几何中的最值问题专题复习教学设计(优.选)

几何中的最值问题专题复习教学设计(优.选)
几何中的最值问题专题复习教学设计(优.选)

几何中最值问题专题复习教学设计

教材分析:

几何中的最值问题变幻无穷,教学中如何引导学生在复杂条件变化中发现解决问题的路径,核心问题是训练学生在题目中寻找不变的已知元素,从这些已知的不变元素,运用“两点间线段最短”、“垂线段最短”、“点的运动轨迹”“二次函数最值”等知识源,实现问题的转化与解决.

教学目标:

知识溯源,从知识转化角度,借助中考真题的讲解,引导学生掌握处理最值问题的基本知识源(见教学设计中的标题),明确解决最值问题的思考方向。

重点知识与命题特点

最值连续多年广泛出现于中考试题中,由冷点变为热点,求相关线段、线段之和差、面积等最大与最小值.此类问题涉及的知识要点有以下方面: ①两点间线段最短;②垂线段最短;

③三角形的三边关系;④定圆中的所有弦中,直径最长;⑤圆外一点与圆的最近点、最远点.⑥借助转化为代数思想:一次函数反比例函数增减性、二次函数的最值问题.命题特点侧重于在动态环境下对多个知识点的综合考查.

核心思想方法

由于这类问题目标不明确,具有很强的探索性,解题时需要运用动态思维、数形结合、模型思想、特殊与一般相结合、转化思想和化归思想、分类讨论思想、函数和方程思想、从变化中寻找不变性的数学思想方法、逻辑推理与合情猜想相结合等思想方法.解这类试题关键是要结合题意,借助相关的概念、图形的性质,将最值问题化归与转化为相应的数学模型进行分析与突破。

教学过程

一、问题导入

我们所学的知识体系中,有哪些与最大值或最小值有关联的知识?

①两点间线段最短;②垂线段最短;③三角形的三边关系;④定圆中的所有弦中,直径最长;

⑤圆外一点与圆的最近点、最远点.⑥借助转化为代数思想:一次函数反比例函数增减性、二次函数的最值问题.

师:我们把这些知识点称为求几何中最值的知识源.

二、真题讲解

真题示例1

1.(2016·福建龙岩)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()

A.1 B.2 C.3 D.4

【题型特征】利用轴对称求最短路线问题

【示范解读】此类利用轴对称求最短路线问题一般都以轴对称图形为题设背景,如圆、正方形、菱形、等腰梯形、平面直角坐标系等.首先根据题意画出草图,利用轴对称性找出对应线段之间的相等关系,从而把所求线段进行转化,画出取最小值时特殊位置,两条动线段的和的最小值问题,常见的是典型的是“小河”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“牛喝水”问题关键是指出两条对称轴“反射镜面”(如图2),结合其他相关知识加以解决.

真题示例2(2016·四川内江)如图1所示,已知点C(1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E 分别是AB ,OA 上的动点,则△CDE 周长的最小值是______.

【解题策略】

1.画图建模,画出取最小值时动点的位置,建立相关模型;

2.学会转化,利用轴对称把线段之和转化在同一条直线上.

真题(组)示例3

例3如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为 .

【题型特征】利用垂线段最短求线段最小值问题

真题(组)示例4

1.(2012宁波)如图2,△ABC 中,?=∠60BAC ,?=∠45ABC ,AB=22,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB ,AC 于E ,F ,连接EF ,则线段EF 长度的最小值为 .

【示范解读】⊙O 的大小随着AD 的变化而变化,在此变化过程中,圆周角∠BAC 的度数始终保持不变,而线段EF 即为⊙O 中60°圆周角所对的弦,弦EF 的大小随⊙O 直径变化的变化而变化,当圆O 的直径最小时,60度圆心角所对的弦长最短,即转化为求AD 的最小值,由垂线段最短得出当AD ⊥BC 时,AD 最短.

