江苏省镇江市2019-2020学年高一上学期期末数学试题
江苏省宿迁市2020学年高一数学上学期期末考试试题(含解析)

宿迁市 2020 学年度第一学期期末考试高一数学(考试时间120 分钟,试卷满分150 分 )一、选择题:此题共12 小题,每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项是切合题目要求的。
请把正确选项填涂在答题卡上指定地点。
1. 设会合,,则=()A. B. C. D.【答案】D【分析】【剖析】由会合的并集运算直接求解即可.【详解】由于,,所以=【点睛】此题主要考察并集的运算,切记定义即可求解,属于基础题型.2. 已知向量,若,则实数的值为()A. B. 1 C. 6 D. 1或6【答案】B【分析】【剖析】由向量垂直,获得数目积为0,由向量的坐标运算即可求解.【详解】由于,若,所以,即,解得.应选B【点睛】此题主要考察平面向量数目积的坐标运算,由向量垂直可得向量数目积为0,从而可求解,属于基础题型.3.的值为()A. B. C. D.【答案】 C【分析】【剖析】由引诱公式以及特别角所对应的三角函数值计算即可.【详解】【点睛】此题主要考察引诱公式,以及特别角所对应的三角函数值,只要熟记公式即可解题,属于基础题型 .4. 若,则实数的值为()A. B. 1 C. 1或 D. 1或 3【答案】 B【分析】【剖析】分类议论或,求出,查验即可 .【详解】由于,所以或,所以或,当时,,不切合题意,所以舍去;故以,选 B【点睛】此题主要考察元素与会合之间的关系,注意会合中元素的互异性,属于基础题型.5. 函数的定义域为()A. B. C. D.【答案】 C【分析】【剖析】求函数的定义域即是求使函数存心义的的范围,列不等式组,即可求解.【详解】由题意可得,所以,即.应选 C【点睛】此题主要考察函数的定义域,依据求已知分析式的函数定义域即是求使分析式存心义的的范围,即可求解,属于基础题型.6. 化简的结果为()A. B.C. D.【答案】 A【分析】【剖析】由同角三角函数基本关系即可将原式化简.【详解】.应选 A【点睛】此题主要考察同角三角函数基本关系,熟记公式即可求解,属于基础题型.7. 设是两个相互垂直的单位向量,则与的夹角为()A. B. C. D.【答案】 B【分析】【剖析】先由相互垂直,可得其数目积为0,再计算与的数目积,以及与的模,代入夹角公式即可求解.【详解】由于相互垂直,所以,所以,,,所以,所以夹角为.应选 B【点睛】此题主要考察向量的夹角公式,只要熟记公式,求出对应向量的数目积和向量的模,代入公式即可求解,属于常考题型 .8. 函数的一段图象大概为()A. B. C. D.【答案】 B【分析】【剖析】依据函数的奇偶性和函数的值域可判断出结果.【详解】由于,所以,即函数是偶函数,对于轴对称,清除 C,D 选项,又,所以,即恒大于0,清除A选项,应选 B.【点睛】此题主要考察函数的图像形状,由函数的基天性质即可确立图像形状,难度不大.9. 已知向量不共线,且,,,则共线的三点是()A. B. C. D.【答案】 C【分析】【剖析】依据共线向量基本定理即可判断出结果.【详解】已知向量不共线,且,,,由得,则,即,所以三点共线.应选 C【点睛】此题主要考察共线向量基本定理,灵巧掌握定理和向量的线性运算即可,属于基础题型 .10. 若函数,则函数的值域为()A. B. C. D.【答案】 D 【分析】【剖析】先求出函数的值域,再换元,令【详解】由题意得,令,则,所以,,由导数的方法判断的单一性,从而可求出结果,由于,所以,.,解得,所以当当所以又时,,时,,,,,单一递减;单一递加,所以,即,应选 D.【点睛】此题主要考察复合函数值域,往常需要用换元法将函数进行换元,由导数的方法研究函数的单一性,从而可确立最值、值域等,属于中档试题.11. 已知函数图象上一个最高点P的横坐标为,与P 相邻的两个最低点分别为 Q,R.若△是面积为的等边三角形,则分析式为()A. B.C. D.【答案】D【分析】【剖析】由△的面积求出△的边长和高,从而确立函数周期和,再由函数图象上一个最高点【详解】由于△由题意可得P 的横坐标为是面积为,求出的值,从而可求出分析式.的等边三角形,所以三角形的边长为,所以,2,高为,故,又函数图象上一个最高点P 的横坐标为,所以,即,所以, 故,所以,应选D【点睛】此题主要考察由三角函数的图像与性质求函数的分析式,只要依题意求出,,的值即可,要求考生熟记三角函数的有关性质等,属于常考题型.12. 已知函数,若对于的方程有个不一样实数根,则n 的值不行能为()A. 3B. 4C. 5D. 6【答案】 A【分析】【剖析】先将函数写成分段函数的形式,并做出其图像,再由或,所以方程的解的个数,即转变成函数点个数的问题,由图像议论的范围,即可求出结果.得:与轴以及直线交【详解】由于函数,作出的图像以下:由得:或,所以方程的解的个数,即为函数与轴以及直线交点个数,由图像可得:与轴有 2 个交点,①当, 即时,函数与直线无交点,故原方程共 2 个解;②当,即时,原方程可化为,故原方程共 2 个解;③当,即时,函数与直线有 4 个交点,故原方程共 6 个解;④当,即时,函数与直线有 3 个交点,故原方程共 5 个解;⑤当,即时,函数与直线有 2 个交点,故原方程共 4 个解;综上,原方程解的个数可能为2,4,5,6.应选 A【点睛】此题主要考察函数与方程的综合,解决此类问题的重点在于将方程有实根转变成两个函数有交点的问题,由数形联合即可求解,属于常考题型.二、填空题:此题共 4 小题,每题 5 分,共20 分。
高一数学上学期期末考试试题含解析

【分析】
先由奇函数的性质,得到 ,求出 ;再由二次函数的单调性,以及奇函数的性质,得到函数 在区间 上单调递减,进而可求出结果。
【详解】因为函数 是奇函数,
所以 ,即 ,解得: ;
因此
根据二次函数的性质,可得,当 时,函数 在区间 上单调递减,在区间 上单调递增;
又因为 ,所以由奇函数的性质可得:函数 在区间 上单调递减;
,即至少遇到4个红灯的概率为0。33。
(3)设事件 为遇到6个及6个以上红灯,则至多遇到5个红灯为事件 .
则 。
【点睛】本题主要考查互斥事件的概率计算,以及概率的性质的应用,熟记概率计算公式,以及概率的性质即可,属于常考题型。
19。一商场对5年来春节期间服装类商品的优惠金额 (单位:万元)与销售额 (单位:万元)之间的关系进行分析研究并做了记录,得到如下表格.
【分析】
根据奇偶性的概念,判断函数 的奇偶性,再结合函数单调性,即可解所求不等式。
【详解】因为 的定义域为 ,
由 可得,函数 是奇函数;
根据幂函数单调性可得, 单调递增;所以函数 是增函数;
所以不等式 可化为 ,
因此 ,解得: 。
故选:D
【点睛】本题主要考查由函数单调性与奇偶性解不等式,熟记函数奇偶性的概念,会根据函数解析式判定单调性即可,属于常考题型.
【解析】
【分析】
(1)根据换元法,令 ,即可结合已知条件求出结果;
(2)根据指数函数单调性,即可得出单调区间.
【详解】(1)令 ,即 ,
代入 ,可得 ,
所以
(2)因为 ,根据指数函数单调性,可得:
函数 的单调增区间是 ,单调减区间是 。
【点睛】本题主要考查求函数解析式,以及求指数型函数的单调区间,灵活运用换元法求解析式,熟记指数函数的单调性即可,属于常考题型.
江苏省镇江市句容碧桂园学校2022-2023学年高一下学期期末数学试题

期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题 1.已知 U=R,A={x|x2-4x+3≤0},B={x||x-3|>1},则 A∪ ðU B =( )
1.A
参考答案:
【分析】先化简集合 A,B,再利用集合的补集和并集运算求解.
【详解】解:因为 A = {x 1 £ x £ 3} , B = {x x 4 或 x < 2},
所以ðU B = {x 2 £ x £ 4} , A È (ðU B) = {x 1 £ x £ 4} ,
故选:A. 2.B
则有函数
y
=
x(x
-
a)
=
(x
-
a )2 2
-
a2 4
在区间 (0,1)
上单调递减,因此
a 2
³ 1 ,解得 a
³
2
,
所以 a 的取值范围是[2, +¥) .
