一阶逻辑基本概念讲解
8一阶逻辑-概念公式4-14-1

4)∀x(F(g(x,a),x)→F(x,y) )
4)谓词 F(x,y): x=y
5)∀x∀y(F(f(x,a),y)→
F(f(y,a),x) )
6)∀x∀y∃z F(f(x,y),z)
例:给定解释I 1)个体域为整数集合Z 2) Z上的特定元素 a0=0,a1=1; 3)Z上的特定函数 f(x,y)=x-y, g(x,y)=x+y; 4)Z上的特定谓词 F(x,y): x < y;
任何数如果是整数则一定都是偶数--是假命题
仅有个体与谓词还不能准确表示一些逻辑问题 如:N(x):x是整数, O(x):x是偶数 所有的整数是偶数可符号化为 N(x)→ O(x) 肯定为假 其否定应为真. 但 ┑(N(x)→O(x))等值于 N(x)∧┑O(x) 即: 所有的整数且不是偶数也为假 主要原因是:没有体现整体和个别的关系 所以在描述时必须引入反映数量关系的词
4、闭式定义 设A是公式,若A中不含自由出现的个体变项则称A为封闭的
公式,简称闭式
二、公式的解释(相当于命题公式的赋值) 按合式公式的形成规则形成的符号串是F中的公式,这种公式 没有确定意义.一旦将其中的变项(项的变项,谓词变项等)用 指定的常项代替后,所得公式就具备一定意义,有时就变成命 题了
一个解释不外乎指定个体域、个体域中一些特定的元素、特定 的函数和谓词等部分. 1、公式的解释 1)定义:F的解释I的内容一般由下面4部分组成: (a)指定非空个体域DI (个体域的取值范围) (b)指定DI中一些特定元素(常量)的集合{a1,a2,…ai}. (c)给定DI上特定函数集合{fi | i ≥ 1}. 具体的函数 (d)给定DI上特定谓词的集合{ Hi | i≥1}. 具体的谓词
在解释I下的公式A中的个体变项均取值于DI. 被解释I下的公式不一定全部包含解释中的四部分
离散数学第二章一阶逻辑知识点总结

离散数学第二章一阶逻辑知识点总结数理逻辑部分第2章一阶逻辑2.1 一阶逻辑基本概念个体词(个体): 所研究对象中能够独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示个体变项:抽象的事物,用x, y, z表示个体域: 个体变项的取值范围有限个体域,如{a, b, c}, {1, 2}无限个体域,如N, Z, R, …全总个体域: 宇宙间一切事物组成谓词: 表示个体词性质或相互之间关系的词谓词常项:F(a):a是人谓词变项:F(x):x具有性质F一元谓词: 表示事物的性质多元谓词(n元谓词, n2): 表示事物之间的关系如L(x,y):x与y有关系L,L(x,y):x y,…0元谓词: 别含个体变项的谓词, 即命题常项或命题变项量词: 表示数量的词全称量词: 表示任意的, 所有的, 一切的等如x 表示对个体域中所有的x存在量词: 表示存在, 有的, 至少有一具等如x表示在个体域中存在x一阶逻辑中命题符号化例1 用0元谓词将命题符号化要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲在命题逻辑中, 设p:墨西哥位于南美洲符号化为p, 这是真命题在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲符号化为F(a)例2 在一阶逻辑中将下面命题符号化(1) 人都爱美; (2) 有人用左手写字分不取(a) D为人类集合, (b) D为全总个体域.解:(a) (1) 设G(x):x爱美, 符号化为x G(x)(2) 设G(x):x用左手写字, 符号化为x G(x)(b) 设F(x):x为人,G(x):同(a)中(1) x (F(x)G(x))(2) x (F(x)G(x))这是两个基本公式, 注意这两个基本公式的使用.