【解题策略】

1.观察发现,分析总结运动变化过程中的不变元素及内在联系,

2.画图转化,根据内在联系转化相关线段,应用“垂线段最短” 求出相关线段的最小值. 真题(组)示例5

(2013?宿迁)在平面直角坐标系xOy 中,已知点A (0,1),B (1,2),点P 在x 轴上运动,当点P 到A 、B 两点距离之差的绝对值最大时,点P 的坐标是 .

(图2) (图3) x y O C B A E D C 1 C 2 ·A 草地

河流 ·A

·A

M N (图2)

(2016四川眉山)26.已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,

(1)求经过A、B、C三点的抛物线的解析式;y=﹣x2﹣x+3;

(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(5,3)

(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.

【示范解读】利用待定系数法确定出直线PA解析式,当点M与点P、A不在同一直线上时,根据三角形的三边关系|PM﹣AM|<PA,当点M与点P、A在同一直线上时,|PM﹣AM|=PA,

当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,联立直线AP与抛物线解析式,求出当|PM﹣AM|的最大值时M坐标,确定出|PM﹣AM|的最大值即可.

【题型特征】三角形的三边关系-线段之差最大问题

【解题策略】结合已知定长线段,利用三角形的三边关系,找出最大值时的特殊位置,线段之差最大问题.

真题(组)示例7

(2016泸州)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P 在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.

真题(组)示例8

2.(2015?四川乐山)如图3,已知直线y=

3

4x-3与x轴、y轴分别交于A、B两点,P是以C (0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A.8 B.12 C.

21

2D.

17

2

H

H

(图1) 【知识源】圆外一点与圆心的连线上,该点和此直线与圆的近交点距离最短、远交点距离最长.

【解题策略】

1. 描述点的运动轨迹,找出特殊位置,化动为静;

2. 综合题中已有条件,分析其中不变元素,恰当转化.

真题(组)示例9

1.(2016江苏常州)如图6,在平面直角坐标系xOy 中,一次函数y=x 与二次函数y=x 2+bx 的图象相交于O 、A 两点,点A (3,3),点M 为抛物线的顶点.

(1)求二次函数的表达式;

(2)长度为2的线段PQ 在线段OA (不包括端点)上滑动,分别过点P 、Q 作x 轴的垂线交抛物线于点P 1、Q 1,求四边形PQQ 1P 1面积的最大值;

【题型特征】利用二次函数的性质求最值问题 【解题策略】

此类问题中,无法通过轴对称或画草图得出何时所求线段或面积的最值,可以通过设相应点的坐标,运用函数思想,建立函数模型,最终通过二次函数的最值原理求出相应的最值.

1.树立坐标意识,通过坐标表示相关线段长度;

2.运用函数思想,构建函数模型,通过二次函数的性质理求出相应的最值.

三、专题总结

几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.复习时既要注重对基本知识源的理解与建构,更要注重对相关知识源的综合与整合。在解决本类题型时我们要学会动中觅静,即要分析总结图形中动点在运动过程中不变元素,探寻那些隐含的、在运动变化中的不变量或不变关系.通过不变关系建立相关模型实现最值的转化。

四、命题预测

1.综合性逐渐增强,如多个知识源、知识点的相互整合渗透;

2.注重对基本技能和基本思维方法的考查,注重了初、高中知识的衔接;

3.最值问题“逆” 呈现,如在最值条件下求其他相关问题.

五、巩固演练

1.如图1 ,在矩形ABCD 中 ,AB=10 , BC=5 . 若点M 、N 分别是线段ACAB 上的两个

动点 , 则BM+MN 的最小值为( )

A . 10

B . 8

C . 53

D . 6

2.如图2-1,已知点P 是抛物线21

4y x 上的一个点,点D 、E 的坐标分别为(0, 1)、(1, 2),连

(图6)

图2 (图3)

结PD、PE,求PD+PE的最小值.

3. 在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的最小值是_________.