故选:D
8.A
【分析】根据奇函数的性质可知 f ( x) 在 R 上单调递减,原不等式等价于
f (2) £ f (2x) £ f (-2) ,然后根据函数的单调性将函数不等式转化为自变量的不等式,即
两个“1”必须相邻,则可以设置的不同数字密码有( )
A.120 种
B.240 种
C.360 种
D.480 种
4.羽毛球运动是一项全民喜爱的体育运动,标准的羽毛球由 16 根羽毛固定在球托上,
测得每根羽毛在球托之外的长为 7cm,球托之外由羽毛围成的部分可看成一个圆台的
江苏省南通市如皋中学2019_2020学年高一数学下学期6月阶段考试试题创新班含解析

【答案】B
【解析】
【分析】
求出整个抽样过程中,每个学生被抽到的概率为 ,结合样本容量为 可求得该学校学生的总数.
【详解】从高一学生中用简单随机抽样抽取样本时,学生甲被抽到的概率为 ,
所以,在整个抽样过程中,每个学生被抽到的概率为 ,
所以,从该学校中抽取一个容量为 的样本时,则该学校学生的总数为 。
【答案】
【解析】
【分析】
列举出所有的基本事件,并确定事件“取出的两个球的编号之和小于 ”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率。
【详解】从袋中随机抽取出两个球,则所有的基本事件有: 、 、 、 、 、 ,共 种,
其中,事件“取出的两个球的编号之和小于 ”所包含的基本事件有: 、 ,共 种,
当a=0时,e2x﹣alnx a即为e2x≥0显然成立;
当a>0时,f(x)=e2x﹣alnx的导数为 =2e2x ,
由于y=2e2x 在(0,+∞)递增(增函数+增函数=增函数),
设 =0的根为m,即有a=2me2m, .
当0<x<m时, <0,f(x)单调递减;当x>m时, >0,f(x)单调递增,
因此,所求事件的概率为 .
故答案为: 。
【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.
14.如表是某厂2020年1~4月份用水量(单位:百吨)的一组数据
月份x
1
2
3
4
用水量y
2.5
3
4
4。5
由散点图可知,用水量y与月份x之间有较明显的线性相关关系,其线性回归方程是 ,预测2020年6月份该厂的用水量为_____百吨.
2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)(解析版)

2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)一、单选题1.设集合{}12A x x =<<,{}B x x a =>,若A B ⊆,则a 的范围是( ) A .2a ≥ B .1a ≤C .1a ≥D .2a ≤【答案】B【分析】结合数轴分析即可.【详解】由数轴可得,若A B ⊆,则1a ≤. 故选:B.2.命题p :x ∃∈R ,210x bx ++≤是假命题,则实数b 的值可能是( )A .74-B .32-C .2D .52【答案】B【分析】根据特称命题与全称命题的真假可知:x ∀∈R ,210x bx ++>,利用判别式小于即可求解. 【详解】因为命题p :x ∃∈R ,210x bx ++≤是假命题,所以命题:x ∀∈R ,210x bx ++>是真命题,也即对x ∀∈R ,210x bx ++>恒成立, 则有240b ∆=-<,解得:22b -<<,根据选项的值,可判断选项B 符合, 故选:B . 3.函数 21x y x =-的图象大致为( )A .B .C .D .【答案】B【分析】本题首先根据判断函数的奇偶性排除A,D ,再根据01x <<,对应0y <,排除C ,进而选出正确答案B .【详解】由函数 21x y x =-, 可得1x ≠±,故函数的定义域为()()()1111∞∞--⋃-⋃+,,,, 又 ()()()2211xxf x f x x x --===---, 所以21x y x =-是偶函数, 其图象关于y 轴对称, 因此 A,D 错误; 当 01x <<时,221001x x y x -<=<-,, 所以C 错误.故选: B4.已知322323233,,log 322a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( ) A .a b c << B .b a c << C .c b a << D .c a b <<【答案】D【分析】构造指数函数,结合单调性分析即可.【详解】23xy ⎛⎫= ⎪⎝⎭在R 上单调递减,3222333012a ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝<=⎭<∴,, ∴01a <<;32xy ⎛⎫= ⎪⎝⎭在R 上单调递增,23033222013b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝>=⎭<∴,, ∴1b >; 223332log log 123c ==-=- ∴c a b << 故选:D5.中国共产党第二十次全国代表大会于2022年10月16日在北京召开,这次会议是我们党带领全国人民全面建设社会主义现代化国家,向第二个百年奋斗目标进军新征程的重要时刻召开的一次十分重要的代表大会,相信中国共产党一定会继续带领中国人民实现经济发展和社会进步.假设在2022年以后,我国每年的GDP (国内生产总值)比上一年平均增加8%,那么最有可能实现GDP 翻两番的目标的年份为(参考数据:lg 20.3010=,lg30.4771=)( ) A .2032 B .2035 C .2038 D .2040【答案】D【分析】由题意,建立方程,根据对数运算性质,可得答案.【详解】设2022年我国GDP (国内生产总值)为a ,在2022年以后,每年的GDP (国内生产总值)比上一年平均增加8%,则经过n 年以后的GDP (国内生产总值)为()18%na +, 由题意,经过n 年以后的GDP (国内生产总值)实现翻两番的目标,则()18%4na a +=, 所以lg 420.301020.301027lg1.083lg32lg5lg 25n ⨯⨯===-20.301020.301020.30100.6020183lg 32(1lg 2)3lg 32lg 2230.477120.301020.0333⨯⨯⨯===≈--+-⨯+⨯-=,所以到2040年GDP 基本实现翻两番的目标. 故选:D.6.将函数sin y x =的图像C 向左平移6π个单位长度得到曲线1C ,然后再使曲线1C 上各点的横坐标变为原来的13得到曲线2C ,最后再把曲线2C 上各点的纵坐标变为原来的2倍得到曲线3C ,则曲线3C 对应的函数是( )A .2sin 36y x π⎛⎫=- ⎪⎝⎭B .2sin36y x π⎛⎫=- ⎪⎝⎭C .2sin 36y x π⎛⎫=+ ⎪⎝⎭D .2sin36y x π⎛⎫=+ ⎪⎝⎭【答案】C【分析】利用图像变换方式计算即可.【详解】由题得1C :sin 6y x π⎛⎫=+ ⎪⎝⎭,所以2C :sin 36y x π⎛⎫=+ ⎪⎝⎭,得到3C :2sin 36y x π⎛⎫=+ ⎪⎝⎭故选:C7.已知0x >,0y >,且满足20x y xy +-=,则92x y+的最大值为( ) A .9 B .6 C .4 D .1【答案】D【分析】由题可得211x y+=,利用基本不等式可得29x y +≥ ,进而即得.【详解】因为20x y xy +-=,0x >,0y >,所以211x y+=,所以()212222559y x x y x x y y x y ⎛⎫+=+ ⎪⎝+++≥⎭==, 当且仅当22y xx y=,即3x y ==时等号成立, 所以912x y≤+,即92x y +的最大值为1.故选:D.8.已知22log log 1a b +=且21922m m a b+≥-恒成立,则实数m 的取值范围为( ) A .(][),13,-∞-⋃∞ B .(][),31,-∞-⋃∞ C .[]1,3- D .[]3,1-【答案】C【分析】利用对数运算可得出2ab =且a 、b 均为正数,利用基本不等式求出192a b+的最小值,可得出关于实数m 的不等式,解之即可.【详解】因为()222log log log 1a b ab +==,则2ab =且a 、b 均为正数,由基本不等式可得1932a b +≥,当且仅当2192ab a b =⎧⎪⎨=⎪⎩时,即当136a b ⎧=⎪⎨⎪=⎩时,等号成立, 所以,192a b+的最小值为3,所以,223m m -≤,即2230m m -≤-,解得13m -≤≤. 故选:C.二、多选题9.函数()y f x =图像关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学据此推出以下结论,其中正确的是( )A .函数()y f x =的图像关于点(,)P a b 成中心对称的图形的充要条件是()y f x a b =+-为奇函数B .函数32()3f x x x =-的图像的对称中心为1,2C .函数()y f x =的图像关于x a =成轴对称的充要条件是函数()y f x a =-是偶函数D .函数32()|32|g x x x =-+的图像关于直线1x =对称 【答案】ABD【分析】根据函数奇偶性的定义,以及函数对称性的概念对选项进行逐一判断,即可得到结果. 