

(,23)x x x --(1分)

∵P 点在E 点的上方,PE=2

2

(1)(23)2x x x x x -----=-++(2分) ∴当12x =

时,PE 的最大值=9

4

(1分)

(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(4(4F F F F - 7、解:(1)令0=x ,则4=y ; 令0=y 则3=x .∴()0,3A 、()4,0C ∵二次函数的图象过点()4,0C , ∴可设二次函数的关系式为

42++=bx ax y ┄1分

又∵该函数图象过点()0,3A 、()0,1-B

∴??

?+-=++=.

40,

4390b a b a ┄2分

解之,得34-

=a ,3

8=b ∴所求二次函数的关系式为43

8

342++-

=x x y ┄3分 (2)∵43

8

342++-=x x y =()3

161342+--x

∴顶点M 的坐标为??

?

??

316,

1 ┄4分 过点M 作MF x ⊥轴于F

∴FOCM AFM AOCM S S S 梯形四边形+=? =

()1013164213161321=???

?

??+?+?-? ∴四边形AOCM 的面积为10 ┄6分 (3)①不存在DE ∥OC ┄7分

∵若DE ∥OC ,则点D 、E 应分别在线段OA 、CA 上,此时 1

1-=

t x ,∴5

12

121-=t x ∵DE ∥OC , ∴

t t 2351212=- ∴38

=t ┄8分 ∵3

8

=t >2,不满足1

∴不存在DE ∥OC. ┄9分 ②根据题意得D 、E 两点相遇的时间为

1124

42

3543=

+++(秒) ┄10分 现分情况讨论如下: ⅰ当0

3

21t t t S =??=

; ┄11分

ⅱ当1

()54454

2--=

t y ,∴5

16362t

y -=

E C

A

y

O

B

x

M

D

∴t t t t S 5

275125163623212+-=-??=

┄12分 ⅲ当2

16363t

y -=

设点D 的坐标为()44,y x

∴5

32344

-=t y , ∴5

12

64-=t y

∴AOD AOE S S S ??-=

512

632151636321-?

?--??=t t =5

72533+-t ┄13分

③80

243

0=S ┄14分

10、(1)∵四边形ABCD 是平行四边形,

∴AD=BC. ∵A(0,8),

∴设D 点坐标为(x 1,8), 代入22

1x y = 又∵D 点在第一象限,

∴ x 1=4,∴ BC=4. (2)∵C(2,2),D(4,8),

∴直线CD 的函数关系式为y=3x-4.

设点P 在线段CD 上,P(x 2,y 2),

∴y 2=3x 2-4.

∵AD=BC=4,

∴21×4(8-y 2)=7, ∴y 2=2

9.

∴3x 2-4=29, ∴x 2=617. ∴P(617,2

9),

即当点P 在(617,2

9)的位置时,△DAP 的面积是7.

(3)连接AC ,当点E 运动到AC 的中点(或AC 与BD 的交点)时,即E 点为 ABCD 的中心,其坐标为E (1,5),直线OE 将 ABCD 分成面积相等的两部分. 设直线OE 的函数关系式为y=kx,

∴k=5,∴直线OE 的函数关系式为y=5x.

11、(1) 根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(0,6)、(10,0).

将B 、C 的坐标代入c ax y +=2,得 ??

?+==.

1000,

6c a c A B C D O y x E

解得6,50

3=-=c a .

∴抛物线的表达式是650

32+-=x y .

(2) 可设N(5,N y ),

于是5.46550

32=+?-=N y .

从而支柱MN 的长度是=5.5米.

(3) 设DE 是隔离带的宽,EG 是三辆车的宽度和,

则G 点坐标是(7,0)(7=2÷2+2×3). 过G 点作GH 垂直AB 交抛物线于H ,则350

13675032>+=+?-=H y .

根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.