4.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点. ∠APC=∠CPB=60°.

(1)判断△ABC 的形状:

(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;

(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.

5.如图6,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.(1)试说明CE是⊙O的切线;

(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;

(3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求⊙O的直径AB的长.

6.如图,在平面直角坐标系xOy中,将抛物线2

y x

的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上的一点.

(1)求直线AB的函数表达式;

(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;

以上几例为几何中有关最值计算问题的常用设计思路,同学们只要能寻得问题的源头,便能抵达成功的彼岸.

B C

P

O

A A

C

B

O

第4题图第4题备用图

(图8)

中考几何最值问题(含答案)

几何最值问题 一.选择题(共6小题) 1.(2015?孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD上一点,则PE+PC的最小值为() 3 AE==3, . 2.(2014?鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为() 5050+50

LN=AS==40 MN==50 MN=MQ+QP+PN=BQ+QP+AP=50 =50 3.(2014秋?贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()

4.(2014?无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON上,当B 在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为() C OE=AE=AB=× AD=BC= DE= ADE==, =

DF=, OA=AD= 5.(2015?鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是() C D ,连结,此时四 ,连结MN= =, =, ,

PC= PDC==. 6.(2015?江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE 为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为() C BG AD=BD=AB=3 CE=

初中数学几何最值问题典型例题精修订

初中数学几何最值问题 典型例题 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例

二、典型题型

1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若 ∠AOB=45°,OP=PMN的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解. 【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD. ∴△COD是等腰直角三角形. 则CD OC=6. 【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键. 2.如图,当四边形PABN的周长最小时,a= .

中考数学几何中的最值问题综合测试卷(含答案)

中考数学几何中的最值问题综合测试卷 一、单选题(共7道,每道10分) 1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底5cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿5cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离 为()cm A. B.15 C. D.12 答案:B 试题难度:三颗星知识点:勾股定理、圆柱展开图、轴对称的性质 2.如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最 小值为() A.3 B.4 C.5 D.6 答案:C 试题难度:三颗星知识点:轴对称的性质、矩形的性质 3.如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,点M,N分别是AD和

AB上的动点,则BM+MN的最小值为( ) A. B. C.6 D.3 答案:A 试题难度:三颗星知识点:轴对称的性质 4.如图,当四边形PABN的周长最小时,a=(). A. B. C. D. 答案:C 试题难度:三颗星知识点:轴对称的性质 5.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上

运动,当线段AP与线段BP之差达到最大时,点P的坐标是( ) A. B.(1,0) C. D. 答案:D 试题难度:三颗星知识点:轴对称——线段之差(绝对值)最大 6.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为边AB上一动点,且PE⊥AC于点 E,PF⊥BC于点F,则线段EF长度的最小值是() A. B. C. D. 答案:C 试题难度:三颗星知识点:垂线段最短 7.如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,

专题25平面几何的最值问题

专题25 平面几何的最值问题 阅读与思考 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有: 1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证. 2.几何定理(公理)法:应用几何中的不等量性质、定理. 3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等. 例题与求解 【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .(四川省竞赛试题) 解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值. 【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题) A D N 解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小. 【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题) D

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

中考复习数学几何最值问题

几何最值问题 一、垂线段最短 1、已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距 离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是() 2、如图,在RT三角形ABC中,∠ABC=90°,∠C=30°,点D是BC上的动点,将线段AD绕点A 顺时针旋转60°至AD,连接BD,若AB=2cm,则BD’的最小值为__________ 3、如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1B1C1.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,线段EP1长度的最小值与最大值分别是. 4\如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是▲.