例3 在一阶逻辑中将下面命题符号化(1) 正数都大于负数(2) 有的无理数大于有的有理数解注意: 题目中没给个体域, 一律用全总个体域(1) 令F(x): x为正数, G(y): y为负数, L(x,y): x>y x(F(x)y(G(y)L(x,y))) 或x y(F(x)G(y)L(x,y)) 两者等值(2) 令F(x): x是无理数, G(y): y是有理数,L(x,y):x>yx(F(x)y(G(y)L(x,y)))或x y(F(x)G(y)L(x,y)) 两者等值几点注意:1元谓词与多元谓词的区分无特殊要求,用全总个体域量词顺序普通别能随便颠倒否定式的使用考虑:①没有别呼吸的人②别是所有的人都喜爱吃糖③别是所有的火车都比所有的汽车快以上命题应怎么符号化?2.2 一阶逻辑合式公式及解释字母表定义字母表包含下述符号:(1) 个体常项:a, b, c, …, a i, b i, c i, …, i1(2) 个体变项:x, y, z, …, x i, y i, z i, …, i 1(3) 函数符号:f, g, h, …, f i, g i, h i, …, i1(4) 谓词符号:F, G, H, …, F i, G i, H i, …, i1(5) 量词符号:,(6) 联结词符号:, , , ,(7) 括号与逗号:(, ), ,定义项的定义如下:(1) 个体常项和个体变项是项.(2) 若(x1, x2, …, x n)是任意的n元函数,t1,t2,…,t n是任意的n个项,则(t1, t2, …, t n) 是项.(3) 所有的项基本上有限次使用(1), (2) 得到的.个体常项、变项是项,由它们构成的n元函数和复合函数依然项定义设R(x1, x2, …, x n)是任意的n元谓词,t1,t2,…, t n 是任意的n个项,则称R(t1, t2, …, t n)是原子公式.原子公式是由项组成的n元谓词.例如,F(x,y), F(f(x1,x2),g(x3,x4))等均为原子公式定义合式公式(简称公式)定义如下:(1) 原子公式是合式公式.(2) 若A是合式公式,则(A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B),(A B)也是合式公式(4) 若A是合式公式,则xA, xA也是合式公式(5) 惟独有限次地应用(1)~(4)形成的符号串是合式公式.请举出几个合式公式的例子.定义在公式xA和xA中,称x为指导变元,A为相应量词的辖域. 在x和x的辖域中,x的所有浮现都称为约束浮现,A中别是约束浮现的其他变项均称为是自由浮现的.例如, 在公式x(F(x,y)G(x,z)) 中,A=(F(x,y)G(x,z))为x的辖域,x为指导变元, A中x的两次浮现均为约束浮现,y与z均为自由浮现.闭式: 别含自由浮现的个体变项的公式.给定公式A=x(F(x)G(x))成真解释: 个体域N, F(x): x>2, G(x): x>1代入得A=x(x>2x>1) 真命题成假解释: 个体域N, F(x): x>1, G(x): x>2 代入得A=x(x>1x>2) 假命题咨询: xF(x)x F(x) 有成真解释吗?xF(x)x F(x) 有成假解释吗?被解释的公式别一定全部包含解释中的4部分.闭式在任何解释下基本上命题,注意别是闭式的公式在某些解释下也也许是命题.永真式(逻辑有效式):无成假赋值矛盾式(永假式):无成真赋值可满脚式:至少有一具成真赋值几点讲明:永真式为可满脚式,但反之别真谓词公式的可满脚性(永真性,永假性)是别可判定的利用代换实例可判某些公式的类型定义设A0是含命题变项p1, p2, …,p n的命题公式,A1,A2,…,A n是n个谓词公式,用A i处处代替A0中的p i (1i n),所得公式A称为A0的代换实例.例如:F(x)G(x), xF(x)yG(y) 等基本上p q的换实例,x(F(x)G(x)) 等别是p q 的代换实例.定理重言式的代换实例基本上永真式,矛盾式的代换实例基本上矛盾式.2.3 一阶逻辑等值式等值式定义若A B为逻辑有效式,则称A与B是等值的,记作A B,并称A B 为等值式.基本等值式:命题逻辑中16组基本等值式的代换实例如,xF(x)yG(y) xF(x)yG(y)(xF(x)yG(y)) xF(x)yG(y) 等消去量词等值式设D={a1,a2,…,a n} xA(x)A(a1)A(a2)…A(a n)xA(x)A(a1)A(a2)…A(a n)量词否定等值式设A(x)是含x自由浮现的公式xA(x)x A(x)xA(x)x A(x)量词分配等值式x(A(x)B(x))xA(x)xB(x)x(A(x)B(x))xA(x)xB(x)注意:对无分配律,对无分配律例将下面命题用两种形式符号化(1) 没有别犯错误的人(2) 别是所有的人都爱看电影解(1) 令F(x):x是人,G(x):x犯错误.x(F(x)G(x))x(F(x)G(x))请给出演算过程,并讲明理由.