圆与二次函数难度题(含答案)

水尾中学中考专项训练(压轴题)答案 1.(四川模拟)如图,Rt △ABC 内接于⊙O ,∠ACB =90°,AC =23,BC =1.以AC 为一边,在AC 的右侧作等边△ACD ,连接BD ,交⊙O 于点E ,连接AE ,求BD 和AE 的长. 解:过D 作DF ⊥BC ,交BC 的延长线于F ∵△ACD 是等边三角形 ∴AD =CD =AC =23,∠ACD =60° ∵∠ACB =90°,∴∠ACF =90° ∴∠DCF =30°,∴DF = 1 2 CD =3,CF =3DF =3 ∴BF =BC +CF =1+3=4 ∴BD = BF 2 +DF 2 = 16+3 =19 ∵AC =23,BC =1,∴AB = AC 2 +BC 2 = 13 ∵BE +DE =BD ,∴AB 2 -AE 2 + AD 2 -AE 2 =BD 即 13-AE 2 + 12-AE 2 =19 ∴13-AE 2 =19- 12-AE 2 两边平方得:13-AE 2=19+12-AE 2-2 19(12-AE 2 ) 整理得:19(12-AE 2 ) =9,解得AE = 7 19 57 2.(四川模拟)已知Rt △ABC 中,∠ACB =90°,∠B =60°,D 为△ABC 外接圆⊙O 上 AC ︵ 的中点. (1)如图1,P 为 ABC ︵ 的中点,求证:PA +PC =3PD ; (2)如图2,P 为 ABC ︵ 上任意一点,(1)中的结论还成立吗?请说明理由. (1)证明:连接AD ∵D 为AC ︵ 的中点,P 为 ABC ︵ 的中点 ∴PD 为⊙O 的直径,∴∠PAD =90° D D P 图1 图2

二次函数综合题经典习题(含答案及基本讲解)

二次函数综合题训练题型集合 1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线m x y+ =与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上. (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间 的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说 明理由. 2、如图2,已知二次函数24 y ax x c =-+的图像经过点A和点B.(1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标; (3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离 E B A C P 图1 O x y D x y O 3 -9 -1 -1 A B 图2

P B A C O x y Q 图3 3、如图3,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C. (1) 求这条抛物线的函数关系式. (2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S. ① 求S 与t 的函数关系式; ② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状; ③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由. 7、(07海南中考)如图7,直线43 4 +- =x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B . (1)求该二次函数的关系式; (2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒 2 3 个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C → A 的路线运动, 当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ?的面积为S . ①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由; ②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ③设0S 是②中函数S 的最大值,那么0S = . C A M y B O x C A M y B O x C A M y B O x

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数与圆结合的压轴题Word版

图6 x y F E H N M P D C B A O 二次函数和圆 【例题1】 (芜湖市) 已知圆P 的圆心在反比例函数k y x = (1)k >图象上,并与x 轴相交于A 、B 两点. 且始终与y 轴相切于定点C (0,1). (1) 求经过A 、B 、C 三点的二次 函数图象的解析式; (2) 若二次函数图象的顶点为 D ,问当k 为何值时,四边形ADBP 为菱形. 【例题2】(湖南省韶关市) 25.如图6,在平面直角坐标系中,四边形OABC 是矩形,OA=4,AB=2,直线3 2 y x =-+ 与坐标轴交于D 、E 。设M 是AB 的中点,P 是线段DE 上的动点. (1)求M 、D 两点的坐标; (2)当P 在什么位置时,PA=PB ?求出此时P 点的坐标; (3)过P 作PH ⊥BC ,垂足为H ,当以PM 为直径的⊙F 与BC 相切于点N 时,求梯形PMBH 的面积.