5、如图,点C 是线段AB 上的一点,且AB= ,分别以AC,BC 为底作等腰ΔAEC 和等腰ΔBCF, 且∠AEC=∠BFC=120°,点P 为EF 的中点,求线段PC 长度的最小值。 6、已知菱形ABCD 的对角线AC 和BD 交于点O ,?=∠120BAD ,4=AB ,E 为OB 上的一个动点,将AE 绕点A 逆时针旋转60°,得AF ,则点F 到O 的最短距离为 . 7、如图,已知∠MON=30°,B 为OM 上一点,BA ⊥ON ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90°得CE ,连结BE ,若AB=4,则BE 的最小值为__________ 8、 如图,在△ABC 中,∠A=75°,∠C=45°,BC=4,点M 是AC 边上的动点,点M 关于直线AB 、BC 的对称点分别为P 、Q ,则线段PQ 长的取值范围是______.

几何最值问题(习题及答案)

?例题示范 几何最值问题(习题) 例1:如图,已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP=2,E,F 分别是OA,OB 边上的动点.若△PEF 周长的最小值为2,则α=() A.30°B.45°C.60°D.90° 思路分析: 1.分析定点、动 点.定点:P 动点(定直线):E(射线OA),F(射线OB) 和最小(周长最小) 对称到异侧 2.根据不变特征分析判断属于轴对称最值问题,可调用轴对称 最值问题的处理方式:作点P 关于OA 的对称点P′,点P 关于OB 的对称点P′′,连接P′P′′,交OA 于点E,交OB 于点F,此时△PEF 的周长取得最小值. 3.设计方案求解. 如图,由题意得OP′=OP′′=P′P′′=2,所以△OP′P′′是等边三角形,故α=30°.

1

3 ?巩固练习 1.如图,在平面直角坐标系中,Rt△OAB 的直角顶点A 在x 轴 的正半轴上,顶点B 的坐标为(3,),P 为斜边OB 上一动点.若点C 的坐标为( 1 ,0),则PA+PC 的最小值为() 2 A. 13 2 B. 31 2 C. 3 + 19 2 D.2 2.如图,已知A,B 两点在直线l 的异侧,A 到直线l 的距离AM=4, B 到直线l 的距离BN=1,且MN=4.若点P 在直线l 上运动, 则PA -PB 的最大值为() A.5 B.41 C. 3 41 5 D.6 3.已知点A,B 均在由面积为1 的相同小长方形组成的网格的格 点上,建立如图所示的平面直角坐标系,若P 是x 轴上使得PA+PB 的值最小的点,Q 是y 轴上使得QA -QB 的值最大的点,则OP·OQ= . 2 第1 题图第2 题图 7

初中数学最值问题集锦 几何地定值与最值

几何的定值与最值 几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或 几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本 方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法, 先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 (如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基 本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等. 注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这 是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数 形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】 【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以 AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 . 思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=2 1AB 一常数,当CQ 越小,CD 越小, 本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值. 注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特 殊位置与极端位置是指: (1)中点处、垂直位置关系等; (2)端点处、临界位置等. 【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度 数( ) ⌒

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

2018年专题10(几何)最值问题(含详细答案)

专题10 几何最值问题【十二个基本问题】

1.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为() A.61cm B.11cm C.13cm D.17cm 第1题第2题第3题第4题2.已知圆锥的底面半径为r=20cm,高h=20 15cm,现在有一只蚂蚁从底边上一点A出发.在侧面上爬行一周又回到A点,蚂蚁爬行的最短距离为________.3.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为() A.2 B.C.D. 4.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为() A.10 B.8 C.5 3 D.6 5.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处. (1)请你画出蚂蚁能够最快到达目的地的可能路径; (2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长. (3)在(2)的条件下,求点B1到最短路径的距离. 6.如图,已知P为∠AOB内任意一点,且∠AOB=30°,点P1、P2分别在OA、OB上,求作点P1、P2,使△PP1P2的周长最小,连接OP,若OP=10cm,求△PP1P2的周长.