(2) 令F(x):x是人,G(x):爱看电影.x(F(x)G(x))x(F(x)G(x))给出演算过程,并讲明理由.前束范式定义设A为一具一阶逻辑公式, 若A具有如下形式Q1x1Q2x2…Q k x k B, 则称A为前束范式, 其中Q i(1i k)为或,B为别含量词的公式.例如,x y(F(x)(G(y)H(x,y)))x(F(x)G(x))是前束范式, 而x(F(x)y(G(y)H(x,y)))x(F(x)G(x))别是前束范式.定理(前束范式存在定理)一阶逻辑中的任何公式都存在与之等值的前束范式注意:公式的前束范式别惟一求公式的前束范式的办法: 利用重要等值式、置换规则、换名规则、代替规则举行等值演算.换名规则: 将量词辖域中浮现的某个约束浮现的个体变项及对应的指导变项,改成其他辖域中未曾浮现过的个体变项符号,公式中其余部分别变,则所得公式与原来的公式等值.代替规则: 对某自由浮现的个体变项用与原公式中所有个体变项符号别同的符号去代替,则所得公式与原来的公式等值.例求下列公式的前束范式(1) x(M(x)F(x))解x(M(x)F(x))x(M(x)F(x)) (量词否定等值式)x(M(x)F(x))两步结果基本上前束范式,讲明前束范式别惟一.(2) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x) (量词否定等值式)x(F(x)G(x)) (量词分配等值式)另有一种形式xF(x)xG(x)xF(x)x G(x)xF(x)y G(y) ( 换名规则) x y(F(x)G(y)) ( 量词辖域扩张) 两种形式是等值的(3) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x)x(F(x)G(x)) (为啥?)或x y(F(x)G(y)) (为啥?)(4) xF(x)y(G(x,y)H(y))解xF(x)y(G(x,y)H(y))zF(z)y(G(x,y)H(y)) (换名规则)z y(F(z)(G(x,y)H(y))) (为啥?)或xF(x)y(G(z,y)H(y)) (代替规则)x y(F(x)(G(z,y)H(y)))(5) x(F(x,y)y(G(x,y)H(x,z)))解用换名规则, 也可用代替规则, 这个地方用代替规则 x(F(x,y)y(G(x,y)H(x,z)))x(F(x,u)y(G(x,y)H(x,z)))x y(F(x,u)G(x,y)H(x,z)))注意:x与y别能颠倒。
第四章 一阶逻辑命题符号化

“ x , y 等表示个体域里的所有个体; 用 ”.
用 xF ( x ), yG ( y )等分别表示个体域里所有个体 都有性质 F 和都有性质 G .
2 存在量词
日常生活和数学中所用的“存在”,“有一 个”,“有的”,“至少有一个” 等词统称为 存在量词,将它们都符号化为“”. 用 x , y 等表示个体域里有的个体;
三、量词
有了个体词和谓词之后, 有些命题还是不能准确 的符号化,原因是还缺少表示个体常项或变项之
间数量关系的词. 称表示个体常项或变项之间数
量关系的词为量词. 量词可分两种:
全称量词
存在量词
1 全称量词
日常生活和数学中所用的“一切的”,“所 有的”,“每一个”,“任意的”,“凡”,“都” 等词可统称为全称量词,将它们符号化为
表达出个体与总体的内在联系和数量关系,这就是一
阶逻辑所研究的内容. 一阶逻辑也称一阶谓词逻辑或 谓词逻辑.
第1节
一阶逻辑的符号化
一、个体词 二、谓词 三、量词
四、一阶逻辑命题符号化
个体词、谓词和量词是一阶逻辑命题符号化
的三个基本要素. 下面讨论这三个要素.
一、个体词
个体词是指所研究对象中可以独立存在的具体 的或抽象的客体. (1)将表示具体或特定的客体的个体词称作个体 常项,一般用小写英文字母a,b,c…表示; (2)而将表示抽象或泛指的个体词称为个体变项, 常用x,y,z , …表示. (3)称个体变项的取值范围为个体域(或称论域).