【详解】对于A ,函数()y f x =的图像关于点(,)P a b 成中心对称的图形,则有()()2f a x f a x b ++-=函数()y f x a b =+-为奇函数,则有()()0f x a b f x a b -+-++-=, 即有()()2f a x f a x b ++-=所以函数(=)y f x 的图像关于点(,)P a b 成中心对称的图形的充要条件是 为()y f x a b =+-为奇函数,A 正确;对于B,32()3f x x x =-,则323(1)2(1)3(1)23f x x x x x ++=+-++=-因为33y x x =-为奇函数,结合A 选项可知函数32()=-3f x x x 关于点(1,2)-对称,B 正确; 对于C ,函数()y f x =的图像关于x a =成轴对称的充要条件是()()f a x f a x =-+, 即函数()y f x a =+是偶函数,因此C 不正确; 对于D ,32()|-3+2|g x x x =,则323(1)|(1)3(1)2||3|g x x x x x +=+-++=-, 则33(1)|3||3|(1)g x x x x x g x -+=-+=-=+, 所以32()|-3+2|g x x x =关于=1x 对称,D 正确 故选:ABD.10.下列结论中正确的是( )A .若一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,则a b +的值是14-B .若集合*1N lg 2A x x ⎧⎫=∈≤⎨⎬⎩⎭∣,{}142x B x-=>∣,则集合A B ⋂的子集个数为4 C .函数()21f x x x =++的最小值为1 D .函数()21xf x =-与函数()f x 【答案】AB【分析】对于A :12-和13为方程220ax bx ++=的两根且0a <,即可得到方程组,解得即可判断A ;根据对数函数、指数函数的性质求出集合A 、B ,从而求出集合A B ⋂,即可判断B ;当1x <-时()0f x <,即可判断C ;求出两函数的定义域,化简函数解析式,即可判断D.【详解】解:对于A :因为一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,所以12-和13为方程220ax bx ++=的两根且0a <,所以112311223b a a⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得122a b =-⎧⎨=-⎩,所以14a b +=-,故A 正确;对于B:{{}**1N lg N 1,2,32A x x x x ⎧⎫=∈≤=∈<≤=⎨⎬⎩⎭∣∣0,{}{}12234222|2x x B x x x x --⎧⎫=>=>=>⎨⎬⎩⎭∣∣, 所以{}2,3A B ⋂=,即A B ⋂中含有2个元素,则A B ⋂的子集有224=个,故B 正确; 对于C :()21f x x x =++,当1x <-时10x +<,()0f x <,故C 错误; 对于D :()21,02112,0x xxx f x x ⎧-≥=-=⎨-<⎩, 令()2210x -≥,解得x ∈R,所以函数()f x =R ,函数()21xf x =-的定义域为R ,虽然两函数的定义域相同,但是解析式不相同,故不是同一函数,即D 错误; 故选:AB11.已知函数()()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭.当()()122f x f x =时,12min 2x x π-=,012f π⎛⎫-= ⎪⎝⎭,则下列结论正确的是( ) A .6x π=是函数()f x 的一个零点B .函数()f x 的最小正周期为2π C .函数()1y f x =+的图象的一个对称中心为,03π⎛-⎫⎪⎝⎭D .()f x 的图象向右平移2π个单位长度可以得到函数2y x =的图象 【答案】AB【分析】根据三角函数的图象与性质,求得函数的解析式())6f x x π=-,再结合三角函数的图象与性质,逐项判定,即可求解.【详解】由题意,函数()()f x x ωϕ+,可得()()min max f x f x == 因为()()122f x f x =,可得()()122f x f x =, 又由12min 2x x π-=,所以函数()f x 的最小正周期为2T π=,所以24Tπω==,所以()()4f x x ϕ+,又因为012f π⎛⎫-= ⎪⎝⎭()]012πϕ⨯-+=,即cos()13πϕ-+=,由2πϕ<,所以6πϕ=-,即())6f x x π=-,对于A 中,当6x π=时,可得()cos()062f ππ==,所以6x π=是函数()f x 的一个零点,所以A 正确;又由函数的最小正周期为2T π=,所以B 正确;由()1)16y f x x π=+=-+,所以对称中心的纵坐标为1,所以C 不正确;将函数())6f x x π=-的图象向右平移2π个单位长度,可得())]2))2666f x x x x πππππ=--=---,所以D 不正确. 故选:AB.12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.54-=-,[]2.12=,已知函数()2e 11e 2x x f x =-+,()()g x f x =⎡⎤⎣⎦,则下列叙述正确的是( ) A .()g x 是偶函数B .()f x 在R 上是增函数C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭D .()g x 的值域是{}1,0,1-【答案】BD【分析】依题意可得()2321e xf x =-+,再根据指数函数的性质判断函数的单调性与值域,距离判断B 、D ,再根据高斯函数的定义求出()g x 的解析式,即可判断A 、D.【详解】解:因为()()22e 2e 111321e 21e 21e 21122e2x x x x x x f x =-=-=--=-+-++++,定义域为R , 因为1e x y =+在定义域上单调递增,且e 11x y =+>,又2y x=-在()1,+∞上单调递增,所以()2321e xf x =-+在定义域R 上单调递增,故B 正确; 因为1e 1x +>,所以1011e x<<+,所以1101e x -<-<+,则2201e x -<-<+, 则1323221e 2x -<-<+,即()13,22f x ⎛⎫∈- ⎪⎝⎭,故C 错误;令()0f x =,即32021e x -=+,解得ln3x =-,所以当ln3x <-时()1,02f x ⎛⎫∈- ⎪⎝⎭,令()1f x =,即32121ex-=+,解得ln3x =, 所以当ln3ln3x -<<时()()0,1f x ∈,当ln 3x >时()31,2f x ⎛⎫∈ ⎪⎝⎭,所以()()1,ln 30,ln 3ln 31,ln 3x g x f x x x ≥⎧⎪⎡⎤==-≤<⎨⎣⎦⎪-<-⎩, 所以()g x 的值域是{}1,0,1-,故D 正确;显然()()55g g ≠-,即()g x 不是偶函数,故A 错误; 故选:BD三、填空题13.函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,方程()f x k =有3个实数解,则k 的取值范围为___________.【答案】(4,3]--【分析】根据给定条件将方程()f x k =的实数解问题转化为函数()y f x =的图象与直线y k =的交点问题,再利用数形结合思想即可作答.【详解】方程()f x k =有3个实数解,等价于函数()y f x =的图象与直线y k =有3个公共点, 因当0x ≤时,()f x 在(,1]-∞-上单调递减,在[1,0]-上单调递增,(1)4,(0)3f f -=-=-, 当0x >时,()f x 单调递增,()f x 取一切实数,在同一坐标系内作出函数()y f x =的图象及直线y k =,如图:由图象可知,当43k -<≤-时,函数()y f x =的图象及直线y k =有3个公共点,方程()f x k =有3个解,所以k 的取值范围为(4,3]--. 故答案为:(4,3]--14.已知()1sin 503α︒-=,且27090α-︒<<-︒,则()sin 40α︒+=______【答案】##【分析】由4090(50)αα︒+=︒-︒-,应用诱导公式,结合已知角的范围及正弦值求cos(50)α︒-,即可得解.【详解】由题设,()sin 40sin[90(50)]cos(50)ααα︒+=︒-︒-=︒-,又27090α-︒<<-︒,即14050320α︒<︒-<︒,且()1sin 503α︒-=,所以14050180α︒<︒-<︒,故cos(50)3α︒-=-. 故答案为:3-15.关于x 不等式0ax b +<的解集为{}3x x >,则关于x 的不等式2045ax bx x +≥--的解集为______.【答案】()[)13,5-∞-,【分析】根据不等式的解集,可得方程的根与参数a 与零的大小关系,利用分式不等式的解法,结合穿根法,可得答案.【详解】由题意,可得方程0ax b +=的解为3x =,且a<0,由不等式2045ax bx x +≥--,等价于()()22450450ax b x x x x ⎧+--≥⎪⎨--≠⎪⎩,整理可得()()()()()510510ax b x x x x ⎧---+≤⎪⎨-+≠⎪⎩,解得()[),13,5-∞-,故答案为:()[)13,5-∞-,.16.已知函数f (x )=221122x a x x x -≥⎧⎪⎨-<⎪⎩(),(), 满足对任意实数12x x ≠,都有1212f x f x x x -<-()()0 成立,则实数a 的取值范围是( ) 【答案】138a ≤【分析】根据分段函数的单调性可得()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩ ,解不等式组即可. 【详解】根据题意可知,函数为减函数,所以()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩,解得138a ≤.