7.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是________. 第7题 第8题 第9题 8.如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =4 2,点D 是AC 边上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为 . 9.如图,⊙O 的半径为1,弦AB =1,点P 为优弧⌒ AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( ) A .12 B . 22 C . 32 D . 34 10.如图,已知抛物线y =-x 2 +bx +c 与一直线相交于A (-1,0),C (2,3)两点,与y 轴交于点N .其顶点为D . (1)抛物线及直线AC 的函数关系式; (2)设点M (3,m ),求使MN +MD 的值最小时m 的值; (3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形若能,求点E 的坐标;若不能,请说明理由; (4)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.

经典几何中线段和差最值(含答案) (2)

几何中线段和,差最值问题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.

一般处理方法: 常用定理: 两点之间,线段最短(已知两个定点时) 垂线段最短(已知一个定点、一条定直线时) 三角形三边关系(已知两边长固定或其和、差固定时) 二、典型题型 1.如图:点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =△PMN 的周长的最小值为 6 . 2.如图,当四边形P ABN 的周长最小时,a = 4 7 . P A +P B 最小, 需转化, 使点在线异侧 B l

3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P为直线上的动点,|P A﹣PB|的最大值为5. 4.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点 P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC 边 上可移动的最大距离为 2 . 5.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在直角梯形ABCD内部时,PD 6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B 在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O

初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题 【考题研究】 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。 【解题攻略】 最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型. 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2). 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题. 【解题类型及其思路】 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。 【典例指引】 类型一【确定线段(或线段的和,差)的最值或确定点的坐标】

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

精彩初中几何最值问题全总结

一、基本图形 余不赘述,下面仅举一例证明: [定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO, AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定。 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

几何综合及几何最值问题(含答案)

学生做题前请先回答以下问题 问题1:几何综合的思考流程是什么? 问题2:几何综合中常见结构、常用模型有哪些? 问题3:直角的思考角度有哪些? 边:____________________; 角:____________________; 面积:多个直角,把直角当作高,常考虑____________________; 固定模型和用法: ①直角+中点______________________; ②直角+特殊角____________________; ③直角+角平分线__________________; ④直角三角形斜边上的高___________; ⑤弦图结构; ⑥三等角模型; ⑦斜直角放正. 函数背景下考虑:______________________________; 圆背景下考虑:________________________________. 问题4:轴对称思考层次有哪些? 问题5:旋转思考层次有哪些? 问题6:圆的思考角度有哪些? 几何综合及几何最值问题 一、单选题(共10道,每道10分) 1.如图,在Rt△ABC中,∠ACB=90°,,沿△ABC的中线OC将△AOC折叠,使点A落在点D处.若CD⊥AB于点M,则tanA的值为( ) A. B.

C. D. 答案:A 解题思路: 试题难度:三颗星知识点:直角三角形两锐角互余 2.如图,BE,CF分别是△ABC两边上的高,M为BC的中点.若EF=6,BC=10,则△MEF的边ME上的高为( )

A. B. C.4 D. 答案:B 解题思路:

试题难度:三颗星知识点:等面积法 3.如图,在矩形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6,则矩形ABCD的面积为( ) A.24 B.36

最新初中几何中线段和与差最值问题

初中几何中线段和(差)的最值问题 一、两条线段和的最小值。 基本图形解析: 一)、已知两个定点: 1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: 2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。 (1)两个点都在直线外侧: (2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: m m B m A B m n m n n m n n n m

( 4)、台球两次碰壁模型 变式一:已知点A、B位于直线m,n 的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短. 变式二:已知点A位于直线 m,n 的内侧, 在直线m、n分别上求点P、Q点PA+PQ+QA 周长最短. 二)、一个动点,一个定点: (一)动点在直线上运动: 点B在直线n上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)1、两点在直线两侧: 2、两点在直线同侧: (二)动点在圆上运动 点B在⊙O上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B) 1、点与圆在直线两侧: m n m n m n m m