(3) 函数符号: f, g, h, …, fi, gi, hi,…, i≥1
(4) 谓词符号: F, G, H,…,Fi , Gi , Hi ,…,i≥1
(5) 量词符号: ,
《离散数学》-一阶逻辑-基本概念

《离散数学》-⼀阶逻辑-基本概念⼀阶逻辑这个⼀块属于离散数学的内容,它的功能就是将⾃然事物给符号化以为体系的确⽴奠定语⾔基础。
回想⽆论学汉语还是英语的语法,我们都是从句⼦的主⼲学起,那么数学作为⼀门语⾔,它的句⼦当然也有所谓的主⼲。
个体词:个体次是所研究对象可以独⽴存在的具体的或者抽象的客体。
具体⽽特定的客体个体成为个体常项,⼀般⽤⼩写字母a、b、c表⽰。
⽽将抽象或泛指的个体词成为个体变项,⼀般⽤英⽂字母x、y、z表⽰,并称个体变项的取值范围为个体域。
举例说明:(1)“5是素数”,5、素数都是个体词语,5是个体常项⽽素数是个体变项.(2)“x>y”,x、y都是个体变项.谓词:这⾥似乎类似于⾃然语⾔中谓语动词,往往是形容“⼀个动作”,但是在这⾥,谓词是形容“⼀种关系”,当然和个体词类似,根据这种描绘个体之间的关系的确定与否(具体或者抽象泛指),我们也可以把谓词分为常项和变项。
举例说明:(1) X是有理数。
“是有理数”是常项谓词。
(2) X与y有具体关系L。
这⾥及其迷惑⼈的是语句“有具体关系L”,但是本质上关系L还是抽象的不确定的,因此这⾥“有具体关系L”是变项谓词。
下⾯要做的就是将这种描述关系的语句进⾏符号化,这⾥其实有点类似于函数的概念,因为谓词描述的是个体之间的关系,因此它必须依赖于个体。
我们⽤F、G、H来进⾏符号化的表⽰。
F(a)、F(x)分别表⽰个体常项a、个体变项x满⾜的性质F(a)和F(x).更⼀般的情况,P(x1,x2,x3…xn)表⽰个体x1,x2,…xn具有关系P。
对于不含个体变项的谓词,我们成为0元谓词。
Ex1:将下列命题在⼀阶逻辑中⽤0元谓词符号化,并讨论他们的真值(1) 只有2是素数,4才是素数。
G(2)表⽰2是素数,G(4)表⽰4是素数,则我们将这个命题符号化的结果: G(2) —> G(4),由于命题的条件为假,因此该命题为真。
(2) 如果5⼤于4,则4⼤于6G(5,4)表⽰“5⼤于4”,命题符号化之后的结果: G(5,4) —> G(4,6),条件为真结论为假,因此命题为假。
4.2 一阶逻辑公式及解释

简单起见,谓词公式简称为公式。
5
定义4.5(量词的辖域) 在公式xA和xA中,称x是指导变元,A为
相应量词的辖域。 在x和x的辖域中,x的所有出现都称为约束
出现 A中不是约束出现的变项均称为是自由出现的
说明:量词的辖域以量词后第一个括号的范围为准
6
例4.6 指出下列公式中的指导变元,各量词的 辖域,自由出现以及约束出现的个体变项:
(3)但可以利用代换实例的相关性质来判断 某些特殊的公式。而对于一般的公式只能通过构 造解释的方法来判断。
16
定义4.9(代换实例) 设A0是含命题变项p1,p2,…,pn的命题公式,
A1,A2,…,An是n个谓词公式,用Ai(1≤i≤n)处处 代替A0中的pi ,所得公式A称为A0的代换实例。 例如 F(x)→G(x),xF(x)→yG(y)
4
定义4.4(谓词公式)
谓词公式也称为合式公式,其递归定义如下: (1)原子公式是谓词公式 (2)若A谓词公式,则┐A也是谓词公式 ( 3 ) 若 A,B 是 谓 词 公 式 , 则 A∧B,A∨B,A→B,
AB也是谓词公式 (4)若A是公式,则xA,xA也是谓词公式 (5)只有有限次使用(1)-(4)生成的符号串才是谓
在谓词逻辑中,项起的是名词的作用,不是句子。
原子公式是谓词逻辑公式的最小单位,最小的句子单位
3
例:D是个体名称的集合, x,y(∈D)为个体变项,a:张三,b:李四 所以x,y,a,b是项 假设f(x):x的父亲,F(x,y):x是y的父亲 f(a), f(f(a)), F(a,b), F(f(f(a)),b) 则f(a):张三的父亲,是项 f(f(a)):张三的祖父,是项 而F(a,b):张三是李四的父亲,是原子公式 F(f(f(a)),b):张三的祖父是李四的父亲,是原子公式
离散数学第二章一阶逻辑知识点总结