故答案为:138a ≤【点睛】本题考查了由分段函数的单调性求参数值,考查了基本知识掌握的情况,属于基础题.四、解答题17.在①A B B ⋃=;②“x A ∈“是“x B ∈”的充分不必要条件;③A B ⋂=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合{}{}121,13A x a x a B x x =-≤≤+=-≤≤. (1)当2a =时,求A B ⋃;()RAB(2)若_______,求实数a 的取值范围.【答案】(1){}15A B x x ⋃=-≤≤,{}35R A B x x ⋂=<≤ (2)答案见解析【分析】(1)代入2a =,然后根据交、并、补集进行计算.(2)选①,可知A B ⊆,分A =∅,A ≠∅计算;选②可知A B ,分A =∅,A ≠∅计算即可;选③,分A =∅,A ≠∅计算.【详解】(1)当2a =时,集合{}{}15,13A x x B x x =≤≤=-≤≤, 所以{}15A B x x ⋃=-≤≤;{}35R A B x x ⋂=<≤ (2)若选择①A B B ⋃=,则A B ⊆, 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ⊆,{|13}B x x =-≤≤,所以12111213a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得01a ≤≤,所以实数a 的取值范围是)([],10,1-∞-⋃.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B , 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ,{|13}B x x =-≤≤,12111213a a a a -≤+⎧⎪-≥-⎨⎪+<⎩或12111213a a a a -≤+⎧⎪->-⎨⎪+≤⎩解得01a ≤≤, 所以实数a 的取值范围是)([],10,1-∞-⋃. 若选择③,A B ⋂=∅,当A =∅时,121a a ->+解得2a <- 当A ≠∅又A B ⋂=∅则12113211a a a a -≤+⎧⎨->+<-⎩或解得2a <-所以实数a 的取值范围是()(),24,-∞-+∞.18.计算下列各式的值: (1)1222301322( 2.5)3483-⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)7log 2log lg25lg47++ 【答案】(1)12; (2)112.【分析】(1)根据指数幂的运算求解;(2)根据对数的定义及运算求解. 【详解】(1)12232231222301322( 2.5)34833331222-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--+⎢⎥⎢⎥ ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎦ 2339199112242442--+-+⎛⎫=== ⎪⎝⎭. (2)7log 2log lg25lg47++()31111log 27lg 2542322222=+⨯+=⨯++=.19.已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭同时满足下列两个条件中的两个:①函数()f x 的最大值为2;②函数()f x 图像的相邻两条对称轴之间的距离为2π. (1)求出()f x 的解析式;(2)求方程()10f x +=在区间[],ππ-上所有解的和.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)23π.【分析】(1)由条件可得2A =,最小正周期T π=,由公式可得2ω=,得出答案.(2)由()10f x +=,即得到1sin 262x π⎛⎫+=- ⎪⎝⎭,解出满足条件的所有x 值,从而得到答案.【详解】(1)由函数()f x 的最大值为2,则2A = 由函数()f x 图像的相邻两条对称轴之间的距离为2π,则最小正周期T π=,由2T ππω==,可得2ω= 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)因为()10f x +=,所以1sin 262x π⎛⎫+=- ⎪⎝⎭,所以()2266x k k πππ+=-+∈Z 或()72266x k k πππ+=+∈Z , 解得()6x k k ππ=-+∈Z 或()2x k k ππ=+∈Z .又因为[],x ππ∈-,所以x 的取值为6π-,56π,2π-,2π, 故方程()10f x +=在区间[],ππ-上所有解得和为23π. 20.某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【答案】(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果; (2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型. 【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得:当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x .当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+.此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭12502001050=-=.此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.21.已知函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数. (1)求a 的值,判断1()()()F x f x f x =+的奇偶性,并加以证明; (2)解不等式 log (1)log (2)a a x x +<-.【答案】(1)3a =,是偶函数,证明见解析;(2)1|12x x ⎧⎫-<<⎨⎬⎩⎭.【解析】(1)根据2221,0,1a a a a --=>≠,求出a 即可; (2)根据对数函数的单调性解不等式,注意考虑真数恒为正数. 【详解】(1)函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数, 所以2221,0,1a a a a --=>≠,解得:3a =, 所以()3x f x =, 1()()33()x x F x f x f x -=+=+,定义域为R ,是偶函数,证明如下: ()33()x x F x F x --=+=所以,1()()()F x f x f x =+是定义在R 上的偶函数; (2)解不等式 log (1)log (2)a a x x +<-,即解不等式 33log (1)log (2)x x +<- 所以012x x <+<-,解得112x -<< 即不等式的解集为1|12x x ⎧⎫-<<⎨⎬⎩⎭【点睛】此题考查根据指数函数定义辨析求解参数的值和函数奇偶性的判断,利用对数函数的单调性解对数型不等式,注意考虑真数为正数.22.已知函数2()2x x b cf x b ⋅-=+,1()log a x g x x b -=+(0a >且1a ≠),()g x 的定义域关于原点对称,(0)0f =.(1)求b 的值,判断函数()g x 的奇偶性并说明理由; (2)求函数()f x 的值域;(3)若关于x 的方程2[()](1)()20m f x m f x ---=有解,求实数m 的取值范围. 【答案】(1)1b =,()g x 为奇函数 (2)()1,1-(3)(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭【分析】(1)根据()g x 的定义域关于原点对称可得1b =,再求解可得()()0g x g x -+=判断即可; (2)根据指数函数的范围逐步分析即可;(3)参变分离,令()()21,3t f x =-∈,将题意转换为求()()222tm t t =---在()1,3t ∈上的值域,再根据基本不等式,结合分式函数的范围求解即可. 【详解】(1)由题意,1()log ax g x x b-=+的定义域10x x b ->+,即()()10x x b -+>的解集关于原点对称,根据二次函数的性质可得1x =与x b =-关于原点对称,故1b =. 此时1()log 1ax g x x -=+,定义域关于原点对称,11()log log 11a a x x g x x x --+-==-+-,因为1111()()log log log log 101111aa a a x x x x g x g x x x x x -+-+⎛⎫-+=+=⨯== ⎪+-+-⎝⎭. 故()()g x g x -=-,()g x 为奇函数.(2)由(1)2()21x x c f x -=+,又(0)0f =,故002121c -=+,解得1c =,故212()12121x x x f x -==-++,因为211x +>,故20221x<<+,故211121x -<-<+,即()f x 的值域为()1,1- (3)由(2)()f x 的值域为()1,1-,故关于x 的方程2[()](1)()20m f x m f x ---=有解,即()()()22f x m f x f x -=-在()()()1,00,1f x ∈-⋃上有解.令()()()21,22,3t f x =-∈⋃,即求()()212223tm t t t t==---+-在()()1,22,3t ∈⋃上的值域即可.因为2333t t +-≥=,当且仅当t =时取等号,且21301+-=,223333+-=,故)2233,00,3t t ⎛⎫⎡+-∈⋃ ⎪⎣⎝⎭,故13,223m t t∞∞⎛⎛⎫=∈-⋃+ ⎪ ⎝⎭⎝+-,即m的值域为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭,即实数m 的取值范围为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭.。