【例题3】(甘肃省白银等7市新课程)28. 在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B. (1)求直线CB的解析式; (2)若抛物线y=ax2+b x+c的顶点在直线BC上,与x 轴的交点恰为点E、F,求该抛物线的解析式; (3)试判断点C是否在抛物线上? (4)在抛物线上是否存在三个点,由它构成的三角形与 △AOC相似?直接写出两组这样的点. 【例题4】(绵阳市)25.如图,已知抛物线y = ax2 + bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为5.设⊙M与y轴交于D,抛物线的顶点为E. (1)求m的值及抛物线的解析式; (2)设∠DBC = α,∠CBE = β,求sin(α-β)的值; (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由. 【例题5】(南充市)25.如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、

中考数学专题题库∶二次函数的综合题及详细答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b. (1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示); (2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式; (3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围. 【答案】(1)b=﹣2a,顶点D的坐标为(﹣1 2 ,﹣ 9 4 a);(2) 27327 48 a a --;(3) 2≤t<9 4 . 【解析】 【分析】 (1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标; (2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可; (3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围. 【详解】 解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0), ∴a+a+b=0,即b=-2a, ∴y=ax2+ax+b=ax2+ax-2a=a(x+1 2 )2- 9 4 a ,

∴抛物线顶点D 的坐标为(- 1 2 ,-94a ); (2)∵直线y=2x+m 经过点M (1,0), ∴0=2×1+m ,解得m=-2, ∴y=2x-2, 则2 222y x y ax ax a -??+-? ==, 得ax 2+(a-2)x-2a+2=0, ∴(x-1)(ax+2a-2)=0, 解得x=1或x= 2 a -2, ∴N 点坐标为( 2a -2,4 a -6), ∵a <b ,即a <-2a , ∴a <0, 如图1,设抛物线对称轴交直线于点E , ∵抛物线对称轴为122 a x a =-=-, ∴E (- 1 2 ,-3), ∵M (1,0),N ( 2a -2,4 a -6), 设△DMN 的面积为S , ∴S=S △DEN +S △DEM = 12 |( 2a -2)-1|?|-94a -(-3)|=274?3a ?278a , (3)当a=-1时, 抛物线的解析式为:y=-x 2-x+2=-(x+ 12 )2+94,

二次函数最经典综合提高题

周村区城北中学二次函数综合提升寒假作业题 一、顶点、平移 1、抛物线y =-(x +2)2 -3的顶点坐标是( ). (A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) 2、若,,,,,123351A y B y C y 444??????- ? ? ??????? 为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是 A.123y y y << B. 213y y y << C.312y y y << D.132y y y << 3、二次函数y=﹣(x ﹣1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为( )A . B .2 C . D . 4、下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A .y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D .y = (x + 2)2 ? 3 5、将二次函数2 45y x x =-+化为2 ()y x h k =-+的形式,则y = . 6二次函数与y=kx 2﹣8x +8的图象与x 轴有交点,则k 的取值范围是 ( ) A .k <2 B .k <2且k ≠0 C .k ≤2 D .k ≤2且k ≠0 7、由二次函数1)3(22+-=x y ,可知( ) A .其图象的开口向下 B .其图象的对称轴为直线3-=x C .其最小值为1 D .当3

(完整版)初中数学二次函数综合题及答案

二次函数题 选择题: 1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y= 2 1 x 2 -6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则 c b a + =c a b + =b a c + 的值是( ) A -1 B 1 C 21 D -2 1 8、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( ) A B C D 二填空题: 13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。 16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c =-2的根为————————————。 17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=x 2 +bx+c ,其图象对称轴为直线x=1,且经过点(2,﹣). (1)求此二次函数的解析式. (2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积. 1 —1 0 x y y x -1 x y y x y x y