数理逻辑部分第2章一阶逻辑2.1 一阶逻辑基本概念个体词(个体): 所研究对象中可以独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示个体变项:抽象的事物,用x, y, z表示个体域: 个体变项的取值范围有限个体域,如{a, b, c}, {1, 2}无限个体域,如N, Z, R, …全总个体域: 宇宙间一切事物组成谓词: 表示个体词性质或相互之间关系的词谓词常项:F(a):a是人谓词变项:F(x):x具有性质F一元谓词: 表示事物的性质多元谓词(n元谓词, n2): 表示事物之间的关系如L(x,y):x与y有关系L,L(x,y):x y,…0元谓词: 不含个体变项的谓词, 即命题常项或命题变项量词: 表示数量的词全称量词: 表示任意的, 所有的, 一切的等如x 表示对个体域中所有的x存在量词: 表示存在, 有的, 至少有一个等如x表示在个体域中存在x一阶逻辑中命题符号化例1 用0元谓词将命题符号化要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲在命题逻辑中, 设p:墨西哥位于南美洲符号化为p, 这是真命题在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲符号化为F(a)例2 在一阶逻辑中将下面命题符号化(1) 人都爱美; (2) 有人用左手写字分别取(a) D为人类集合, (b) D为全总个体域.解:(a) (1) 设G(x):x爱美, 符号化为x G(x)(2) 设G(x):x用左手写字, 符号化为x G(x)(b) 设F(x):x为人,G(x):同(a)中(1) x (F(x)G(x))(2) x (F(x)G(x))这是两个基本公式, 注意这两个基本公式的使用.例3 在一阶逻辑中将下面命题符号化(1) 正数都大于负数(2) 有的无理数大于有的有理数解注意: 题目中没给个体域, 一律用全总个体域(1) 令F(x): x为正数, G(y): y为负数, L(x,y): x>yx(F(x)y(G(y)L(x,y))) 或x y(F(x)G(y)L(x,y)) 两者等值(2) 令F(x): x是无理数, G(y): y是有理数,L(x,y):x>yx(F(x)y(G(y)L(x,y)))或x y(F(x)G(y)L(x,y)) 两者等值几点注意:1元谓词与多元谓词的区分无特别要求,用全总个体域量词顺序一般不能随便颠倒否定式的使用思考:①没有不呼吸的人②不是所有的人都喜欢吃糖③不是所有的火车都比所有的汽车快以上命题应如何符号化?2.2 一阶逻辑合式公式及解释字母表定义字母表包含下述符号:(1) 个体常项:a, b, c, …, a i, b i, c i, …, i1(2) 个体变项:x, y, z, …, x i, y i, z i, …, i 1(3) 函数符号:f, g, h, …, f i, g i, h i, …, i1(4) 谓词符号:F, G, H, …, F i, G i, H i, …, i1(5) 量词符号:,(6) 联结词符号:, , , ,(7) 括号与逗号:(, ), ,定义项的定义如下:(1) 个体常项和个体变项是项.(2) 若(x1, x2, …, x n)是任意的n元函数,t1,t2,…,t n是任意的n个项,则(t1, t2, …, t n) 是项.(3) 所有的项都是有限次使用(1), (2) 得到的.个体常项、变项是项,由它们构成的n元函数和复合函数还是项定义设R(x1, x2, …, x n)是任意的n元谓词,t1,t2,…, t n是任意的n个项,则称R(t1, t2, …, t n)是原子公式.原子公式是由项组成的n元谓词.例如,F(x,y), F(f(x1,x2),g(x3,x4))等均为原子公式定义合式公式(简称公式)定义如下:(1) 原子公式是合式公式.(2) 若A是合式公式,则(A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B),(A B)也是合式公式(4) 若A是合式公式,则xA, xA也是合式公式(5) 只有有限次地应用(1)~(4)形成的符号串是合式公式.请举出几个合式公式的例子.定义在公式xA和xA中,称x为指导变元,A为相应量词的辖域. 在x和x的辖域中,x的所有出现都称为约束出现,A中不是约束出现的其他变项均称为是自由出现的.例如, 在公式x(F(x,y)G(x,z)) 中,A=(F(x,y)G(x,z))为x的辖域,x为指导变元, A中x的两次出现均为约束出现,y与z均为自由出现.