江苏省徐州市2019~2020学年度高一第1学期期中考试数学试题及参考答案解析

2019~2020学年度江苏省徐州市高一第一学期期中数学试卷一、选择题(本大题共12小题)1.已知集合A={1,3,5},B={3,5,7},则A∩B=( )A.3,5,B.C.D.2.函数f(x)=+ln(1-x)的定义域为( )A. B. C. D.3.已知幂函数f(x)的图象过点(2,16),则f(3)=( )A.27B.81C.12D.44.函数f(x)=a x+1+2(a>0且a≠1)的图象恒过定点( )A. B., C. D.5.设a=logπ3,b=π0.3,c=log0.3π,则( )A. B. C. D.6.已知函数,则的值是( )A.27B.C.D.7.已知函数f(x)=ax5-bx3+cx-3,f(-3)=7,则f(3)的值为( )A.13B.C.7D.8.函数y=(a>1)的图象的大致形状是( )A. B. C. D.9.已知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)-1<0的解集是( )A. B.或C. D.或10.已知函数f(x)=x2•(a+)是R上的奇函数,则实数a=( )A. B. C. D.111.若函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则函数的单调递增区间( )A. B. C. D.12.若函数f(x)=|lg x|-()x+a有2个零点,则实数a的取值范围是( )A. B. C. D.二、填空题(本大题共4小题)13.已知集合A={-2,0,1,3},B={x|-<x<},则A∩B的子集个数为______.14.若函数f(x)=lg x+x-3的零点在区间(k,k+1),k∈Z,则k=______.15.若函数f(x)=的值域为R,则实数a的范围是______.16.已知函数y=x+有如下性质:常数a>0,那么函数在(0,]上是单调减函数,在[,+∞)上是单调增函数.如果函数f(x)=|x+-m|+m在区间[1,4]上的最小值为7,则实数m的值是______.三、解答题(本大题共6小题)17.计算:(1);(2)2lg5+lg8+lg5•lg20+(lg2)2.18.已知集合A={x|3≤3x≤27},B={x|1<log2x<2}.(1)分别求A∩B,(∁R B)∪A;(2)已知集合C={x|2a<x<a+2},若C⊆A,求实数a的取值范围.19.已知函数f(x)是定义在(-4,4)上的奇函数,满足f(2)=1,当-4<x≤0时,有f(x)=.(1)求实数a,b的值;(2)求函数f(x)在区间(0,4)上的解析式,并利用定义证明函数f(x)在(0,4)上的单调性.20.某公司生产一种化工产品,该产品若以每吨10万元的价格销售,每年可售出1000吨,若将该产品每吨分价格上涨x%,则每年的销售数量将减少mx%,其中m为正常数,销售的总金额为y万元.(1)当m=时,该产品每吨的价格上涨百分之几,可使销售总金额最大?(2)当x=10时,若能使销售总金额比涨价前增加,试设定m的取值范围.21.已知函数f(x)=x|x-a|+x(a∈R)(1)若函数f(x)是R上的奇函数,求实数a的值;(2)若对于任意x∈[1,2],恒有f(x)≥2x2,求实数a的取值范围;(3)若a≥2,函数f(x)在区间[0,2]上的最大值为4,求实数a的值.22.已知函数f(x)=lg(m+),m∈R.(1)当m=-1时,求函数f(x)的定义域;(2)若函数g(x)=f(x)+2x lg2有且仅有一个零点,求实数m的取值范围;(3)任取x1,x2∈[t,t+2],若不等式|f(x1)-f(x2)|≤1对任意t∈[1,2]恒成立,求实数m的取值范围.答案和解析1.【参考答案】C【试题分析】解:∵集合A={1,3,5},B={3,5,7},∴A∩B={3,5}.故选:C.利用交集定义直接求解.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【参考答案】B【试题分析】解:要使f(x)有意义,则,解得,∴f(x)的定义域为.故选:B.可看出,要使得f(x)有意义,则需满足,解出x的范围即可.本题考查了函数定义域的定义及求法,对数函数的定义域,考查了计算能力,属于基础题.3.【参考答案】B【试题分析】解:设幂函数f(x)=xα,又f(x)过点(2,16),∴2α=16,解得α=4,∴f(x)=x4,∴f(3)=34=81.故选:B.用待定系数法求出f(x)的解析式,再计算f(3)的值.本题考查了幂函数的定义与应用问题,是基础题.4.【参考答案】D【试题分析】解:由x+1=0,解得x=-1,此时y=1+2=3,即函数的图象过定点(-1,3),故选:D.根据指数函数过定点的性质,直接领x+1=0即可得到结论本题主要考查指数函数过定点问题,利用指数幂等于0是解决本题的关键.5.【参考答案】D【试题分析】解:0=logπ1<logπ3<logππ=1,π0.3>π0=1,log0.3π<log0.31=0,∴b>a>c.故选:D.容易得出,从而得出a,b,c的大小关系.考查对数函数、指数函数的单调性,以及增函数和减函数的定义.6.【参考答案】B【试题分析】解:∵∴=f(-3)=故选B.由已知中的函数的解析式,我们将代入,即可求出f()的值,再代入即可得到的值.本题考查的知识点是分段函数的函数值,根据分析函数的解析式,由内到外,依次代入求解,即可得到答案.7.【参考答案】B【试题分析】解:∵函数f(x)=ax5-bx3+cx-3,f(-3)=7,令g(x)=ax5-bx3+cx,则g(-3)=10,又g(x)为奇函数,∴g(3)=-10,故f(3)=g(3)-3=-13,故选:B.令g(x)=ax5-bx3+cx,则g(-3)=10,又g(x)为奇函数,故有g(3)=-10,故f(3)=g(3)-3.本题考查函数的奇偶性的应用,求函数值,令g(x)=ax5-bx3+cx,求出g(3)=-10,是解题的关键.8.【参考答案】C【试题分析】解:当x>0时,y=a x,因为a>1,所以函数y=a x单调递增,当x<0时,y=-a x,因为a>1,所以函数y=-a x单调递减,故选:C.根据函数的单调性即可判断.本题考查了函数图象和识别,关键掌握函数的单调性,属于基础题9.【参考答案】B【试题分析】解:因为y=f(x)为奇函数,所以当x>0时,-x<0,根据题意得:f(-x)=-f(x)=-x+2,即f(x)=x-2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)-1<0,即2x<-3,解得x<-,则原不等式的解集为x<-;当x≥0时,f(x)=x-2,代入所求的不等式得:2(x-2)-1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<-或0≤x<}.故选:B.根据f(x)为奇函数,得到f(-x)=-f(x),设x大于0,得到-x小于0,代入已知的解析式中化简即可求出x 大于0时的解析式,然后分两种情况考虑,当x小于0时和x大于0时,分别把所对应的解析式代入所求的不等式中,得到关于x的两个一元一次不等式,求出不等式的解集的并集即为原不等式的解集.此题考查了其他不等式的解法,考查了函数奇偶性的应用,是一道基础题.10.【参考答案】A【试题分析】解:根据题意,函数f(x)=x2•(a+)是R上的奇函数,则有f(-x)=-f(x),即(-x)2(a+)=-(x2•(a+),变形可得:a+=-(a+),则有2a=-1,即a=-;故选:A.根据题意,由函数奇偶性的定义可得f(-x)=-f(x),即(-x)2(a+)=-(x2•(a+),变形分析可得a的值,即可得答案.本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.11.【参考答案】C【试题分析】解:∵函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则0<a<1.则函数的单调递增区间,即y=x2+2x-3在y>0时的减区间.由y=x2+2x-3>0,求得x<-3,或x>1.再利用二次函数的性质可得,y=x2+2x-3在y>0时的减区间为(-∞,-3),故选:C.复合函数的单调性,指数函数、二次函数的性质,先判断0<a<1,本题即求y=x2+2x-3在y>0时的增区间,再利用二次函数的性质得出结论.本题主要考查复合函数的单调性,指数函数、二次函数的性质,属于中档题.12.【参考答案】B【试题分析】解:原函数转化为f(x)=|lg x|-()x+a,|lg x|=()x-a,函数有2个零点,相当于y=|lg x|与y=()x-a有两个交点,根据图象:当x=1时,y=()x-a的值-a>0即可所以a∈(-∞,).故选:B.原函数转化为f(x)=|lg x|-()x+a,|lg x|=()x-a,根据图象:当x=1时,y=()x-a的值-a>0即可.把零点问题转换为两个函数的交点问题,考察图象法的应用,中档题.13.【参考答案】8【试题分析】解:∵A={-2,0,1,3},B={x|-<x<},∴A∩B={-2,0,1},∴A∩B的子集个数为:23=8个.故答案为:8.