2、点与圆在直线同侧: 三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。(原理用平移知识解) (1)点A 、B 在直线m 两侧: 作法:过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。 (2)点A 、B 在直线m 同侧: 练习题 1.如图1,∠AOB =45°,P 是∠AOB 内一点,PO =10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值为 . 2、如图2,在锐角三角形ABC 中,AB=4 ,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值为 . 3、如图3,在锐角三角形ABC 中 , AB=BAC=45,BAC 的平分线交BC 于D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 。 m m Q Q

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

初中数学几何最值问题

关于线段最短问题在几何中的运用之课前预习指导探索 三界中学 杨良举 在初中平面几何的动态问题中,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为几何最值问题.近年来,成都中考题常通过几何最值问题考查学生的实践操作能力、空间想象能力、分析问题和解决问题的能力.本文针对不同类型的几何最值问题作一总结与分析.最值问题也学生在解决时比较困难,失分比较严重的题型,因此结合我们校实际,把《几何最值问题》作为我校的微课题研究,下面就最值问题的解决方法研究如下: 案例分析 一、应用几何性质 1.三角形的三边关系 例1 如图1,90MON ∠=?,矩形ABCD 的顶点A 、B 分别在边,OM ON 上.当分在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中2,1AB BC ==,运动过程中,点D 到点O 的最大距离为( ) (A) 1 (B) (c) 5 (D)52 分析 如图1,取AB 的中点E ,连结,,OE DE OD . OD OE DE ≤+Q , ∴当,,O D E 三点共线时,点D 到点O 的距离最大,此时,2,1AB BC ==, 1 12 OE AE AB ∴===.DE == OD ∴1. 故选A. 2.两点间线段最短 例2 如图2,圆柱底面半径为2cm,高为9πcm ,点,A B 分别是回柱两底面圆周

上的点,且,A B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线长度最短为 . 分析 如图3,将圆柱展开后可见,棉线最短是三条斜线的长度,第一条斜线与 底面圆周长、圆柱的三分之一高组成直角三角形. 由周长公式知底面圆一周长为4πcm ,圆柱的三分之一高为3πcm ,根据勾股定理,得一条斜线长为5πcm ,根据平行四边形的性质,棉线长度最短为15πcm. 3.垂线段最短 例3 如图4,点A 的坐标为(1,0)-,点B 在直线y x =运动,当线段AB 最短时,点B 的坐标为( ) (A)(0,0) (B)11(,)22-- (C) (D)( 分析 如图4,过点A 作'AB OB ⊥,垂足为点'B ,过'B 作'B C x ⊥轴,垂足为C .由垂线段最短可知,当'B 与点B 重合时,AB 最短. ∵点B 在直线y x =上运动, ∴'AOB V 是等腰直角三角形 ∴'B CO V 为等腰直角三角形 ∵点A 的坐标为(1,0)-,

中考数学压轴题突破:几何最值问题大全

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡 不归、阿波罗尼斯圆等) 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。 例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上

几何图形中的最值问题

几何图形中的最值问题 引言:最值问题可以分为最大值和最小值。在初中包含三个方面的问题: 1. 函数:①二次函数有最大值和最小值;②一次函数中有取值范围时有最大值和最小值。 2. 不等式:①如x w 7最大值是7;②如x> 5,最小值是5. 3.几何图形:①两点之间线段线段最短。②直线外一点向直线上任一点连线中垂线段 最短,③在三角形中,两边之和大于第三边,两边之差小于第三边。 一、最小值问题 B镇 * A镇 ? ' -------------------------- '燃气管 例1.如图4,已知正方形的边长是8, M在DC上,且DM=2 N为线段AC 上的一动点,求DN+MN勺最小值。 解:作点D关于AC的对称点D,则点D与点B重合,连BM交AC于N,连DN 贝U DN+MN t短,且DN+MN=BM ?/ CD=BC=8,DM=2, /? MC=6, 在Rt △ BCM中,BM= 82 62=10, ??? DN+MN勺最小值是10。 例2,已知,MN是O O直径上,MN=2点A在O O上,/ AMN=3&B 是弧AN的中点,P是MN上的一动点,贝U PA+PB的最小值是__________ 解:作A点关于MN的对称点A,连AB,交MN于P,贝U PA+PB最短。 连OB oA, ???/ AMN=30B是弧AN的中点, ???/ BOA=30°,根据对称性可知 :丄 NOA=60°,:丄 MOA=900, D D M B N A M O A