闭式: 不含自由出现的个体变项的公式.给定公式A=x(F(x)G(x))成真解释: 个体域N, F(x): x>2, G(x): x>1代入得A=x(x>2x>1) 真命题成假解释: 个体域N, F(x): x>1, G(x): x>2代入得A=x(x>1x>2) 假命题问: xF(x)x F(x) 有成真解释吗?xF(x)x F(x) 有成假解释吗?被解释的公式不一定全部包含解释中的4部分.闭式在任何解释下都是命题,注意不是闭式的公式在某些解释下也可能是命题.永真式(逻辑有效式):无成假赋值矛盾式(永假式):无成真赋值可满足式:至少有一个成真赋值几点说明:永真式为可满足式,但反之不真谓词公式的可满足性(永真性,永假性)是不可判定的利用代换实例可判某些公式的类型定义设A0是含命题变项p1, p2, …,p n的命题公式,A1,A2,…,A n是n个谓词公式,用A i处处代替A0中的p i (1i n),所得公式A称为A0的代换实例.例如:F(x)G(x), xF(x)yG(y) 等都是p q的换实例,x(F(x)G(x)) 等不是p q 的代换实例.定理重言式的代换实例都是永真式,矛盾式的代换实例都是矛盾式.2.3 一阶逻辑等值式等值式定义若A B为逻辑有效式,则称A与B是等值的,记作A B,并称A B为等值式.基本等值式:命题逻辑中16组基本等值式的代换实例如,xF(x)yG(y) xF(x)yG(y)(xF(x)yG(y)) xF(x)yG(y) 等消去量词等值式设D={a1,a2,…,a n}xA(x)A(a1)A(a2)…A(a n)xA(x)A(a1)A(a2)…A(a n)量词否定等值式设A(x)是含x自由出现的公式xA(x)x A(x)xA(x)x A(x)量词分配等值式x(A(x)B(x))xA(x)xB(x)x(A(x)B(x))xA(x)xB(x)注意:对无分配律,对无分配律例将下面命题用两种形式符号化(1) 没有不犯错误的人(2) 不是所有的人都爱看电影解(1) 令F(x):x是人,G(x):x犯错误.x(F(x)G(x))x(F(x)G(x))请给出演算过程,并说明理由.(2) 令F(x):x是人,G(x):爱看电影.x(F(x)G(x))x(F(x)G(x))给出演算过程,并说明理由.前束范式定义设A为一个一阶逻辑公式, 若A具有如下形式Q1x1Q2x2…Q k x k B, 则称A为前束范式, 其中Q i(1i k)为或,B为不含量词的公式.例如,x y(F(x)(G(y)H(x,y)))x(F(x)G(x))是前束范式, 而x(F(x)y(G(y)H(x,y)))x(F(x)G(x))不是前束范式.定理(前束范式存在定理)一阶逻辑中的任何公式都存在与之等值的前束范式注意:公式的前束范式不惟一求公式的前束范式的方法: 利用重要等值式、置换规则、换名规则、代替规则进行等值演算.换名规则: 将量词辖域中出现的某个约束出现的个体变项及对应的指导变项,改成其他辖域中未曾出现过的个体变项符号,公式中其余部分不变,则所得公式与原来的公式等值.代替规则: 对某自由出现的个体变项用与原公式中所有个体变项符号不同的符号去代替,则所得公式与原来的公式等值.例求下列公式的前束范式(1) x(M(x)F(x))解x(M(x)F(x))x(M(x)F(x)) (量词否定等值式)x(M(x)F(x))两步结果都是前束范式,说明前束范式不惟一.(2) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x) (量词否定等值式)x(F(x)G(x)) (量词分配等值式)另有一种形式xF(x)xG(x)xF(x)x G(x)xF(x)y G(y) ( 换名规则) x y(F(x)G(y)) ( 量词辖域扩张)两种形式是等值的(3) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x)x(F(x)G(x)) (为什么?)或x y(F(x)G(y)) (为什么?)(4) xF(x)y(G(x,y)H(y))解xF(x)y(G(x,y)H(y))zF(z)y(G(x,y)H(y)) (换名规则)z y(F(z)(G(x,y)H(y))) (为什么?)或xF(x)y(G(z,y)H(y)) (代替规则)x y(F(x)(G(z,y)H(y)))(5) x(F(x,y)y(G(x,y)H(x,z)))解用换名规则, 也可用代替规则, 这里用代替规则x(F(x,y)y(G(x,y)H(x,z)))x(F(x,u)y(G(x,y)H(x,z)))x y(F(x,u)G(x,y)H(x,z)))注意:x与y不能颠倒。