进行交集的运算求出A∩B,从而得出A∩B的元素个数,进而可得出A∩B的子集个数.本题考查了描述法、列举法的定义,交集的运算,集合子集个数的计算公式,考查了计算能力,属于基础题.14.【参考答案】2【试题分析】解:因为函数y=lg x与y=x-3都是定义域上的增函数,所以函数f(x)=lg x+x-3也为定义域上的增函数.因为f(2)=lg2+2-3<lg10+2-3=0,f(3)=lg3+3-3>0,所以由零点存在性定理可得函数f(x)=lg x+x-3的近似解在区间(2,3)上,所以k=2.故答案为:2.确定函数f(x)=lg x+x-3也为定义域上的增函数.计算f(2)=lg2+2-3<lg10+2-3=0,f(3)=lg3+3-3>0,由零点存在性定理可得函数f(x)=lg x+x-3的近似解在区间(2,3)上,即可得出结论.本题考查零点存在性定理,考查学生的计算能力,比较基础.15.【参考答案】[0,+∞)【试题分析】解:x≤1时,f(x)≤2+a;x>1时,f(x)=(x-a)2+1-a2,∴①a>1时,f(x)≥1-a2,且f(x)的值域为R,∴2+a≥1-a2,解得a∈R,∴a>1;②a≤1时,f(x)>(1-a)2+1-a2=2-2a,且f(x)的值域为R,∴2+a≥2-2a,解得a≥0,∴0≤a≤1,∴综上得,实数a的范围是[0,+∞).故答案为:[0,+∞).根据f(x)的解析式得出,x≤1时,f(x)≤2+a;x>1时,f(x)=(x-a)2+1-a2,从而得出:a>1时,f(x)≥1-a2,进而得出2+a≥1-a2;a≤1时,f(x)>2-2a,进而得出2+a≥2-2a,从而解出a的范围即可.本题考查分段函数值域的求法,配方求二次函数值域的方法,考查计算能力,属于中档题.16.【参考答案】6【试题分析】解:设t=在[1,2]上单调递减,在[2,4]上单调递增,所以t∈[4,5],问题化为y=|t-m|+m在区间[4,5]上的最小值为7,当m>5时,y min=y(5)=m-5+m=7,m=6;当m∈[4,5]时,y min=y(m)=m=7(舍去);当m<4时,y min=y(4)=4-m+m=7,不成立.故答案为:6.换元将问题化为绝对值函数在闭区间上的最小值问题,根据对称轴在闭区间的右侧、中间、左侧分三类讨论即可.本题是一个经典题目,通过换元将问题化为绝对值函数在闭区间上的最小值问题,接下来根据对称轴在闭区间的右侧、中间、左侧分三类讨论即可.17.【参考答案】解:(1)原式==4-4+3-π-1+π=2.(2)原式=2lg5+2lg2+lg5•(lg2+1)+(lg2)2=2+lg2(lg5+lg2)+lg5=2+lg2+lg5=3.【试题分析】(1)利用指数幂的运算性质即可得出.(2)利用对数的运算性质及其lg2+lg5=1即可得出.本题考查了指数幂与对数的运算性质,考查了推理能力与计算能力,属于基础题.18.【参考答案】解:(1)因为A={x|3≤3x≤27}={x|1≤x≤3},B={x|1<log2x<2}={x|2<x<4},所以A∩B={x|2<x≤3},从而(C R B)∪A={x|x≤3或x≥4}.(2)当2a≥a+2,即a≥2时C=∅,此时C⊆A,符合条件;当2a<a+2,即a<2时,C≠∅,要使C⊆A,只需即.故要使C⊆A,实数a的取值范围是{a|a≥2或}.【试题分析】(1)求出集合A,B,由此能求出A∩B和(C R B)∪A.(2)当2a≥a+2,即a≥2时C=∅,符合条件;当2a<a+2,即a<2时,C≠∅,要使C⊆A,只需由此能求出实数a的取值范围是.本题考查交集、补集、并集的求法,考查交集、补集、并集定义等基础知识,考查运算求解能力,是基础题.19.【参考答案】解:(1)∵函数f(x)是定义在(-4,4)上的奇函数,∴f(0)=0,即,∴b=0,又因为f(2)=1,所以f(-2)=-f(2)=-1,即,所以a=1,综上可知a=1,b=0,(2)由(1)可知当x∈(-4,0)时,,当x∈(0,4)时,-x∈(-4,0),且函数f(x)是奇函数,∴,∴当x∈(0,4)时,函数f(x)的解析式为,任取x1,x2∈(0,4),且x1<x2,则=,∵x1,x2∈(0,4),且x1<x2,∴4-x1>0,4-x2>0,x1-x2<0,于是f(x1)-f(x2)<0,即f(x1)<f(x2),故在区间(0,4)上是单调增函数.【试题分析】(1)根据f(x)是定义在(-4,4)上的奇函数及-4<x≤0时的f(x)解析式即可得出b=0,并可求出f(-2)=-1,从而可得出,求出a=1;(2)根据上面知,x∈(-4,0)时,,从而可设x∈(0,4),从而得出,从而得出x∈(0,4)时,,然后根据函数单调性的定义即可判断f(x)在(0,4)上的单调性:设任意的x1,x2∈(0,4),且x1<x2,然后作差,通分,提取公因式,然后判断f(x1)与f(x2)的大小关系即可得出f(x)在(0,4)上的单调性.本题考查了奇函数的定义,奇函数在原点有定义时,原点处的函数值为0,求奇函数在对称区间上的解析式的方法,以及函数的单调性,考查了推理能力和计算能力,属于基础题.20.【参考答案】解:(1)由题设,当价格上涨x%时,每年的销售数量将减少mx%,销售总金额y=10(1+x%)•1000(1-mx%)=-mx2+100(1-m)x+10000().当时,y=[-(x-50)2+22500],当x=50时,y max=11250.即该产品每吨的价格上涨50%时,销售总金额最大.(2)当x=10时,若能使销售总金额比涨价前增加,能使销售总金额增加,则存在使y>10×10000,由得,所以m<10.由y>10×10000,即-100m+1000(1-m)+10000>10000亦即,所以.故若能使销售总金额比涨价前增加,m的取值范围设定为.【试题分析】(1)得出y关于x的函数,根据二次函数的性质求出结论;(2)根据题意列不等式得出m的范围.本题考查了函数解析式,函数最值的计算,考查不等式的解法,属于中档题.21.【参考答案】解:(1)∵f(x)是奇函数,∴f(-1)=-f(1),∴-|-1-a|-1=-(1•|1-a|+1)∴-|1+a|-1=-|1-a|-1,∴|1+a|=|1-a|,∴a=0,当a=0时,f(x)=x•|x|+x是奇函数,∴a=0;(2)任意的x∈[1,2],f(x)≥2x2恒成立,∴x|x-a|+x≥2x2恒成立,∴|x-a|+1≥2x恒成立,∴|x-a|≥2x-1恒成立, ∵x∈[1,2],∴2x-1∈[1,3],2x-1>0,∴x-a≥2x-1恒成立或x-a≤-2x+1恒成立,∴a≤-x+1恒成立或a≥3x-1恒成立,而-x+1∈[-1,0],3x-1∈[2,5],∴a≤-1或a≥5;(3)∵a≥2,x∈[0,2],∴x-a≤0,∴|x-a|=-(x-a),∴f(x)=x[-(x-a)]+x=-x2+(a+1)x,开口向下,对称轴为x=≥,①当,即2≤a≤3时,f(x)max=f()==4,∴a=3或a=-5(舍),②当>2,即a>3时,f(x)max=f(2)=-4+2a+2=2a-2=4,∴a=3,又a>3,矛盾,综上a=3.【试题分析】(1)由奇函数的性质f(-x)=-f(x),进而求解;(2)x∈[1,2],2x-1∈[1,3],2x-1>0,f(x)≥2x2等价于x-a≥2x-1恒成立或x-a≤-2x+1恒成立,进而求解;(3))∵a≥2,x∈[0,2],∴x-a≤0,∴f(x)=x[-(x-a)]+x=-x2+(a+1)x,进而比较对称轴与区间端点的关系求解;(1)考查奇函数的性质,去绝对值号;(2)考查不等式恒成立的转化,得出x-a≥2x-1恒成立或x-a≤-2x+1恒成立,是突破本题的关键点;(3)考查不等式在特定区间上的最值问题,将不等式恒成立转化为二次函数在特定区间上的最值.22.【参考答案】解:(1)当m=-1时,,要使函数f(x)有意义,则需,即2x<2,从而x<1.故函数f(x)的定义域为{x|x<1};(2)若函数g(x)=f(x)+2x lg2有且仅有一个零点,即有且仅有一个根,亦即,即,即m(2x)2+2•2x-1=0有且仅有一个根.令2x=t>0,则mt2+2•t-1=0有且仅有一个正根,当m=0时,2•t-1=0,,即x=-1,成立;当m≠0时,若△=4+4m=0即m=-1时,t=1,此时x=0成立;若△=4+4m>0,需,即m>0,综上,m的取值范围为[0,+∞)∪{-1};(3)若任取x1,x2∈[t,t+2],不等式|f(x1)-f(x2)|≤1对任意t∈[1,2]恒成立,即f(x)max-f(x)min≤1对任意t∈[1,2]恒成立,因为在定义域上是单调减函数,所以,,即,即,,所以,即,又有意义,需,即,所以,t∈[1,2],.所以m的取值范围为.【试题分析】(1)将m=-1代入f(x)中,根据,解不等式可得f(x)的定义域;(2)函数g(x)=f(x)+2x lg2有且仅有一个零点,则可得方程m(2x)2+2•2x-1=0有且仅有一个根,然后求出m的范围;(3)由条件可得f(x)max-f(x)min≤1对任意t∈[1,2]恒成立,求出f(x)的最大值和最小值代入该式即可得到m 的范围.本题考查了函数定义域的求法,函数的零点判定定理和不等式恒成立问题,考查了分类讨论思想和转化思想,属难题.。
江苏省镇江市扬中高级中学2021-2022学年高一上学期第一次月考数学试题
因为 ,当且仅当 ,即 时,取等号,
所以 ,
所以
21.2010年上海世博会某国要建一座八边形的展馆区,它的主体造型的平面图是由两个相同的矩形 和 构成的面积为200m2的十字型地域,计划在正方形 上建一座“观景花坛”,造价为4200元/ m2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/ m2,再在四个空角(如 等)上铺草坪,造价为80元/ m2.设AD长为xm,DQ长为ym.