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

-圆与二次函数综合题精练(带答案)教学文案

圆与二次函数综合题 1、已知:二次函数y=x2-kx+k+4的图象与y轴交于点c,且与x轴的正半轴交于A、B两点(点A 在点B左侧)。若A、B两点的横坐标为整数。 (1)确定这个二次函数的解析式并求它的顶点坐标;(2)若点D的坐标是(0,6),点P(t,0)是线段AB上的一个动点,它可与点A重合,但不与点B重合。设四边形PBCD的面积为S,求S与t的函数关系式; (3)若点P与点A重合,得到四边形ABCD,以四边形ABCD的一边为边,画一个三角形,使它的面积等于四边形ABCD的面积,并注明三角形高线的长。再利用“等底等高的三角形面积相等”的知识,画一个三角形,使它的面积等于四边形ABCD的面积(画示意图,不写计算和证明过程)。 2、(1)已知:关于x、y的方程组有两个实数解,求m的取值范围; (2)在(1)的条件下,若抛物线y=-(m-1)x2+(m-5)x+6与x轴交于A、B两点,与y轴交于点C,且△ABC的面积等于12,确定此抛物线及直线y=(m+1)x-2的解析式; (3)你能将(2)中所得的抛物线平移,使其顶点在(2)中所得的直线上吗?请写出一种平移方法。 3、已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数。 (1)求证:不论m取何实数,这个二次函数的图像与x轴必有两个交点;(2)设这个二次函数的图像与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式。 4、已知二次函数y1=x2-2x-3. (1)结合函数y1的图像,确定当x取什么值时,y1>0,y1=0,y1<0; (2)根据(1)的结论,确定函数y2= (|y1|-y1)关于x的解析式; (3)若一次函数y=kx+b(k 0)的图像与函数y2的图像交于三个不同的点,试确定实数k与b应满足的条件。 5、已知:如图,直线y= x+ 与x轴、y轴分别交于A、B两点,⊙M经过原点O及A、B两点。 (1)求以OA、OB两线段长为根的一元二次方程; (2)C是⊙M上一点,连结BC交OA于点D,若∠COD=∠CBO, 写出经过O、C、A三点的二次函数的解析式; (3)若延长BC到E,使DE=2,连结EA,试判断直线EA与 ⊙M的位置关系,并说明理由。(河南省) 6、如图,已知点A(tan ,0)B(tan ,0)在x轴正半轴上,点A在点B的左 边,、是以线段AB为斜边、顶点C在x轴上方的Rt△ABC的两个锐角。 (1)若二次函数y=-x2- 5/2kx+(2+2k-k2)的图像经过A、B两点,求它的解析式; (2)点C在(1)中求出的二次函数的图像上吗?请说明理由。(陕西省)

二次函数典型中考试题解析和训练

二次函数典型中考试题解析及训练 [解读中考要点] 1、二次函数 一般地,形如 2y ax bx c =++(,,a b c 是常数,0a ≠)的函数叫做x 的二次函数。 解读:在函数中注意二次项系数0a ≠,,b c 是任意的实数即可。 2、二次函数 2y ax =(0a ≠)的性质 解读:(1)二次函数2y ax =的图象是抛物线,它的顶点是原点,对称轴是y 轴。 (2)当0a >时, 抛物线2y ax =的开口向上,并且向上无限延伸,顶点是它的最低点;当0a <时,抛物线2 y ax =的开口向下,并且向下无限延伸,顶点是它的最高点。 3、二次函数 2y ax k =+(0a ≠)的图象与性质 解读:(1)二次函数2y ax k =+的图象与2y ax =的图象的形状完全一样,可以通过平移二次函数2y ax =的图 象得到 2y ax k =+的图象。当0k >时,向上平移k 个单位长度;当0k <时,向下平移k 个单位长度。 (2)当0a >时,抛物线的开口向上;当0a <时,抛物线的开口向下。 (3)抛物线的顶点是 ()0,k ,对称轴是y 轴。 4、二次函数 ()2 y a x h k =-+(0a ≠)的图象与性质 解读:(1)它的图象与2y ax =的图象的形状完全一样,可以通过二次函数2 y ax =的图象得到()2 y a x h k =-+的图象。 (2)当0a >时,抛物线的开口向上;当0a <时,抛物线的开口向下。 (3)抛物线的顶点是 (),h k ,对称轴是y 轴。 5、关于二次函数 2y ax bx c =++(0a ≠)的图象 解读:(1)二次函数 2y ax bx c =++(0a ≠)的图象是与2y ax =的图象的形状完全一样的一条抛物线。 (2)抛物线2 y ax bx c =++(0a ≠)的对称轴是直线2b x a =-,顶点是24,24b ac b a a ??-- ???。 (3)当0a >时,抛物线的开口向上,顶点是它的最低点。当2b x a =-时,函数有最小值 244ac b a -;当2b x a <- 时, y 的值随x 值的增大而减小;当2b x a >- 时,y 的值随x 值的增大而增大。