4.1一阶谓词逻辑基本概念
(1) (2) (3)
(1) (2) (3) (4) (5) (6)
(7)
(8) (9) (10) (11) (12)
x(J(x)→L(x)) (4) x(L(x)∧S(x)) (5) x(J(x)∧O(x)∧V(x)) (6) (7) J(j)∧O(j)∧V(j) (8) x(L(x)→J(x)) (9) x(S(x)∧L(x)∧C(x)) (10) x(C(x)∧V(x)) (11) x((C(x)∧O(x))→L(x)) (12) x(W(x)∧C(x)∧H(x)) x(W(x)∧J(x)∧C(x)) x(L(x)→y(J(y)∧A(x,y))) x(S(x)∧y(L(y)→A(x,y)))
◦ 由一个谓词和若干个个体变元组成的命题形式称为简单命 题函数,表示为P(x1,x2,…,xn)。由一个或若干个简单命题函 数以及逻辑联结词组成的命题形式称为复合命题函数
◦ 命题函数不是命题,没有确定真值,但其中谓词是谓词常量时,可 通过个体指派使其成为命题。如:若简单命题函数P(X)表示“x是 质数”,则P(1)为F,P(2)为T。
(1) 5是质数 (2) 张明生于北京 (3) 7=3×2
P(5)
G(a,b)
H(7,3,2)
P(x):x是质数
G(x, y): x生于y ,a:张明,b:北京
H(x, y, z) :x=y×z
谓词 个体词 谓词函数
例 将下列命题在一阶逻辑中用0元谓词符号化,并讨论真值。 (1)只有2是素数,4才是素数。 (2)如果5大于4,则4大于6.
除个体指派外,还常用“量”作出判断,如:“所有的人都是要死 的”、“有的数是质数”。这种表述在数理逻辑目标语言中需要引 入量词,当然量化与个体指派之间是有联系的,数理逻辑中常用量 词有两个——全称量词和存在量词。
第2章 一阶逻辑
第2章 一阶逻辑 章
例如,x,a,f(x,a),f(g(x,a,b),h (x))均是项,其中h、f和g分别是一元、二元和三元 运算符。而h(a,b)不是项,因为h是一元运算符, 但h(a,b)中h的后面跟了两个项,同样g(x)也不 是项(理由请读者自己考虑)。
第2章 一阶逻辑 章
定义2.2.2 若F是n元谓词,t1,t2,…,tn是项,则 F(t1,t2,…,tn)是原子公式。 由定义可知,原子命题是不含量词和联结词的谓 词公式。同命题逻辑中的情况相似,这里也可以用联 结词将原子公式复合成分子公式。(事实上我们已经 这样做了。)
第2章 一阶逻辑 章
(3)本命题的意思是:存在着这样的x和y,x是病 人,y是医生,x不相信y。因此,本命题符号化为:
∃ x ∃ y(F(x)∧G(y)∧ H(x,y))
或
∃ (x(F(x)∧∃ y(G(y)∧
H(x,y)))
(4)本命题的意思是:对于每个x,如果x是病人, 就存在着医生y,使得x相信y。因此,本命题符号化为:
(2)令F(x,y):x是y的学生;a:小王;b:李 老师。则原句形式化为: F(a,b)。 (3)令F(x,y):x≤y;G(x,y):x=y。式化 为: (F(x,y)∧F(y,x))→G(x,y)。
第2章 一阶逻辑 章
前两句均是命题,第三句因为含有变元所以是命 题函数。但实际上我们知道,只要将x、y限制在数的 范围内,第三句是定理,是永真的。这就涉及到了个 体域。在简单命题中,常有一些表示数量关系的词语, 诸如"所有的"、"有一些"等等,用来表示论域中的全 体或部分个体,在谓词逻辑中,我们用量词把它们形 式化。
第2章 一阶逻辑 章
我们称由谓词符和变元符组成的符号串为命题函 数。之所以称为命题函数,是因为命题函数不是命题, 只有谓词为常元并将其中的变元代以具体的个体后, 才能构成命题。例如:"G(x,y):x整除y。"并不是 命题,但若取a:2,b:6,则G(a,a),G(a,b) 以及G(b,a)均是命题,前两个是真命题,第三个是 假命题。G(a,a)、G(a,b)等称为0元谓词,它 们不含个体变元,0元谓词即命题。
离散数学第二章一阶逻辑知识点总结
数理逻辑部分第2章一阶逻辑2。