(1) ;(2) ;(3) .
【分析】(1)根据函数 有两个零点,则有方程 有两个不同的实数根,即可得出 ,从而可得出答案;
(2)若命题: , ,是假命题,则命题: , ,是真命题,即 在R上恒成立,分 时和 时两种情况讨论,即可得出答案;
(3)若对于 , 恒成立,即 在 上恒成立,则 在 上恒成立,故只需 即可,结合基本不等式即可得出答案.
(1)试找出 与 满足的等量关系式;
(2)设总造价为 元,试建立 与 的函数关系;
(3)若总造价 不超过138000元,求 长 的取值范围.
(1) ;(2) , ;(3) .
【分析】(1)由十字形区域面积为矩形 面积的4倍与正方形 面积之和,即可求解;
(2)先由(1)得 ,然后求各个区域的造价,即可求解;
江苏省扬中市高级中学2021-2022第一学期
高一数学第一次月考试卷
一、选择题.请把答案直接填涂在答题卡相应位置上.
1.已知集合 , ,则 ().
A. B. C. D.
D
【分析】根据交集定义直接得结果.
,故选:D.
本题考查集合交集概念,考查基本分析求解能力,属基础题.
2.命题“ , ”的否定是()
2020-2021学年高一上学期期末考试数学卷及答案
2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。
答案:A={(-∞,1]}。
B={2}。
A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。
答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。
3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。
答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。
答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。
答案:选项A是正确的。
因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。
6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。
答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。
根据题意,πrl=6π,所以l=6/r。
而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。
将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。
我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。
答案:点P的坐标为(1,2)。
因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。
江苏省镇江市扬中市第二高级中学2022-2023学年高一上学期入学测试数学试题
江苏省镇江市扬中市第二高级中学2022-2023学年高一上学期入学测试数学试题学校:___________姓名:___________班级:___________考号:___________Q 二次函数的图象经过(1,0),(1,0)-两点,\设二次函数解析式为:(1)(1)y a x x =-+,又因为图象经过(0,2)-点,2(01)(01)a \-=-+,解得2a =,\二次函数解析式为:222y x =-.(2)由题意得新函数为22()2y x m =--,对称轴为直线x m =,20.a =>Q \抛物线开口向上,在对称轴左侧,y 随着x 的增大而减小,Q 当24x ££时,新函数y 随着x 的增大而减小,4m \³.(3)由题意得新函数为22()2y x m =--,对称轴为直线x m =,若当24x ££时,新函数的图象都在直线6y =的上方,①当02m <£时,如图:当24x ££时,y 随着x 的增大而增大,当2x =时,若22(2)26y m =--=,解得0m =或4,因为02m <£,故不合题意;②当24m <£时,当x m =时,22()22y m m =--=-,24m \<£不符合题意;③当4m >时,当24x ££时,y 随着x 的增大而減小,\当4x =时,22(4)26y m =--=,解得2m =(舍去)或6,\实数m 的取值范围为6m >.【点睛】关键点睛:本题第三问的关键是对m的分类讨论,即转化为经典的轴动区间定问题,注意讨论时有m大于0的前提,求取边界值时,一定要主要讨论的前提条件.。
江苏省常州市2020学年度第二学期期末质量调研高一数学(必修4必修5)试题
常州市 2020-2020 学年度第二学期期末质量调研高一数学 (必修 4 必修 5)试题注意事项: 1.请将全部试题的答案填写在答题卡上.2020年6月2.考试时间为 120 分钟,满分 100 分.一、选择题:本大题共 10 小题,每题 3 分,共 30 分,在每题给出四个选项中,有且只有一项切合题目要求.1.不等式 ( x + 1)( x - 2) ≤0 的解集为A . [ -2,1]B .[ -1, 2]C . ( -∞,- 1] ∪[ 2,+∞ )D .( -∞,- 2] ∪ [ -1,+∞ )2. sin17° cos227°+ sin73° sin47°等于1 1 3 3 A .-B .C .-D .22223.已知 a , b 是互异的正数, A 是 a , b 的等差中项, G 是 a , b 的等比中项,则A 与 G 的大小关系是A . A >GB .A <GC .A ≤ GD . A ≥G4.如图, 为了丈量地道两口之间AB 的长度,对给出的四组数据,依据计算时要求最简易及丈量时最 Aα 简单的原则,应该采纳的一组是 A . a ,b , γ B . a , b , α b γC . a , b , βD . α, β,aC5.等差数列 { a n } 中,若 a 6+ a 10= 16, a 4= 1,则 a 12 的值是A . 64B .31C .30D . 156.已知向量 a = ( 1, 2) , b = ( -2,- 4) ,| c| = 5 ,若 ( a + b) ·c =5,则2A . 30°B .60°C .120°D . 150°7.给出以下命题,此中正确的命题是βBaa 与 c 的夹角为A .当 x ∈( 0,) 时, sinx > cosx2x = 4B .函数 y = 2sin( x +) 的图象的一条对称轴是π55C .函数 y = tan 2 最大值为 π1 xD .函数 y = sin2x 的图象能够由函数y = sin( 2x -) 的图象向右平移 个单位获得488.将棱长相等的正方体按图所示的形状摆放,从上往下挨次为第 1 层,第 2 层, ,则第 20 层正方体的个数是A . 420B .440C . 210D .220uuuruuuruuur uuur uuuruuur uuur19.已知非零向量ABACABAC,则△ ABCAB 与 AC 知足(uuur + uuur )·BC =0,且uuur · uuur =2|AB| |AC||AB| |AC|形状为A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形10.设 f( x) =1,利用课本中推导等差数列前 n 项和公式的方法, 可求得 f( -11) +f( -10)33x+ + f( 0) + + f( 11) + f( 12) 的值是A . 3B .4 323 D .12 3C .33二、填空题:本大题共6 小题,每题 3 分,共 18 分.uuuruuur uuur11.已知向量 OA = ( k , 12) , OB = ( 4, 5) , OC =( - k , 10) ,若 A 、B 、 C 三点共线,则实数k =________________ .12.已知实数 x ,y 知足 x + 3y = 1,则 2x + 8y 的最小值为 ____________.13.已知 α是第二象限角, sin α=2,若 tan( α+ β) =1,则 tan β的值为 _________.514.已知数列 { a n } 是正数项等比数列,若 a 4a 6+2a 5a 7+ a 6a 8= 36, a 5+ a 7=______ .x 115.若实数 x , y 知足不等式组 x4 y 3 0 ,则函数 z = x + y 的最大值是 ______.x 2 y 9 016.已知等式 cos α· cos2α=sin 4, cos α· cos2α· cos4α=sin 8, ,请你写出一个拥有4sin8sin一般性的等式(不要求证明),使你写出的等式包括了已知等式,那么这个等式是 ______________.三、解答题:本大题共 5 小题,共 52 分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分 10 分)如图,在四边形 ABCD 中,已知 AD ⊥CD ,AD = 5,AB = 7,∠ BDA = 60°,∠ BCD = 135°,求( 1)线段 BD 的长;(2)线段 BC 的长.DCA B18.(本小题满分10 分)已知全集U = R ,会合A = { x|6≥ 1} , B = { x| x 2― 2x ― m < 0} .x 1( 1)当 m = 3 时,求 A ∩C U B ;( 2)若 A ∩B = { x| -1< x < 4} ,务实数 m 的值.y19.