在 Rt △ A ’BO 中,OA=OB=1, ??? A B =、2 即 PA+PB= 2 作点A 关于杯上沿 MN 的对称点B ,连接BC 交MN 于点P , 连接BM 过点C 作AB 的垂线交剖开线 MA 于点Do 由轴对称的性质和三角形三边关系知 例3.如图6,已知两点 D(1,-3),E(-1,-4), 试在直线y=x 上确定一点 P,使点P 到D E 两点的距离之和最小,并求出最小值。 解:作点E 关于直线y=x 的对称点M 连MD 交直线y=x 于P,连PE, 贝U PE+PD 最短;即 PE+PD=MD ??? E(-1,-4), ? M(-4,-1), 过M 作MN/ x 轴的直线交过 D 作DN/ y 轴的直线于 N, 则 MN_ ND,又 T D(1,-3),则 N(1,-1), 在 Rt △ MND 中 ,MN=5,ND=2, ? MD= 5? 2 = .. 29。 ???最小值是.29 。 练习 1. (2012山东青岛3分)如图,圆柱形玻璃杯高为 12cm 底面周长为18cm,在杯内离 杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁, 离杯上沿4cm 与蜂蜜相对的点 A 处,则蚂蚁到达蜂蜜的最短距离为 cm I I \ 41 订一干 4 / > is 【解】如图,圆柱形玻璃杯展开(沿点 A 竖直剖开)后侧面是一个长 18宽12的矩形,

中考数学中的最值问题解法(学生版)

中考数学几何最值问题解法 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图 形的周 长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 解决平面几何最值问题的常用的方法有: (1)应用两点间线段最短的公理 求最值;( 2)应用垂线段最短的性质求最值; ( 3)应用轴对称的性质求最 值; 5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。 应用两点间线段最短的公理(含应用三角形的三边关系)求最值 例 4. 在△ABC 中,AB =5,AC =3,AD 是 BC 边上的中线,则 AD 的取值范围是 练习题: 1. 如图,长方体的底面边长分别为 2cm 和 4cm ,高为 5cm . 若一只蚂蚁从 P 点开始经 过 4 个侧面爬行一圈到达 Q 点,则蚂蚁爬行的最短路径长为【 】 2. 如图,圆柱的底面周长为 6cm , AC 是底面圆的直径,高 BC=6cm ,点 P 是母线 BC 上一 2 点,且 PC= BC .一只蚂蚁从 A 点出发沿着圆柱体的表面爬行到点 P 的最短距离是 【 】 3 含应用三角形的三边关系) 4)应用二次函数求最值; 典型例题: 例 1. 如图,∠ MON=9°0 ,矩形 ABCD 的顶点 A 、 B 分别在边 OM , 运动时, A 随之在边 OM 上运动, 矩形 ABCD 的形状保持不变,其中 程中,点 D 到点 O 的最大距离为 B . 5 C . 145 5 5 D . 例 2. 在锐角三角形 ABC 中, BC=4 2 ,∠ ABC=45°, BD 平分∠ ABC , M 、 N 分别是 BC 上的动点,则 CM+MN 的最小值是 例 3. 如图, 圆柱底面半径为 2cm ,高为 9 cm ,点 上的点,且 A 、B 在同一母线上,用一棉线从 A 顺着圆柱侧面绕 3 圈到 B ,求棉线 最短为 cm 。 A.13cm B.12cm C.10cm D.8cm ON 上,当 B 在边 ON 上 AB=2,BC=1,运动 过 A 、 B 分别是圆柱两底面圆 周

相关文档
最新文档