1 一阶逻辑基本概念个体词(个体): 所研究对象中可以独立存在的具体或抽象的客体个体常项:具体的事物,用a, b,c表示个体变项:抽象的事物,用x,y,z表示个体域: 个体变项的取值范围有限个体域,如{a,b, c}, {1, 2}无限个体域,如N, Z, R,…全总个体域:宇宙间一切事物组成谓词:表示个体词性质或相互之间关系的词谓词常项:F(a):a是人谓词变项:F(x):x具有性质F一元谓词:表示事物的性质多元谓词(n元谓词, n≥2): 表示事物之间的关系如L(x,y):x与y有关系L,L(x,y):x≥y,…0元谓词: 不含个体变项的谓词, 即命题常项或命题变项量词:表示数量的词全称量词∀:表示任意的, 所有的,一切的等如∀x 表示对个体域中所有的x存在量词∃:表示存在,有的,至少有一个等如$x表示在个体域中存在x一阶逻辑中命题符号化例1 用0元谓词将命题符号化要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲在命题逻辑中,设p:墨西哥位于南美洲符号化为 p, 这是真命题在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲符号化为F(a)例2 在一阶逻辑中将下面命题符号化(1)人都爱美; (2) 有人用左手写字分别取(a) D为人类集合, (b)D为全总个体域。
解:(a) (1) 设G(x):x爱美, 符号化为∀x G(x)(2) 设G(x):x用左手写字, 符号化为$x G(x)(b) 设F(x):x为人,G(x):同(a)中(1) ∀x (F(x)→G(x))(2) $x (F(x)∧G(x))这是两个基本公式, 注意这两个基本公式的使用。
例3 在一阶逻辑中将下面命题符号化(1) 正数都大于负数(2)有的无理数大于有的有理数解注意: 题目中没给个体域, 一律用全总个体域(1)令F(x):x为正数,G(y):y为负数, L(x,y): x>y x(F(x)→y(G(y)→L(x,y))) 或∀x y(F(x)∧G(y)→L(x,y)) 两者等值(2) 令F(x):x是无理数,G(y): y是有理数,L(x,y):x>y∃x(F(x)∧∃y(G(y)∧L(x,y)))或$x$y(F(x)∧G(y)∧L(x,y)) 两者等值几点注意:1元谓词与多元谓词的区分无特别要求,用全总个体域量词顺序一般不能随便颠倒否定式的使用思考:①没有不呼吸的人②不是所有的人都喜欢吃糖③不是所有的火车都比所有的汽车快以上命题应如何符号化?2。
一阶逻辑
谓 词
谓词: 刻画个体性质或几个个体关系的模式。谓词常用 大写英文字母表示,叫做谓词标识符。 ⑴ 李玲是优秀共产党员。 ⑵ 张华比李红高。 ⑶ 小高坐在小王和小刘的中间
F:„是优秀共产党员。 G:„比„高。 H:„坐在„和„的中间。
一元谓词: 与一个个体相关联的谓词。F(x)是一元谓词; 二元谓词: 与两个个体相关联的谓词。G(x, y)是二元谓词;
【例2.3】 命题:⑴ 所有数小于5。 ⑵ 至少有一个数小于5。 个体域: ① -1,0,1,2,4 ② 3,-2,7,8 ③ 15,20,24 解:设L(x):x小于5。 ⑴ “所有数小于5。”符号化为:(x) L(x) 在个体域①,②,③中, 真值分别为:真,假,假。 ⑵ “至少有一个数小于5。”符号化为:(x)L(x) 在个体域①,②,③中, 真值分别为:真,真,假。
„
一般的,把与n个个体相关联的谓词 P(x1,x2,…,xn)叫做n元谓词(n元命题函数)。
n元谓词是命题吗?ຫໍສະໝຸດ 0元谓词是命题,命题逻辑中的简单命题都可用 0元谓词来表示。所以说命题可以看成谓词的 一种特例,所以命题逻辑中的联结词在一阶 逻辑中都可以使用。
谓词填式(0元谓词): 将谓词后面填上相关联的个体常元所得的式子。 设F是一元谓词,a是个体常元,用F(a)表示个体 常元a具有性质F; 设G是二元谓词,a,b是个体常元,用G(a,b)表示 个体常元a和b具有关系G;„
x y(R(x,y) L(y,z) )中, x, y都是指导变项,辖域为(R(x,y) L(y,z) ), x与y 都是约束出现的, z为自由出现. x H(x,y)中, x 为指导变项, 的辖域为H(x,y),其中x 为约 束出现的, y为自由出现. 在此公式中, x 为约束出现的,y为约束出现的,又为自由出 现的. z为自由出现.