(本小题满分 10 分)设向量 a =( 2sinx ,3 cosx) , b = ( cosx , 2cosx) .(1)求函数 f( x) = a · b - 3 的最小正周期;x,5O(2)作出函数 y = f( x) 在 [ -6 ] 的简图.620.(本小题满分 10 分)已知数列 { a n } 为等比数列, a 4= 16, q =2,数列 { b n } 的前 n 项和 S n = 1n 2+ 3n ( n ∈ N* ).22(1)求数列 { a n } 、 { b n } 的通项公式 a n 、 b n ; (2)设 c n = a n · b n ,求数列 { c n } 的前 n 项和 T n .21.(本小题满分 12 分)某渔业企业年初用 49 万元购置一艘打鱼船,每年打鱼利润 25 万元.第一年各样花费6 万元,此后每年都增添2 万元,(1)问第几年开始赢利?(2)若干年后,有两种办理方案:①年均匀赢利最大时,以赢利最大时,以 9 万元销售该渔船.问哪一种方案最合算?18 万元销售该渔船;②总纯收入参照答案12345678910BBAADCCCD B2 12 2213314 615 711316 cos · cos2 · · cos2n 1αsin 2nn N*2n sin17ABDBD xBA 2 BD 2 AD 2 2BD · AD · cos BDA72 x 2 52 2· 5x · cos60° x 2― 5x ― 24 0x 1 8 x 23 (5)sin BCBDBC BD sin CDB8 CDBsin BCD sinBCDBC· sin30° 42 (10)sin13518 A { x| 1 x ≤ 5} ········································2 1 m 3 B { x| 1 x3} (3)C U B{ x| x ≤ 1x ≥ 3}A ∩C UB { x| 3≤ x ≤ 5} ········································5 2 A ∩B { x| 1 x 4} 4 x 2―2x ― m 042― 2×4―m 0 m 8 B { x| 2 x 4}···································8 ··················· (10)y19 1 f( x)2sinxcosx 23 cos 2x 3sin2x 3 ( 1 cos2x)32sin( 2x) (3)Ox3T2π (5)22x7512 312662xπ3 2π2273y22 (10)20 1{ a n }a 4 a 1q 316 a 1· 23a 11a n 2n n N* (2)∵数列 { b n } 的前 n 项和 S n = 1n 2+ 3n22∴令 n = 1, b 1= 2·············································3 分当 n ≥ 2 时, S n 1 = 1( n -1) 2+ 3( n - 1)22∴b n n12312-3 =n + 1- S n 1 =n +n - ( n - 1) ( n - 1)=S 2 2 22∴ { b n } 的通项公式为: b n = n +1( n ∈ N* ) ································5 分 ( 2)∵ c n =a n · b n = ( n + 1) · 2n , ·······································7 分∴ T n = 2×2+ 3×22+ 4×23+ +n ×2 n 1 + ( n + 1) ×2n 2T n = 2×22+ 3×23+ 4×24+ +n ×2n + ( n + 1) ×2 n 1∴相减得 - T n = 2×2+ ( 3- 2) ×22 +( 4- 3) ×23 + + [( n - 1) - n] ×2n -( n + 1) ×2 n1∴- T n = 4+22 +23+ + 22- ( n + 1) ×2n 1= 4+4(1 2n 1)- ( n + 1) ×2 n 11 2=- n ×2 n 1nn 1·················································10 分T =n ×2 21.( 1)第 n 年开始赢利,设赢利为 y 万元,则n(n 1)·······················2 分y =25n - [ 6n +×2] - 49=- n 2+ 20n - 492由 y =- n 2+ 20n - 49> 0 得 10- 51 < n < 10+ 51 ······················4 分又∵ n ∈ N* ,∴ n =3, 4∴n = 3 时,即该渔业企业第3 年开始赢利. ······························5 分 ( 2)方案①:年均匀赢利为y =- n -49+20≤- 2 ng49+ 20= 6(万元) ·········7 分n nn当 n = 7 时,年均匀赢利最大,若此时卖出,共赢利 6×7+ 18= 60(万元) ·········8 分方案②: y =- n 2+ 20n -49=- ( n - 10) 2+ 51当且仅当 n = 10 时,即该渔业企业第 10 年总数最大,若此时卖出,共赢利 51+ 9=60 万元······················································11 分由于两种方案赢利相等,但方案②所需的时间长,因此方案①较合算.·········12 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省镇江市2019-2020学年高一上学期期末数学
试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 若集合,集合,则( )
A.
B. C. D.
2. 命题“,”的否定是( )
A., B.,
C., D.,
3. 若幂函数的图象过点,则( )
A. B. C.2 D.
4. 设函数,则( ).
A.-1 B.1
C.
D.
5. 求值( )
A. B. C.
D.
6. 已知方程的解在内,则( )
A.0 B.1 C.2 D.3
7. 函数在的图象大致为( )
A.
B.
C.
D.
8. 《九章算术》是我国古代著名数学经典,其对勾股定理的论述比西方早一千
多年.其中有这样一个问题:“今有勾五步,股十二步,间勾中容方几何?”其
意为:今有直角三角形ABC,勾(短直角边)BC长5步,股(长直角边)AB长为12
步,问该直角三角形能容纳的正方形DEBF(D,E,F分别在边AC,AB,BC上)边
长为多少?在如图所示中,在求得正方形DEBF的边长后,可进一步求得
的值为( )
A. B. C. D.
二、多选题
9. 若,则下列不等式中正确的是( )
A.
B.
C. D.
10. 在下列各函数中,最小值为2的函数是( )
A. B.
C.
D.
11. 使不等式成立的一个充分不必要条件是( )
A. B. C.或 D.
12. 如图,摩天轮的半径为40米,摩天轮的轴O点距离地面的高度为45米,
摩天轮匀速逆时针旋转,每6分钟转一圈,摩天轮上点P的起始位置在最高点
处,下面的有关结论正确的有( )
A.经过3分钟,点P首次到达最低点
B.第4分钟和第8分钟点P距离地面一样高
C.从第7分钟至第10分钟摩天轮上的点P距离地面的高度一直在降低
D.摩天轮在旋转一周的过程中有2分钟距离地面不低于65米
三、填空题
13. 有一块半径为30cm,圆心角为的扇形钢板,则该钢板的面积为
________cm2.
四、双空题
14. 函数为_______(在“奇”?“偶”?“非奇非偶”中选
一个填空)函数,值域为________.
五、填空题
15. 在不考虑空气阻力的条件下,火箭的最大速度v(单位:)和燃料的质量
M(单位:kg)?火箭(除燃料外)的质量m(单位:kg)的函数关系是.
已知该火箭的最大速度可达到,则燃料质量与火箭(除燃料外)质量的比
值为________.
16. 已知x,y为正数,且,则的最小值为________.
六、解答题
17. 已知全集为R,设函数的定义域为集合A,函数
的定义域为集合
A.
(1)求和;
(2)若集合,,求实数p的取值范围.
18. 如图,在平面直角坐标系xOy中,两锐角,的始边都为x轴非负半
轴,终边分别与单位圆O交于A,B两点,若点A的横坐标为,点B的纵
坐标为.
(1)分别求,的值;
(2)求的值.
19. 已知函数.
(1)求函数的最小正周期和增区间;
(2)当时,求函数的最大值和最小值.
20. 某市将举办2020年新年大型花卉展览活动,举办方将建一块占地10000平
方米的矩形展览场地ABCD,设计要求该场地的任何一边长度不得超过200米.
场地中间设计三个矩形展览花圃①,②,③,其中花圃②与③是全等的矩形,
每个花圃周围均是宽为5米的赏花路径.其中①号花圃的一边长度为25米.如图
所示,设三个花圃占地总面积为S平方米,矩形展览场地的BC长为x米.
(1)试将S表示为x的函数,并写出定义域;
(2)问应该如何设计矩形场地的边长,使花圃占地总面积S取得最大值.
21. 已知函数(为常数,).给你四个函数:
①;②;③;④.
(1)当时,求不等式的解集;
(2)求函数的最小值;
(3)在给你的四个函数中,请选择一个函数(不需写出选择过程和理由),该函
数记为,满足条件:存在实数a,使得关于x的不等式的
解集为,其中常数s,,且.对选择的和任意,不
等式恒成立,求实数a的取值范围.
22. 已知函数.
(1)证明函数在上为减函数;
(2)求函数的定义域,并求其奇偶性;
(3)若存在,使得不等式能成立,试求实数a的取
值范围.