初中数学二次函数综合题及答案(经典题型)

二次函数试题 论:①抛物线y lx21 是由抛物线y-x2怎样移动得到的22 ②抛物线y2(x 2 1)是由抛物线y 1 x2 2 :怎样移动得到的 ③抛物线y[(x1)21是由抛物线y 1 2 x21怎样移动得到的 22 ④抛物线 y ](x1)21是由抛物线 y 1 2 (x 1)2怎样移动得到22 ⑤抛物线y2(x1)21是由抛物线y 1 2 -x2怎样移动得到的 22 选择题:1、y=(m-2)x m2- m是关于x的二次函数,贝U m=() A -1 B 2 C -1 或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax2+bx+c(a丰0)模型的是() 在一定距离内,汽车行驶的速度与行驶的时间的关系 我国人中自然增长率为1%这样我国总人口数随年份变化的关系 矩形周长一定时,矩形面积和矩形边长之间的关系 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x2,则抛物线的解析式是( A y= —( x-2 ) 2+2 B y= —(x+2 )2+2 C y= (x+2 ) 2+2 D y= —( x-2 1 2 5、抛物线y= x -6x+24 2 的顶点坐标是( A (—6,—6) B(—6, 6) C(6,6) D (6,—6) 6、已知函数y=ax2+bx+c,图象如图所示,则下列结论中正确的有 ①abc〈0 ②a+ c〈 b ③ a+b+c > 7、函数y=ax2-bx+c (a丰 0) 的图象过点( A -1 B 1 C - 的值是 b 1 )个 -1 ,

填空题: 13、无论m为任何实数,总在抛物线y=x2+ 2mx+ m上的点的坐标是------------ 。 16、若抛物线y=ax2+bx+c(0)的对称轴为直线x =2,最小值为—2,则关于方程ax2+bx+c =-2的根为一 17、抛物线y= (k+1)x2+k2-9开口向下,且经过原点,则k= ---------------- 解答题:(二次函数与三角形) 1、已知:二次函数y==x2+bx+c,其图象对称轴为直线x=1,且经过点 4 (1)求此二次函数的解析式. (2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点并求出最大面积. 2、如图,在平面直角坐标系中,抛物线与x轴交于A B两点(A在B的左侧),与y轴 9 交于点C (0,4),顶点为(1,2)? (1)求抛物线的函数表达式; (2)设抛物线的对称轴与轴交于点D,试在对称轴上找出点卩,使厶CDP为等腰三角形,请直接写岀满足条件的所有点P的坐标. (3)若点E是线段AB上的一个动点(与A B不重合),分另U连接AC BC过点E作EF // AC交线段BC于点F,连接CE记厶CEF的面积为S S是否存在最大值若存在,求出 存在,请说明理由. 4 2 3、如图,一次函数y=—4x—4的图象与x轴、y轴分别交于A、C两点,抛物线y= + bx+ c的图象经过A C两点,且与x轴交于点B (1)求抛物线的函数表达式;己,使厶EBC的面积最大, (第2题图) S的最大值及此时E点的坐标;若不

二次函数与圆综合训练(含解析)

二次函数与圆综合提高(压轴题) 1、如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点, 且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图 形L. (1)求△ABC的面积; (2)设AD=x,图形L的面积为y,求y关于x的函数解析式; (3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.解 解:(1)如图3,作AH⊥BC于H, 答: ∴∠AHB=90°. ∵△ABC是等边三角形, ∴AB=BC=AC=3. ∵∠AHB=90°, ∴BH=BC= 在Rt△ABC中,由勾股定理,得 AH=. ∴S△ABC==; (2)如图1,当0<x≤1.5时,y=S△ADE. 作AG⊥DE于G, ∴∠AGD=90°,∠DAG=30°, ∴DG=x,AG=x, ∴y==x2, ∵a=>0,开口向上,在对称轴的右侧y随x的增大而增大,

∴x=1.5时,y 最大=, 如图2,当1.5<x<3时,作MG⊥DE于G, ∵AD=x, ∴BD=DM=3﹣x, ∴DG=(3﹣x),MF=MN=2x﹣3, ∴MG=(3﹣x), ∴y=, =﹣; (3),如图4,∵y=﹣; ∴y=﹣(x2﹣4x)﹣, y=﹣(x﹣2)2+, ∵a=﹣<0,开口向下, ∴x=2时,y最大=, ∵>, ∴y最大时,x=2, ∴DE=2,BD=DM=1.作FO⊥DE于O,连接MO,ME.∴DO=OE=1, ∴DM=DO. ∵∠MDO=60°, ∴△MDO是等边三角形, ∴∠DMO=∠DOM=60°,MO=DO=1. ∴MO=OE,∠MOE=120°,

∴∠OME=30°, ∴∠DME=90°, ∴DE是直径, S⊙O=π×12=π. 2、(2013?压轴题)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4), 点B的坐标为(4, 0),点C的坐标为 (﹣4,0),点P在 射线AB上运动,连 结CP与y轴交于点 D,连结BD.过P, D,B三点作⊙Q与 y轴的另一个交点 为E,延长DQ交⊙Q于点F,连结EF,BF. (1)求直线AB的函数解析式; (2)当点P在线段AB(不包括A,B两点)上时. ①求证:∠BDE=∠ADP; ②设DE=x,DF=y.请求出y关于x的函数解析式; (3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由. 解:(1)设直线AB的函数解析式为y=kx+4, 代入(4,0)得:4k+4=0, 解得:k=﹣1, 则直线AB的函数解析式为y=﹣x+4; (2)①由已知得: OB=OC,∠BOD=∠COD=90°, 又∵OD=OD, ∴△BOD≌△COD,

二次函数综合题类型

二次函数综合题常见题型 一、线段最值 1、如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5). (1)求直线BC与抛物线的解析式; (2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值; (3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.

7),且顶点C的横坐标为4,该图象在x 轴上截2、如图,二次函数的图象经过点D(0,3 9 得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

3、如图,已知直线 1 1 2 y x =+与y轴交于点A,与x轴交于点D,抛物线2 1 2 y x bx c =++与直 线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。 ⑴求该抛物线的解析式; ⑵动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标P。 ⑶在抛物线的对称轴上找一点M,使|| AM MC -的值最大,求出点M的坐标。

4、如图,已知ABC =,点A、C在x轴上,点B坐标 ∠=?,AC BC ACB ?为直角三角形,90 为(3,m)(0 m>),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示); (2)求抛物线的解析式; (3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ Array并延长交AC于点F,试证明:() FC AC EC +为定值.

二次函数综合题训练(含答案)

二次函数综合题训练 一、综合题(共24题;共305分) 1.如图,在平面直角坐标系中,二次函数图象的顶点坐标为,该图象与轴相交于点、,与轴相交于点,其中点的横坐标为1. (1)求该二次函数的表达式; (2)求. 2.如图,在平面直角坐标系中,二次函数的图象交x轴于点A,B(点A在点B的左侧). (1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围; (2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值. 3.已知抛物线y=2x2-4x+c与x轴有两个不同的交点. (1)求c的取值范围; (2)若抛物线y=2x2-4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由. 4.如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3). (1)求a的值和图象的顶点坐标。 (2)点Q(m,n)在该二次函数图象上. ①当m=2时,求n的值;

②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围. 5.若二次函数图象的顶点在一次函数的图象上,则称 为的伴随函数,如:是的伴随函数. (1)若是的伴随函数,求直线与两坐标轴围成的三角形的面积;(2)若函数的伴随函数与轴两个交点间的距离为4,求,的值. 6.已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点. (1)求k的值: (2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标. 7.如图,在平面直角坐标系中,抛物线与轴交于点、点,与轴交于点. (1)求拋物线的解析式; (2)过点作直线轴,点在直线上且,直接写出点的坐标.8.在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上. (1)求点B的坐标(用含的式子表示); (2)求抛物线的对称轴; (3)已知点,.若抛物线与线段PQ恰有一个公共点,结合函数图象,求的取值范围. 9.如图,直线与轴、轴分别交于两点,抛物线经过点 ,与轴另一交点为,顶点为. (1)求抛物线的解析式; (2)在轴上找一点,使的值最小,求的最小值;

中考数学二次函数综合练习题附答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线22343 23y x x =- -+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C . (1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ; (2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标; (3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由. 【答案】(1)2323 y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3); (3)E (-1,43F (023)或E (-1,43),F (-4103) 【解析】 【分析】 (1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可 【详解】 (1)∵2343 2333y x x =- -+a=233 - ,则抛物线的“衍生直线”的解析式为

二次函数综合题经典习题(含答案)

二次函数综合题训练题 1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线y x m与该二次函数的图象交 于A、B两点,其中A点的坐标为(3,4) ,B点在轴y上. (1 )求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次 函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关 系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说 明理由? 2、如图3,已知抛物线y ax2 bx c经过0(0,0) , A(4,0),B(3, 3)三点,连结AB,过 点B作BC// x轴交该抛物线于点 C. (1) 求这条抛物线的函数关系式? (2) 两个动点P、Q分别从O A两点同时出发,以每秒1个单位长度的速度运动.其中,点P沿着线段0A向A点运动,点Q沿着折线A T B T C的路线向C点运动.设这两个动点运动的时间为t (秒)(0 V t V 4) , △ PQA的面积记为S. ①求S与t的函数关系式; ②当t为何值时,S有最大值,最大值是多少?并指出此时△PQA的形状; ③是否存在这样的t值,使得△ PQA是直角三角形?若存在,请直接写出此时P、Q两点的坐标;若不存在,请说明理由

图3

4 3、如图7,直线y —x 4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过 3 点A、C和点B 1,0 .(1)求该二次函数的关系式; (2)设该二次函数的图象的顶点为M,求四边形AOCM的面积; 3 (3)有两动点D、E同时从点O出发,其中点D以每秒3个单位长度的速度沿折线OAC 2 按O T A T C的路线运动,点E以每秒4个单位长度的速度沿折线OCA按O T C A的路线运动,当D、E两点相遇时,它们都停止运动?设D、E同时从点O出发t秒时,ODE的面积为S . ①请问D、E两点在运动过程中,是否存在DE // OC,若存在,请求出此时t的值;若不存在, 请说明理由; ②请求出S关于t的函数关系式,并写出自变量t的取值范围; 4、如图5,已知抛物线y a x2 b x c的顶点坐标为E( 1,0 ),与y轴的交点坐标为(0,1 ). (1)求该抛物线的函数关系式? (2)A、B是x轴上两个动点,且A、B间的距离为AB=4, A在B的左边,过A作ADL x轴交抛物线于D,过B作BC L x轴交抛物线于 C.设A点的坐标为(t,0 ),四边形ABCD 的面积为S. ①求S与t之间的函数关系式■ ②求四边形ABCD勺最小面积,此时四边形ABCD是什么四边形? ③当四边形ABCD面积最小时,在对角线BD上是否存在这样的点P,使得△ PAE的周 长最小,若存在,请求出点P的坐标及这时△ PAE的周长;若不存在,说明理由. A O E B x 图5

专题63 构造圆与隐形圆在二次函数中的综合问题(解析版)

专题63 构造圆与隐形圆在二次函数中的综合问题 1、如图,在直角坐标系中,直线y=﹣1 3x ﹣1与x 轴,y 轴的交点分别为A 、B ,以x=﹣1为对称轴的抛物线 y=x 2+bx+c 与x 轴分别交于点A 、C ,直线x=﹣1与x 轴交于点D . (1)求抛物线的解析式; (2)在线段AB 上是否存在一点P ,使以A ,D ,P 为顶点的三角形与△AOB 相似?若存在,求出点P 的坐标;如果不存在,请说明理由; (3)若点Q 在第三象限内,且tan△AQD=2,线段CQ 是否存在最小值,如果存在直接写出最小值;如果不存在,请说明理由. 【答案】(1)y=x 2+2x ﹣3;(2)存在;点P 坐标为(﹣1,?23 )或(-65 ,-3 5 ); (3)存在,CQ 最小值为 √37?√5 2 . 【解析】(1)△直线y=﹣1 3x ﹣1与x 轴交于A 点, △点A 坐标为(﹣3,0), 又△直线x=﹣1为对称轴, △点C 坐标为(1,0), △抛物线解析式为:y=(x+3)(x ﹣1)=x 2+2x ﹣3; (2)存在;

由已知,点D 坐标为(﹣1,0),点B 坐标为(0,﹣1), 设点P 的坐标为(a ,﹣13 a ﹣1), △当△AOB△△ADP 时, AD AO = DP OB ,即23 = 1 3 a+11 , 解得:a=﹣1; 点P 坐标为(﹣1,?2 3); △当△AOB△△APD 时, 过点P 作PE△x 轴于点E , 则△APE△△PED , △PE 2=AE?ED , △(﹣1 3a ﹣1)2=(a+3)(﹣a ﹣1), 解得a 1=﹣3(舍去),a 2=﹣6 5, △点P 坐标为(﹣6 5 ,﹣3 5 ); (3)存在,CQ 最小值为 √37?√5 2 ; 如图,取点F (﹣1,﹣1),过点ADF 作圆,则点E (﹣2,﹣1 2)为圆心,

初中数学二次函数经典综合大题练习卷

1、如图9(1),在平面直角坐标系中,抛物线经过A (-1,0)、B (0,3)两点, 与x 轴交于另一点C ,顶点为D . (1)求该抛物线的解析式及点C 、D 的坐标; (2)经过点B 、D 两点的直线与x 轴交于点E ,若点F 是抛物线上一点,以A 、B 、E 、F 为顶点的四边形是平行四边形,求点F 的坐标; (3)如图9(2)P (2,3)是抛物线上的点,Q 是直线AP 上方的抛物线上一动点,求△APQ 的最大面积和此时Q 点的坐标. 2、随着我市近几年城市园林绿化建设的快速发展,对花木的需求量逐年提高。某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资成本x 成正比例关系,如图①所示;种植花卉的利润y 2与投资成本x 成二次函数关系,如图②所示(注:利润与投资成本的单位:万元) 图① 图② (1)分别求出利润y 1与y 2关于投资量x 的函数关系式; (2)如果这位专业户计划以8万元资金投入种植花卉和树木,请求出他所获得的总利润Z 与投入种植花卉的投 资量x 之间的函数关系式,并回答他至少获得多少利润?他能获取的最大利润是多少?

3、如图,为正方形的对称中心,,,直线交于,于,点 从原点出发沿轴的正半轴方向以1个单位每秒速度运动,同时,点从出发沿方向以 个单位每秒速度运动,运动时间为.求: (1)的坐标为; (2)当为何值时,与相似? (3)求的面积与的函数关系式;并求以为顶点的四边形是梯形时的值及 的最大值. 4、如图①,正方形ABCD的顶点A,B的坐标分别为,顶点C,D在第一象限.点P从点 A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒. (1)求正方形ABCD的边长. (2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分(如图②所示),求P,Q两点的运动速度. (3)求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积取最大值时点的坐标. (4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间的增大而减小.当点沿着这两边运动时,使∠OPQ=90°的点有个.

相关文档
最新文档